DISTRIBUTION OF SQUAREFREE INTEGERS IN NON-LINEAR SEQUENCES

Ivan E. Stux

I. This paper investigates the occurrences of the squarefree integers in sequences $s_{n}=[f(n)], n=1,2,3, \cdots$ where $f(x)$ belongs to classes of functions described by 'smoothness' conditions. The result obtained is an extention of the well known fact that $Q(x)=6 / \pi^{2} x+O\left(x^{1 / 2}\right)$, where $Q(x)=$ number of squarefree integers $\leqq x$; it states that $Q_{s}(x) \sim 6 / \pi^{2} g(x)$ where $Q_{s}(x)=$ number of squarefree integers $\leqq x$ in the sequence s_{n}, and $g(x)$ is the inverse function of $f(x)$.

This result relates to the deep theorem of Piateskii-Shapiro which states that if $1<c<12 / 11$ then the sequence [n^{c}] has the proper rate of primes occuring, namely, $\pi_{c}(x) \sim x^{1 / c} / \log x$.

The classes of functions used is described by the following:

Definition 1. for given $1<c<2,0<\delta<1$
(1) $S(c, \delta)=$ set of functions $f(x)$ such that for some constant $a>0$ depending on f, and for sufficiently large x 's, depending on f,

$$
\left(a x^{c}\right)^{(i)} \leqq(f(x))^{(i)}<\left(a x^{c+\delta}\right)^{(i)}
$$

holds for $i=0,1,2$, the superscripts indicating the $i^{\text {th }}$ derivative.
Functions like $x^{c}, 1<c<2$, or more generally $\sum_{l=1}^{k} a_{i} x^{c_{i}}(\log x)^{d_{i}}$, where the leading term has $a>0,1<c<2$, belong to these classes of functions.

The following theorem will be proved:
Theorem 1. Let $1<c<4 / 3$, then there exists a $\delta_{c}=\delta(c)>0$, some small value depending on c such that if $f(x) \in S(c, \delta), 0 \leqq \delta<$ $\delta(c)$, then

$$
\begin{equation*}
Q_{s}(x)=6 / \pi^{-2} g(x)+O\left((g(x))^{1-s}\right) \tag{2}
\end{equation*}
$$

holds for some $\varepsilon>0$ depending on c and δ, where $Q_{s}(x)=$ number of $\left\{s_{n} \leqq x, s_{n}=[f(n)], s_{n}=\right.$ squarefree, $\left.n=1,2,3, \cdots\right\}, g(x)=$ inverse function of $f,[z]=$ integer part of z.
II. Following are the lemmas that will be used in the proof:

Lemma 1 (Piateskii-Shapiro, [2]). Let $f(x)$ be a continuously
$g(x)$ be its inverse function. Then, for an integer m such that $m=[f(n)]$, either $\{g(m)\}=0$ or $1-g^{\prime}(m-1)<\{g(m)\}<1$. Conversely, if $\{g(m)\}=0$ or $1-g^{\prime}(m+1)<\{g(m)\}<1$, then it follows that for some $n, m=[f(n)]$.
(The curly brackets indicate the fractional part of the real number, the straight brackets the integer part, as usual.)

Lemma 2 (a theorem of Erdös-Turán, [1]). If μ_{1}, μ_{2}, \ldots is a real sequence and if D_{N} denotes its discrepancy modulo one, then for each integer $m \geqq 1$ we have

$$
\begin{equation*}
N D_{N} \leqq K\left(\frac{N}{m+1}+\sum_{t=1}^{m} \frac{1}{t}\left|\sum_{n=1}^{N} e\left(t \mu_{n}\right)\right|\right) \tag{3}
\end{equation*}
$$

(where K is a constant and $e(z)=e^{2 \pi i z}$, as usual).
Lemma 3 (Van der Corput, pg, 64, [3]). Let $g(x)$ be a real function with a continuous and steadily decreasing derivative $g^{\prime}(x)$ in (a, b), and let $g^{\prime}(b)=\alpha, g^{\prime}(a)=\beta$. Then

$$
\begin{equation*}
\sum_{a<n \leqq b} e(g(n))=\sum_{\alpha-r \lll \beta+\eta} \int_{a}^{b} e(g(x)-\nu x) d x+O(\log (\beta-\alpha+2)) \tag{4}
\end{equation*}
$$

where η is any positive constant less than one.
Lemma 4 (Van der Corput, pg. 61, [3]). Let $F(x)$ be a real function, twice differentiable, and let $F^{\prime \prime}(x) \geqq r>0$, or $F^{\prime \prime}(x) \leqq$ $-r<0$ throughout the interval (a, b), then

$$
\begin{equation*}
\left|\int_{a}^{b} e^{i F(x)} d x\right| \leqq \frac{8}{\sqrt{r}} \tag{5}
\end{equation*}
$$

