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SOME ASPECTS OF Γ-NILPOTENCE II:
LIFTING PROPERTIES OVER Γ-NILPOTENT IDEALS

B. J. GARDNER

It has been shown by Nastasescu and Popescu that every
nonzero (left, unital) module over a ring R has a simple
submodule if and only if the Jacobson radical J of R is right
T-nilpotent and every nonzero -R/J-module has a simple sub-
module. The work presented here arose largely from an
attempt to find a general framework for results like this.

In § 2 it is shown that if R has a right Γ-nilpotent ideal
I, then a bijection from the torsion classes of iί/I-modules
to those of iϋ-Modules can be obtained by associating with
each ^ " £ Mod (Rjl) the lower radical class it defines as a
class of i?-modules. §3 contains applications involving the
lifting of torsion properties and in §4 it is shown that if R
has a right Γ-nilpotent ideal / such that R/I is the direct
sum of its torsion and divisible ideals, then R has this pro-
perty also.

In the present paper we continue the general investigation of
Γ-nilpotence begun in [8]. The emphasis here is on T-nilpotent ideals,
whereas previously we looked at whole rings, but there are some
methodological similarities between the two papers.

1* Preliminaries* Except where we state otherwise, all rings
considered are associative and have identities (though some results
hold more generally) and modules are always left, unital modules.
An ideal I (one or two-sided) is left T-nilpotent if for every
sequence al9 a2, of its elements, axa% an — 0 for some n. Right
T-nilpotence is defined analogously. The terms are due to Bass [2],
though the concepts originated with Levitzki [19]. The terminology
relating to the radical theory of modules varies somewhat; we shall
describe things in the following way: An ordered pair (^?, £f) of
classes of modules over a ring will be called a radical theory if
(i) & Π S? = {0}, (ii) & is homomorphically closed, (iii) S? is hereditary
(i.e. closed under taking submodules), (iv) every module M has a
largest submodule &(M) from & and (v) M/^(M) e S^ for all M.
In this situation, & will be called a radical class, £f a semi-simple
class. If also & is hereditary, it will be called a torsion class,
while if S? is homomorphically closed it will be called a TTF class.
LR{^) is the lower radical class defined by a class ^£ of iϋ-modules.
With these conventions established, we refer the reader to [4], [5]
and [14] for further details. Mod (R) is the class of all modules
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over a ring R. (0: M) is the annihilator of a module M.

2. Torsion from iterated annihilators* Until further notice,
I is a right ideal of a ring R.

For any J5-module M, we define submodules M{a) for all ordinals
a, as follows:

M{0) = 0; Mla+1) = {meM\ImQ M{a)}

M{β) = U Λf(α)» if /S is a limit .

Eventually, M^+1) = Mlμ). If ikf^ = M, then

0 = M{0) £ M"(1) £ . . . £ M ( α ) £ M{a+ί) £ . -. £ M{μ) = ikf

is called the upper ascending I-series of Λf. More generally, a
transίinite chain

0 = Mo £ Mx £ S ikfα £ Λk+.i £ Q Mμ = Λf

of submodules is called an ascending I-series for Af if

2Mα+1 £ Ma for each α and \JMa = Mβ for all limits β .

Finally, ^ T z = {Me Mod (22) |IM = 0}.

THEOREM 2.1. The following conditions are equivalent for a
module M:

( i ) The upper ascending I-series of M exists.
(ii) M has an ascending I-series.
(iii) Every nonzero homomorphic image of M has a nonzero

submodule in ^f[.
(iv) For any xeM and au α2, « - e l , there exists n such that

anan--L a2axx = 0.
(v) MeL,U).

Proof, (i) => (ii) is clear.
(ii)=-(iii): If N £ M, let

β = min {α I Ma £ N}

for some ascending /-series

0 = Mo £ M, £ £ Ma £ Afβ+1 £ £ Mμ - M .

Then β ^0 and /9 is not a limit, so (ifĉ  + N)/N is a nonzero sub-
module of M/N with /(Aζ, + N)/NQ (Mβ^ + N)N = 0.

(ii) => (iv): With the same notation, for xeM and alf a2, e I
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let

7 = min {a\Ma contains some anan^ a2atx} ,

and let amam^ α2αxx be in Mr. Then 7 is not a limit, and if 7 Φ
0, then αm+i(αmαm_! a2aγx) e IMr £ Λfr_!, contrary to the assumed
minimality of 7. Hence 7 = 0, so αmαm_x a2aλx = 0.

