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DISTRIBUTION OF SQUAREFREE INTEGERS
IN NON-LINEAR SEQUENCES

IVAN E. STUX

I. This paper investigates the occurrences of the square-
free integers in sequences sn = [f(n)]t n = 1, 2, 3, where
f(x) belongs to classes of functions described by ' smoothness'
conditions. The result obtained is an extention of the well
known fact that Q(x) = β/π2 x + 0(#1/2), where Q{x) — number
of squarefree integers ^ x; it states that Qs(x) ~ β/π2 g(x)
where Q8(x) = number of squarefree integers ^ x in the se-
quence sn, and g(x) is the inverse function of f(x).

This result relates to the deep theorem of Piateskii-Shapiro which
states that if 1 < c < 12/11 then the sequence [nc] has the proper rate
of-primes occuring, namely, πe(x) ~ xllc/\ogx.

The classes of functions used is described by the following:

DEFINITION 1. for given 1 < c < 2, 0 < <5 < 1

(1) S(c, δ) = set of functions f(x) such that for some constant a > 0
depending on /, and for sufficiently large x's, depending on /,

(axc){i) ^

holds for i = 0, 1, 2, the superscripts indicating the ith derivative.

Functions like x% 1 < c < 2, or more generally ΣίU aiχH ( lo^ χ)di>
where the leading term has a > 0, 1 < c < 2, belong to these classes
of functions.

The following theorem will be proved:

THEOREM 1. Let 1 < c < 4/3, then there exists a δe = 3(c) > 0,
some small value depending on c such that if f(x) e S(c, δ), 0 ^ 3 <
δ(c), then

(2) Q.(x) - 6/π-g(x) + O((g{x))x-)

holds for some ε > 0 depending on c and δ, where Qs(x) = number
of {sn ^ x, sn = [f(n)]f sn = squarefree, n = l,2,3, •}, (̂a?) = inverse
function of /, [z] = integer part of z.

IL Following are the lemmas that will be used in the proof:

LEMMA 1 (Piateskii-Shapiro, [2]). Let f(x) be a continuously
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g{x) be its inverse function. Then, for an integer m such that
m = [f(ri)], either {g(m}} = 0 or 1 - g\m - 1) < {g(m)} < 1. Con-
versely, if {g(m)} = 0 or 1 - g'{m + 1) < {̂ (m)} < 1, then it follows
that for some n, m = [f(n)].

(The curly brackets indicate the fractional part of the real number,
the straight brackets the integer part, as usual.)

LEMMA 2 (a theorem of Erdos-Turan, [1]). // μlf μ2, ••• is a
real sequence and if DN denotes its discrepancy modulo one, then
for each integer m ^ 1 we have

( 3 )
\m + 1 t=i t

(where K is a constant and e(z) = e2πiz, as usual).

LEMMA 3 (Van der Gorput, pg, 64, [3]). Let g(x) be a real
function with a continuous and steadily decreasing derivative g'(x)
in (a, b), and let g'(b) — a, g'(a) = β. Then

(4) Σ e(g(n)) = Σ [e(g(x) - vx)dx + O(log (β - a + 2))

where Ύ] is any positive constant less than one.

LEMMA 4 (Van der Corput, pg. 61, [3]). Let F(x) be a real
function, twice differentiable, and let F"(x) ^ r > 0, or F"{x) ^
— r < 0 throughout the interval (a, b), then

is? 8 _
/ γ

III . The first part of the proof is aimed at establishing the
uniform distribution modulo one and the discrepancy of that distri-
bution for sequences g(q) where q are squarefree integers and g(x)
is the inverse function of a function in S(c, δ) (where δ is usually
small, depending on c). The following is the result in this direction:

THEOREM 2. For given 1 < c < 2, and δ > 0, small enough
depending on c alone, let f(x) e S(c, δ) and let g(x) be the inverse
function of f(x). Then the sequence {g(q): q 5* K, q the squarefree
integers) is uniformly distributed modulo one and

(6) N(K, ξ) - ξQ(K) + Q{K)DQ{κ){g) f

and
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differentiate function with f'{x) > 0, f"{x) ^ 0, for x*zl, and let

m ί~ϊ(TΓ\Tl ίn\ ^y 2/ 7 '3/δ+(c+23)/(6e(c + δ)) ι X^l —l/(2c(c-b5))

^\Ά.)jjQ{κ)\g) <̂  j\. -j- JX

where Q(K) = number of squarefree integers ^ K, N(K, ζ) = number
of elements in the sequence g(q), q <^ K, q squarefree, which fall into
a fixed interval of length ζ (< 1) modulo one, and DQ(K)(g) is the
discrepancy, modulo one, of the sequence g{q).