III. The first part of the proof is aimed at establishing the uniform distribution modulo one and the discrepancy of that distribution for sequences $g(q)$ where q are squarefree integers and $g(x)$ is the inverse function of a function in $S(c, \delta)$ (where δ is usually small, depending on c). The following is the result in this direction:

ThEOREM 2. For given $1<c<2$, and $\delta>0$, small enough depending on c alone, let $f(x) \in S(c, \delta)$ and let $g(x)$ be the inverse function of $f(x)$. Then the sequence $\{g(q): q \leqq K, q$ the squarefree integers\} is uniformly distributed modulo one and

$$
\begin{equation*}
N(K, \xi)=\xi Q(K)+Q(K) D_{Q(K)}(g), \tag{6}
\end{equation*}
$$

and
differentiable function with $f^{\prime}(x)>0, f^{\prime \prime}(x) \geqq 0$, for $x \geqq 1$, and let

$$
\begin{equation*}
Q(K) D_{Q(K)}(g) \ll K^{3 / 5+(c+2 \delta) /(6 c(c+\delta))}+K^{1-1 /(2 c(c+\delta))} \tag{7}
\end{equation*}
$$

where $Q(K)=$ number of squarefree integers $\leqq K, N(K, \xi)=$ number of elements in the sequence $g(q), q \leqq K, q$ squarefree, which fall into a fixed interval of length $\xi(<1)$ modulo one, and $D_{Q(K)}(g)$ is the discrepancy, modulo one, of the sequence $g(q)$.

Clearly, uniform distribution holds whenever $\delta>0$ is small enough to make the exponents in the estimate (7) less than one.

Proof. For $h \geqq 1$, consider

$$
\begin{equation*}
T_{h}(K)=\sum_{\substack{q \leq K \\ q \text { squarefree }}} e(h g(q)), \quad e(z)=e^{2 \pi i z} \tag{8}
\end{equation*}
$$

Suppose that K_{0} is the large value from where on the estimates of $g, g^{\prime}, g^{\prime \prime}$ induced by the definition 1 hold, and let $K>K_{0}$, then

$$
T_{h}(K)=\sum_{\substack{K_{0}<q \leq K \\ \text { squarefree }}} e(h g(q))+O\left(K_{0}\right),
$$

and

$$
\begin{equation*}
\sum_{\substack{K_{0}<q \leq K_{K} \\ q \text { squarefree }}} e(h g(q))=\sum_{\substack{K_{0}(n \leq K \\ n=\text { integer }}} e(h g(n)) \sum_{d^{2} \mid\left(n, P^{2}\right)} \mu(d) \tag{9}
\end{equation*}
$$

where $p=\Pi_{p \leq K^{1 / 2}} p, p=$ primes, $(a, b)=$ greatest common divisor, $\mu(d)=$ Möbius function. We can further write

$$
\begin{align*}
& \sum_{\substack{d \leq \sqrt{K} \\
d \mid P}} \mu(d) \sum_{K_{0} / d^{2}<m \leqq K / d^{2}} e\left(h g\left(d^{2} m\right)\right) \\
& =\sum_{\substack{d \leq A \\
d \backslash P}} \mu(d) \sum_{K_{0}, d^{2}<m \leqq K \mid d^{2}} e\left(h g\left(d^{2} m\right)\right) \tag{10}\\
& +\sum_{\substack{A<d \leq K^{1 / 2} \\
d \mid P}} \mu(d) \sum_{K_{0} / d^{2}<m \leq K / d^{2}} e\left(h g\left(d^{2} m\right)\right) .
\end{align*}
$$