(iv) => (iii): Let 0 Φ xeM. It Ix Φ 0, let α ^ Φ 0, where α x e I.
If /&!# ̂  0, let a2axx Φ 0, where α2 e I. Proceeding thus, we obtain
an element b = anan^ α^α; Φ 0 where αx, α2, , an e / and /δ = 0.
Thus M has a submodule which is annihilated by /. Since property
(iv) is preserved in homomorphic images, the result follows.

(iii) => (i): Let M(^ = M{μ+ί). Then [M/M^] ( 1 ) = M{fi+i)/M{μ) = 0,
so M/Mw = 0.

The equivalence of (iii) and (v) is well-known.
The proof just given is patterned after some proofs in [8].

Kashu [15], working with modules over a ring R not necessarily
having an identity, has shown that LB{^), where % is the class
of modules with trivial multiplication, consists precisely of those
modules M such that for every sequence aί9 α2, in R and for
every x e M, anan^ a2aλx = 0 eventually. Kellett [16], in the same
setting, has shown that LB(^) is the class of modules with an upper
ascending i2-series.

Since LB(^£Ϊ) = Mod (R) if and only if R e LR{^€Σ) we have the
following consequence of Theorem 2.1.

COROLLARY 2.2. LR(^1) = Mod (R) if and only if I is right
T-nilpotent.

PROPOSITION 2.3. LB(^^) is a torsion class. Moreover, if
is a torsion subclass of LB(^€l), then & — LR{& P\ ^ ^ ) .

Proof. Since ^€τ is hereditary, the first assertion is clear. If
& is a torsion subclass of LΛ(^4), then clearly LB{& Π ^€9 Q &.
On the other hand, if Me & Q LB{^^), then every nonzero homo-
morphic image of M has a non zero submodule Ne ^ τ . But any
such JV is in^?, as the latter is a torsion class. Thus each nonzero
homomorphic image of M has a nonzero submodule in & Π ^i, so

For the remainder of this section, / is a two-sided ideal.

The proof of the following result is straightforward.

PROPOSITION 2.4. With the notation of Proposition 2.3, & Π
Ί is a torsion class in Mod (R/I).
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THEOREM 2.5. The correspondence ̂ ~ H» LR(J^) defines a bijec-
tion from the set of torsion classes in Mod (R/I) to the set of torsion
subclasses of LR(^€Ί) in Mod (R).

Proof. By Propositions 2.3 and 2.4, the correspondence is surjec-
tive. If ^ 7 ^ &r^ torsion classes in Mod (R/I) such that LB(J7~) =
hR{&ί), then every nonzero lϋ/l-module in ̂  £ LR(J7~) has a nonzero
2£-(and thus 22/2"-) submodule in ^ 7 whence fS £ ^ since ^/ is
homomorphically closed. Injectivity of the correspondence follows.

Using Proposition 2.2, we obtain.

COROLLARY 2.6. If I is right T-nilpotent, the correspondence
J7~ ι—» LR(J7~) defines a bisection from the torsion classes in Mod (R/I)
to those in Mod (R).

3* Lifting some torsion properties* We now apply the results
of the previous section to obtain some connections between the kinds
of torsion classes a ring R and a factor ring R/I can have when /
is right T-nilpotent.

Suppose we have canonically associated with each ring R a class
of i?-modules. Let

X = X(R) - Π {(0: M)\Me JlfR} .

Suppose further that ^Rιx = <^fR for all R.

THEOREM 3.1. Every nonzero R-module has a nonzero submodule
in JSfR if and only if X is right T-nilpotent and every nonzero
R/X-module has a nonzero submodule in

Proof. If X is right T-nilpotent, then by Proposition 2.2, every
nonzero ίϋ-module has a nonzero submodule in Λ£X = Mod (R/X). If
in addition every nonzero i2/X-module has a nonzero submodule in
£fRy the same must therefore be true of all nonzero ^-modules. If,
on the other hand, nonzero iϋ-modules all have nonzero submodules
in ^ , then

Mod (22) - LR{£?R) £ LR(^X) ,

so by Proposition 2.2, X is right T-nilpotent. Also, if 0 Φ Me ̂ €x —
Mod (R/X), then M has a nonzero submodule in £fn.