Clearly, uniform distribution holds whenever δ > 0 is small
enough to make the exponents in the estimate (7) less than one.

Proof. For h ̂  1, consider

(8) Th{K) - Σ^ e(hg(q)) , e(z) = e2πiz .
q squarefree

Suppose that Ko is the large value from where on the estimates of
g, g', g" induced by the definition 1 hold, and let K > Ko, then

(8') Th{K) - ^ Σ ^ e(hg(q)) + O(K0) ,
q squarefree

and

(9) Σ e(hg(q))= Σ e(hg(n)) Σ μ(d)
KQ<q^K KQ<TI^K d2\(n,P2)

q squarefree n = integer

where p = Πp^κiβp, p = primes, (α, b) — greatest common divisor,
μ(d) = Mδbius function. We can further write

Σ e(hg(d2m))
2

dSA Koi
d\p

+ Σ μ(d) Σ e(hg(d2m)) .
A<d^K1/2 Kld2<^Kld2

We will pick the value of A later. The second sum in (10) can be
estimated trivially as

(11) e(hg(d2m))
^K^d2 AA

The first sum, on the other hand, is estimated by

(12) Σ
dSA

Σ e(hg(d2m))

To estimate the inner sum, divide the interval K0/d2 < m < K/d2 up
into pieces of type l/2r K/d2 < m ^ 1/27"-1 K/d2, to get
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Σ e(hg(d2m))
l/2r K}d2<mglj2r~l K}d2

^Kld2

(12') Σ Σ

We will estimate the last inner sum by using Lemma 3 and then
Lemma 4. The conditions in definition 1 give that

—){ΰ+δ) < g(y) ̂  (—) , —f-/—T + δ ) l < g'(v) ^ —(—)

the chain rule tells us that (d/dx)g(d2x) = [(ώ/cί̂ )̂ (̂ )] ίί2, z — d2x, and
so we have, by Lemma 3, for each r

(13) Σ e(hg(d2m)) = Σ I v + J57,
H2r Kld2<m^ll2r~l Kid2 v

where the Σ* extends over (1/α^c + ̂ ( ( l ^ - 1 ) ^ - ^ " 1 - 1 d2 - 1/2 <
v < (l/a^hdlβηKy-^d2 + 1/2, αx - α^4"^"1, α2 = α1/c, and

e(hg(d2x) -

and

E = O(log (max y — min v + 2)) .

In (14), first we change variables to y — d2#, and then apply Lemma 4

(140 ί, = -5J- +l

d2

but here d2/dy2(hg(y) - V2//ώ2) ̂  (c + ί ) " 1 ^ + δ)'1 -
thus, we get, applying Lemma 4 that

1 \ (c+δ)-l-2Π-l/2

We thus have for (12) the estimate:

(16) < Σ Σ Σ 4 , h ~ 1 / 2 ^ - Ί Γ - i — iΓ-1/(2c+2<>

(for largest r we might get a shorter range of integration in (14),
but the upper bound estimates still clearly hold in (16)). where Σ*
is over

a(c + δ) \2r~ι ) 2 ac \2r / 2

From here, we have that the v summation is bounded by

/ I \i/(β+β)
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and so we can further estimate (12) by

,-1/2 O(r—l( Or
hd2 -

2 ( r ~ 1 ) / (
h d X + l)(

2 ( r ~ 1 ) / ( c + δ ) Λ d

(The last step is because Σ r in the first term was just a geometric
sum and so it converges, while in the second part, the number of
terms of the Σ r is O(log K).) The estimate (16') together with (11)
now gives us that

(17) Th{K) < AhV2K{c+2δ)/{c+δ)2c + h-u*κι-ιn2c+2δ) + — + Ko.
A

Here, for K sufficiently large the last error term absorbs into the
first one if A Ξ> 1 (which will anyway be the case). We now pick
A so as to balance the 1st and 3rd terms of (17), i.e. let A =

(18) Th(K) < huiK2"1+{e+iδ)/{c+δ)4e + h~υ2Kγ

Finally we use Lemma 2 to write:

Q(K)DQ{κ)(g)< — — + Σλ{h^K2-1+{c+2δ)nc+δ)ic + h-ι/2Kι-ι/{2c+2δ)}

! γ^l/i^2-ί+{c+2δ)/{C + δ)4c i jgΊ-l/(2c+2ί)

m + 1

We pick the optimal m, i.e. m = [i^^-c'+^/ίc+^c)^ and thus we

have

(20) Q(K)DQ{κ)(g) < jp/5+(c+ 2 δ)/(c+ δ)4 c + ^1-1/(20+25) m

COROLLARY 1. If 1 < c < 4/3 ίftβ^ ίAβrβ βα isίs δc > 0 depending
on c such that if f(x) e S(c, δ) for 0 < δ < δc, and g(x) is its inverse

function then:

(21) Q(K)DQ(κ)(g) « K*™-1- «

for some ε > 0, depending on c and δ.

Proof. All we need to show is that

A c + 2δ _ j _ a n d χ <
5 5c(c + δ) c + δ 2(c + δ) c + δ

hold for some δ > 0. By continuity it is enough to check that 3/5 +
l/5c < 1/c and 1 - l/2c < 1/e hold. But the first of these holds if
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c < 4/3, the second if c < 3/2.

IV* We can now prove Theorem 1. Let

(22) T*^X' ^ = n u m b e r o f ^ = ifWl* y < s« = ^ s«> = squarefree,
Λ = 1,2,3, ...}

Clearly, Γ8(l, 2/) = Q8(2/). Lemma 1 can now be used together with
expressions (6) and (21). ξ in (6) will be taken g'(y + 1) or g'(x — 1)
to give upper and lower bounds on T(x, y), where g(x) is as usual
the inverse function of f(x). We obtain:

Λ«, v ) ^ gf{y + 1)(Q{y) _ Q{χ))

where Q(x) = # squarefree integers ^ x. Or

(24) T.(x, y)

ί< ϋ'(x)(Q(y) - Q(x)) + Oίy' + '"1-') +

1> g'(v)(Q(y) - Q(χ)) + Oίί/^^'-1-5) +

Thus, for 0 < a < 1, using the well-known fact that Q(x) = 6π ~2a;

(25) Γ.(a?, (1 + a)x) =

On the other hand, clearly

holds for an appropriate function L(x) which tends to oo for x —• oo,
if α = a:(#) > 0 is some given function of x which tends to zero as
x —* oo (the relation is (1 + a(x))L(x) ~ #).

Using (25) in the expression (26) we obtain

(27) Q.(x)

where 7 = max {l/(c + 3) — ε, 1/2} and so it is actually l/(c + <?) — ε.
The main terms of the expressions on the right of (27) are exactly
the upper and lower approximating sums of the Riemann integral
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To see how closely these sums approximate the integral, it suffices
to find out how closely they are to each other, i.e. to estimate:

ί=l (1 + α)fc

a α
ί=ί (1 + α)*

L(x) — 1 Λ - /V

X

(l + «)*

(28)

fc=0

- Σ g > g A x )\
*=i (1 + a)k \ (1 + α) 4 / I

α *tf (1 + α)

+ I x α flr'(a ) | + O(a)
I,(x)-1

^ (l + α)*+ ι

+ O\x a g'(x)\ + O(a).

The last sum is now the lower estimating sum of the integral, so
one can write for a = a(x)

(29)

so

(30)

Δ(x) < a(x)(g(x) - g(ΐ)) + a(x) x fif'(a?) ,

J(x) 0(1) .

Equation (1 + a(x))Lίx> ~ x gives us that a(x) and L(x) = [log x/a(x)]
is a pair for which expression (26) holds; picking in particular
a(x) = (log x(g(x))~ε)ίl2, gives

(31)

and

Δ{x)

L(x) xr < L(x)(g(x)y-* = 1/Ίog χ(g(μ

Calling e' some value 0 < ε' < ε/2 yields

(32) Q,(χ) = ±g(χ).
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584 IVAN E. STUX

REFERENCES

1. P. Erdδs and P. Turan, On a problem in the theory of uniform distribution, In-
dagationes Math., 10 (1948), 370-378, 406-412.
2. I. I. Piateskii-Shapiro, On the distribution of prime numbers in sequences of form
[nc], Math. Sbornik, 33 (1953).
3. E. C. Titchmarsh, The Theory of the Riemann Zeta Function, Oxford University-
Press, (1951).

Received June 30, 1975. This work was partially supported by the National Science
Foundation, Grant NSF-GP-33019X.

COLUMBIA UNIVERSITY, NEW YORY CITY