We will pick the value of A later. The second sum in (10) can be estimated trivially as

$$
\begin{equation*}
\sum_{A<d \leqq K^{1 / 2}}| |_{K_{0}!^{2}<d^{2}<m \leqq K \mid d^{2}} e\left(h g\left(d^{2} m\right)\right) \left\lvert\, \ll \sum_{A<d \leqq K^{1 / 2}} \frac{K}{d^{2}} \ll \frac{K}{A} .\right. \tag{11}
\end{equation*}
$$

The first sum, on the other hand, is estimated by

$$
\begin{equation*}
\sum_{d \leqq A}\left|\sum_{K_{0} \mid d^{2}<m \leqq K / d^{2}} e\left(h g\left(d^{2} m\right)\right)\right| . \tag{12}
\end{equation*}
$$

To estimate the inner sum, divide the interval $K_{0} / d^{2}<m<K / d^{2}$ up into pieces of type $1 / 2^{r} K / d^{2}<m \leqq 1 / 2^{r-1} K / d^{2}$, to get

$$
\begin{equation*}
\sum_{d \leq A} \sum_{r}| |_{1 / 2^{r} r: d^{2}<m \leq 1 / 2 r-1}^{m \leqq K_{0} / d^{2}}\left|\sum_{K / d^{2}} e\left(h g\left(d^{2} m\right)\right)\right| . \tag{12'}
\end{equation*}
$$

We will estimate the last inner sum by using Lemma 3 and then Lemma 4. The conditions in definition 1 give that

$$
\left(\frac{y}{a}\right)^{(c+\delta)^{-1}}<g(y) \leqq\left(\frac{y}{a}\right)^{1 / c}, \frac{1}{c+\delta}\left(\frac{y}{a}\right)^{(c+\delta)^{-1-1}}<g^{\prime}(y) \leqq \frac{1}{c}\left(\frac{y}{a}\right)^{1 / c}
$$

the chain rule tells us that $(d / d x) g\left(d^{2} x\right)=[(d / d z) g(z)] \cdot d^{2}, z=d^{2} x$, and so we have, by Lemma 3, for each r

$$
\begin{equation*}
\sum_{1 / 2^{r}} \sum_{K / d^{2}<m \leqq 1 / 2^{r-1}} e\left(h g\left(d^{2} m\right)\right)=\sum_{\nu} I_{\nu}+E, \tag{13}
\end{equation*}
$$

where the \sum_{v} extends over $\left(1 / a_{1}(c+\delta)\right) h\left(\left(1 / 2^{r-1}\right) K\right)^{(c+\delta)^{-1-1}} d^{2}-1 / 2<$ $\nu<\left(1 / a_{2} c\right) h\left(\left(1 / 2^{r}\right) K\right)^{c-1-1} d^{2}+1 / 2, a_{1}=a^{(c+\dot{\delta})^{-1}}, a_{2}=a^{1 / c}$, and

$$
\begin{equation*}
I_{\nu}=\int_{2^{-r_{K d^{-2}}}}^{2^{-r+1_{K d^{-2}}}} e\left(h g\left(d^{2} x\right)-\nu x\right) d x \tag{14}
\end{equation*}
$$

and

$$
E=O(\log (\max \nu-\min \nu+2))
$$

In (14), first we change variables to $y=d^{2} x$, and then apply Lemma 4

$$
\begin{equation*}
I_{\nu}=\frac{1}{d^{2}} \int_{2^{-r+r_{K}}}^{2^{-r+1_{K}}} e\left(h g(y)-\frac{\nu y}{d^{2}}\right) d y \tag{14'}
\end{equation*}
$$

but here $d^{2} / d y^{2}\left(h g(y)-\nu y / d^{2}\right) \geqq(c+\delta)^{-1}\left((c+\delta)^{-1}-1\right)(1 / a) h y^{(c+\delta)^{-1-2}}$. thus, we get, applying Lemma 4 that

$$
\begin{equation*}
I_{\nu} \ll \frac{1}{d^{2}}\left[h\left(\frac{1}{2^{r-1}} K\right)^{(\sigma+\delta)^{-1-2}}\right]^{-1 / 2} \tag{15}
\end{equation*}
$$

We thus have for (12) the estimate:

$$
\begin{equation*}
\ll \sum_{d \leqq A} \sum_{r} \sum_{\nu} \frac{1}{d^{2}} h^{-1 / 2} \frac{2^{(r-1) /(c+\delta) c}}{2^{r-1}} K^{1-1 /(2 c+2 \delta)}+\sum_{d \leqq A} \sum_{r}(E) \tag{16}
\end{equation*}
$$