An example of a class satisfying the requirements of Theorem
3.1 is the class of simple i?-modules, together with 0. A ring R is
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(left) semi-artinian if every nonzero iϋ-module has a simple submodule.
The following result was obtained in a different manner by Nastasescu
and Popescu [21].

COROLLARY 3.2. A ring R is semi-artinian if and only if its
Jacobson radical J is right T-nilpotent and R/J is semi-artinian.

We call a nonzero module homogeneous (the terminology varies)
if it is a rational extension of every nonzero submodule. (For the
relevant details concerning rational extensions, see [23].) Hudry
[9], [10], [11] calls a ring R (left) locally homogeneous (briefly, L. H.)
if every nonzero i?-module has a homogeneous submodule.

For any ring R, let
H = H(R) = Γl {(0: M)\M is a homogeneous ^-module}.

COROLLARY 3.3. A ring R is L. H. if and only if H is right
T-nilpotent and R/H is L.H.

Examples of L.H. rings are left noetherian ([9], [10], [11]) and
semi-artinian rings.

Nonzero submodules of homogeneous modules are homogeneous
(see, for example, [23], p. 625) and thus a ring R is L.H. if and
only if every nonzero i2-module has a cyclic homogeneous submodule.
When R is commutative, a cyclic iϋ-module R/P is homogeneous
precisely when P is prime (see, for example [23], pp. 625-626). Thus
for commutative rings R, H(R) is the prime radical B(R) and a com-
mutative L. H. ring is one for which every nonzero module has an
associated prime. The latter have been studied (under the name
D-rings) by by Nguyen-Trong-Kham [17], [18].

COROLLARY 3.4. A commutative ring R is a D-ring if and
only if B(R) is T-nilpotent and RjB(R) is a D-ring.

A nonzero module is co-irreducible if it is an essential extension
of every nonzero submodule. (Such modules are also called uniform.)
Nastasescu and Popescu [20], [21] call a ring R (left) locally co-irre-
ducible (briefly, L.C.) if every nonzero i?-module has a co-irreducible
submodule.

COROLLARY 3.5. A ring R is L.C. if and only if

C = C(R) = Π {(0: M)\M is a co-irreducible JS-module}

is right T-nilpotent and R/C is L.C.
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Let <^R be a nonempty class of 12-modules and < ^ be the class
of .R-modules, every nonzero homomorphic image of which has a
nonzero submodule in g?Rm For the purposes of further applications
of Theorem 2.5, it may be worthwhile to note that if <%fR is not
homomorphically closed, one can have J??R £Ξ LR(^R). For instance,
let R be the ring Z of integers and <%fz the class of unbounded p-
groups, together with 0. Then <%fz is the class of divisible ^-groups,
while Lz(<%fz) is the class of all p-groups. When gfR is the class of
homogeneous modules, Hudry [12], [13] has shown that J?fR = LR(£fR)
for all rings R. A parallel argument establishes the corresponding
equality for the co-irreducible modules.

We next consider the lifting of a property possessed by the ring
of integers.

THEOREM 3.6. Let R be a ring with a right T-nilpotent ideal
I. If every nontrivial torsion class in Mod (R/I) is determined by
simple modules, the same is true in Mod(iϋ).

Proof. The bisection of Corollary 2.6 clearly takes Mod (R/I)
to Mod (R) and {0} to {0}. Thus if & is a nontrivial torsion class
in Mod (R)y then & = LR(LR/I(^)) for a set ^ of simple modules.
It follows that & =

The last result is eminently generalizable.

If a ring has the form A 02?, where A and B are ideals, the
class of modules M such that AM = 0 is a torsion class. (The cor-
responding radical theory is said to be centrally splitting [3].)

THEOREM 3.7. Let R be a ring a with right T-nilpotent ideal
I such that R/I = A 0 J5 (ring direct sum). Then

LR({Me Mod (R) \ IM = 0 and AM = 0}

is a TTF class.

Proof. The identity of A lifts to an idempotent e e R, since /
is nil. Since ReR is an idempotent ideal,

^ = {Me Mod (22) | ReRM = 0}
= {Me Mod (R)\eM= 0}

is a TTF class [14]. Let

= LR({Me Mod (22) | IM = 0 and AM = 0}).
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We show that &
If Ne^~ £ LΛ(^gϊ)9 it has an ascending /-series

0 = JVoC-NΊS . . . QNaQNa+1^ . . . QNμ = N,

each term of which belongs to ̂ ~. It follows from Corollary 2.6 that

« = {MeMoά(R)\IM = 0 and 4 M = 0}.