(for largest r we might get a shorter range of integration in (14), but the upper bound estimates still clearly hold in (16)). where \sum is over

$$
\frac{1}{a(c+\delta)} h\left(\frac{1}{2^{r-1}} K\right)^{(c+\delta)^{-1}-1} d^{2}-\frac{1}{2}<\nu<\frac{1}{a c} h\left(\frac{1}{2^{r}} K\right)^{\sigma^{-1-1}} d^{2}+\frac{1}{2}
$$

From here, we have that the ν summation is bounded by

$$
\ll h d^{2} 2^{r}\left(\frac{1}{2^{r-1}}\right)^{1 /(c+\delta)} K^{c-1-1}+1
$$

and so we can further estimate (12) by

$$
\begin{align*}
\ll & \sum_{d \leqq A} \sum_{r}\left(h d^{2} \frac{2^{r}}{2^{(r-1) /(c+\delta)}} K^{(1 / c)-1}+1\right)\left(\frac{h^{-1 / 2}}{d^{2}} \frac{2^{(r-1) /(2(c+\delta))}}{2^{r-1}} K^{1-1 /(2 c+2 \delta)}\right) \\
& +\sum_{d \leqq A} \sum_{r} E \ll A h^{1 / 2} K^{c-1-1 /(2 c+2 \delta)}+h^{-1 / 2} K^{1-1 /(2 c+2 \delta)}+A \log K .
\end{align*}
$$

(The last step is because \sum_{r} in the first term was just a geometric sum and so it converges, while in the second part, the number of terms of the \sum_{r} is $O(\log K)$.) The estimate (16') together with (11) now gives us that

$$
\begin{equation*}
T_{h}(K) \ll A h^{1 / 2} K^{(c+2 \delta) /(c+\delta) 2 c}+h^{-1 / 2} K^{1-1 /(2 c+2 \delta)}+\frac{K}{A}+K_{0} \tag{17}
\end{equation*}
$$

Here, for K sufficiently large the last error term absorbs into the first one if $A \geqq 1$ (which will anyway be the case). We now pick A so as to balance the 1 st and 3 rd terms of (17), i.e. let $A=$ $\left[K^{2-1-(c+2 \delta) /(c+\delta) 4 c} h^{-1 / 4}\right]$. With this choice we obtain

$$
\begin{equation*}
T_{h}(K) \ll h^{1 / 4} K^{2-1+(c+2 \delta) /(c+\delta) 4 c}+h^{-1 / 2} K^{1-1 /(2 c+2 \delta)} . \tag{18}
\end{equation*}
$$

Finally we use Lemma 2 to write:

$$
\begin{align*}
Q(K) D_{Q(K)}(g) & \ll \frac{K}{m+1}+\sum_{h=1}^{m} \frac{1}{h}\left\{h^{1 / 4} K^{2-1+(c+2 \delta) /(c+\delta) 4 c}+h^{-1 / 2} K^{1-1 /(2 c+2 \delta)}\right\} \\
& \ll \frac{K}{m+1}+m^{1 / 4} K^{2-1+(c+2 \delta) /(c+\delta) 4 c}+K^{1-1 /(2 c+2 \delta)} \tag{19}
\end{align*}
$$

We pick the optimal m, i.e. $m=\left[K^{4(2-1-(c+2 \delta) /(c+\delta) 4 c) / 5}\right]$, and thus we have

$$
\begin{equation*}
Q(K) D_{Q(K)}(g) \ll K^{3 / 5+(c+2 \delta) /(c+\delta) 4 c}+K^{1-1 /(2 c+2 \delta)} \tag{20}
\end{equation*}
$$

Corollary 1. If $1<c<4 / 3$ then there exists $\delta_{o}>0$ depending on c such that if $f(x) \in S(c, \delta)$ for $0<\delta<\delta_{c}$, and $g(x)$ is its inverse function then:

$$
\begin{equation*}
Q(K) D_{Q(K)}(g) \ll K^{(c+\delta)^{-1-\varepsilon}} \ll(g(K))^{1-\varepsilon} \tag{21}
\end{equation*}
$$

for some $\varepsilon>0$, depending on c and δ.
Proof. All we need to show is that

$$
\frac{3}{5}+\frac{c+2 \delta}{5 c(c+\delta)}<\frac{1}{c+\delta} \quad \text { and } \quad 1-\frac{1}{2(c+\delta)}<\frac{1}{c+\delta}
$$

hold for some $\delta>0$. By continuity it is enough to check that $3 / 5+$ $1 / 5 c<1 / c$ and $1-1 / 2 c<1 / c$ hold. But the first of these holds if
$c<4 / 3$, the second if $c<3 / 2$.
IV. We can now prove Theorem 1. Let

$$
\begin{align*}
T_{s}(x, y)= & \text { number of }\left\{s_{n}=[f(n)], y<s_{n} \leqq x, s_{n}=\text { squarefree, },\right. \tag{22}\\
& n=1,2,3, \cdots\}
\end{align*}
$$

Clearly, $T_{s}(1, y)=Q_{s}(y)$. Lemma 1 can now be used together with expressions (6) and (21). ξ in (6) will be taken $g^{\prime}(y+1)$ or $g^{\prime}(x-1)$ to give upper and lower bounds on $T(x, y)$, where $g(x)$ is as usual the inverse function of $f(x)$. We obtain:

$$
T_{s}(x, y)\left\{\begin{array}{l}
<g^{\prime}(x-1)(Q(y)-Q(x))+O\left(y^{(c+\delta)^{-1-\varepsilon}}\right) \tag{23}\\
>g^{\prime}(y+1)(Q(y)-Q(x))+O\left(y^{(c+\delta)^{-1-\varepsilon}}\right)
\end{array}\right.
$$

where $Q(x)=$ \# squarefree integers $\leqq x$. Or

$$
\begin{align*}
& T_{s}(x, y) \tag{24}\\
& \left\{\begin{array}{l}
<g^{\prime}(x)(Q(y)-Q(x))+O\left(y^{(c+\delta)^{-1-s}}\right)+O\left(x^{c-1-2}(Q(y)-Q(x))\right) \\
>g^{\prime}(y)(Q(y)-Q(x))+O\left(y^{(c+\delta)^{-1-s}-s}\right)+O\left(y^{c-1-2}(Q(y)-Q(x))\right)
\end{array}\right.
\end{align*}
$$

Thus, for $0<\alpha<1$, using the well-known fact that $Q(x)=6 \pi^{-2} x+$ $O\left(x^{1 / 2}\right)$,

$$
T_{s}(x,(1+\alpha) x)=\left\{\begin{array}{l}
<\frac{6}{\pi^{2}} x \cdot \alpha \cdot g^{\prime}(x) \tag{25}\\
>\frac{6}{\pi^{2}} x \cdot \alpha \cdot g^{\prime}((1+\alpha) x)
\end{array}+O\left(x^{(6+\hat{\delta})^{-1-\varepsilon}}+x^{1 / 2}\right)\right.
$$

On the other hand, clearly

$$
\begin{equation*}
Q_{s}(x)=\sum_{k=1}^{L(x)} T_{s}\left(\frac{x}{(1+\alpha)^{k}}, \frac{x}{(1+\alpha)^{k-1}}\right)+O(1) \tag{26}
\end{equation*}
$$

holds for an appropriate function $L(x)$ which tends to ∞ for $x \rightarrow \infty$, if $\alpha=\alpha(x)>0$ is some given function of x which tends to zero as $x \rightarrow \infty$ (the relation is $(1+\alpha(x))^{L(x)} \cong x$).

Using (25) in the expression (26) we obtain

$$
Q_{s}(x)\left\{\begin{array}{l}
<\frac{6}{\pi^{2}} \sum_{k=1}^{L(x)} \frac{x \cdot \alpha}{(1+\alpha)^{k}} g^{\prime}\left(\frac{x}{(1+\alpha)^{k}}\right)+O\left(L(x) \cdot x^{r}\right) \tag{27}\\
>\frac{6}{\pi^{2}} \sum_{k=1}^{L(x)} \frac{x \cdot \alpha}{(1+\alpha)^{k}} g^{\prime}\left(\frac{x}{(1+\alpha)^{k-1}}\right)+O\left(L(x) \cdot x^{\gamma}\right)
\end{array}\right.
$$

where $\gamma=\max \{1 /(c+\delta)-\varepsilon, 1 / 2\}$ and so it is actually $1 /(c+\delta)-\varepsilon$. The main terms of the expressions on the right of (27) are exactly the upper and lower approximating sums of the Riemann integral

$$
\int_{1}^{x} g^{\prime}(y) d y=g(x)-g(1)
$$

To see how closely these sums approximate the integral, it suffices to find out how closely they are to each other, i.e. to estimate:

$$
\begin{align*}
\Delta(x)= & \left\lvert\, \sum_{k=1}^{L(x)} \frac{x \alpha}{(1+\alpha)^{k}} g^{\prime}\left(\frac{x}{(1+\alpha)^{k-1}}\right)\right. \\
& \left.-\sum_{k=1}^{L(x)} \frac{x \cdot \alpha}{(1+\alpha)^{k}} g^{\prime}\left(\frac{x}{(1+\alpha)^{k}}\right) \right\rvert\, \\
= & \left\lvert\, \sum_{k=0}^{L(x)-1} \frac{x \cdot \alpha}{(1+\alpha)^{k+1}} g^{\prime}\left(\frac{x}{(1+\alpha)^{k}}\right)\right. \\
& \left.-\sum_{k=1}^{L(x)} \frac{x \cdot \alpha}{(1+\alpha)^{k}} g^{\prime}\left(\frac{x}{(1+\alpha)^{k}}\right) \right\rvert\, \tag{28}\\
\leqq & \left|\alpha \cdot \sum_{k=1}^{L(x)-1} \frac{x}{(1+\alpha)^{k}}\left(\frac{1}{1+\alpha}-1\right) g^{\prime}\left(\frac{x}{(1+\alpha)^{k}}\right)\right| \\
& +\left|x \cdot \alpha \cdot g^{\prime}(x)\right|+O(\alpha) \\
< & \left|\alpha \cdot \sum_{k=1}^{L(x)-1} \frac{x \cdot \alpha}{(1+\alpha)^{k+1}} g^{\prime}\left(\frac{x}{(1+\alpha)^{k}}\right)\right| \\
& +O\left|x \cdot \alpha \cdot g^{\prime}(x)\right|+O(\alpha) .
\end{align*}
$$

The last sum is now the lower estimating sum of the integral, so one can write for $\alpha=\alpha(x)$

$$
\begin{equation*}
\Delta(x) \ll \alpha(x)(g(x)-g(1))+\alpha(x) \cdot x \cdot g^{\prime}(x) \tag{29}
\end{equation*}
$$

SO

$$
\begin{equation*}
\Delta(x) \ll \alpha(x) g(x)+O(1) \tag{30}
\end{equation*}
$$

Equation $(1+\alpha(x))^{L(x)} \cong x$ gives us that $\alpha(x)$ and $L(x)=[\log x / \alpha(x)]$ is a pair for which expression (26) holds; picking in particular $\alpha(x)=\left(\log x(g(x))^{-\varepsilon}\right)^{1 / 2}$, gives

$$
\begin{equation*}
\Delta(x) \ll \sqrt{\log x}(g(x))^{1-\varepsilon / 2} \tag{31}
\end{equation*}
$$

and

$$
L(x) \cdot x^{r} \ll L(x)(g(x))^{1-\varepsilon}=\sqrt{\log x}(g(x))^{1-\varepsilon / 2}
$$

Calling ε^{\prime} some value $0<\varepsilon^{\prime}<\varepsilon / 2$ yields

$$
\begin{equation*}
Q_{s}(x)=\frac{6}{\pi^{2}} g(x)+O\left(\left(g(x)^{1-\varepsilon^{\prime}}\right)\right. \tag{32}
\end{equation*}
$$

I take this opportunity to express my appreciation to Professor Harold N. Shapiro for his continued advice and valuable suggestions.

References

1. P. Erdös and P. Turán, On a problem in the theory of uniform distribution, Indagationes Math., 10 (1948), 370-378, 406-412.
2. I. I. Piateskii-Shapiro, On the distribution of prime numbers in sequences of form [n^{c}], Math. Sbornik, 33 (1953).
3. E. C. Titchmarsh, The Theory of the Riemann Zeta Function, Oxford University Press, (1951).

Received June 30, 1975. This work was partially supported by the National Science Foundation, Grant NSF-GP-33019X.

Columbia University, New Yory City