Thus AN, = 0, so eN, £ Ai^ = 0 and Nt e &. Each NaJNa e ̂  so
in the same way, e(Na+JNa) = 0, i.e. Na+1/Na e &. Clearly also Nβ e
& for a limit β if Nae& for every a < β. Hence ^ contains
all iVα, and in particular, Ne &. This proves that ^~ Q &.

On the other hand, if Ke& and IK = 0, then AiΓ= 0, so that

=0})
£ LB({Me Mod (Λ) | /M = 0 and AM = 0} -

As a consequence, we have the following frequently-proved result
[1], [6], [22].

COROLLARY 3.8. If R is right perfect, it has finitely many
torsion classes, all of which are TTF classes and all but {0} of
which are determined by simple modules.

Proof. The Jacobson radical J of R is right T-nilpotent and
any torsion class in Mod (R/J) has the form {Me Mod (R/J)\ AM = 0}
for a ring direct summand A of R/J. By Corollary 2.6, the torsion
classes in Mod (R) have the form

LR({M 6 Mod (R) \JM=0 and AM = 0}

and so, by Theorem 3.7, are TTF classes. The rest follows from
Corollary 2.6 by an argument like that used for Theorem 3.6.

4* A splitting theorem* Throughout this section Gt and Gd

denote, respectively, the maximum torsion and divisible subgroups
of an abelian group G. Things such as torsion modules and divisible
rings are those modules and rings whose additive groups have the
stated properties.

THEOREM 4.1. Let R be a ring with a right T-nilpotent ideal
I such that R/I is the direct sum of a torsion (necessarily bounded)
ideal and a torsion-free divisible ideal. Then R has the same pro-
perty.

Proof. Let A = {R/I)t and B = (R/I)d. Our assumption implies
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that R/I = A 01? (ring direct sum). Thus A, B have identities eΛ,
eB respectively, and any iϋ/I-module M has the form MA 0 MB where
is an A-module with BMA = 0 and MB is a β-module with AMB = 0.
In particular, MA is bounded and MB is divisible. If x e MB and
nx = 0 for some n > 0, then # = ê αs = n(eB/n)x = (eB/n)nx — 0, so
JlfjB is torsion-free.

Let

&% = LR({Me Mod (jβ) | IΛf = 0 and BM = 0} .

If JV is a torsion i?-module, then every nonzero homomorphic image
of N has a nonzero submodule Me^^ (Proposition 2.2). But Λf is
a torsion i2/J-module, so BM = 0. It follows that Ne&t and thus
^ is the class of all torsion .β-modules. By Theorem 3.7, ^ is a
TTF class so L = ΐlΐ=iNte&t, where each JV, = N. But Lέ, as a
fully invariant subgroup, is a submodule, so L = L/Lt e ^ and, if
nonzero, has a nonzero submodule Γ such that IT — 0 and BT == 0 (so
that, in particular, Γ is a torsion module). But L is torsion-free,
so L = 0 ; but then N must be bounded. Thus all torsion jβ-modules
are bounded.

Let K be a nonzero torsion-free i?-module. Since / is right Γ-
nilpotent, K has a nonzero submodule P such that JΓP = 0 (Proposition
2.2). Clearly AP = 0, so P = J5P is divisible. Thus iζ, =£ 0. But
iΓ/iΓώ is again a torsion-free i?-module, and so, if nonzero, must, by
the same argument, have a nonzero divisible submodule. Hence
K = Kd.

Thus for any iϋ-module V, Vt is bounded and hence a direct
summand, while V/Vt is divisible. It follows that V— Vt 0 Vd. In
particular, R = RtQ) Rd (module direct sum). But Rt and Rd are
ideals, so the theorem is proved.

We conclude this section with a few remarks which give some
indication of the range of applicability of the foregoing theorem.
If a ring R has no nonzero nilpotent ideals then neither does Rt

(whether it has an identity or not) so that Rt is bounded (elementary,
in fact) [7], and hence a group direct summand. If in addition R/Rt

is divisible, then R = Rt 0 Rd (ring direct sum). Simple rings are
either torsion-free divisible or elementary p-rings; torsion-free regular
rings are divisible.

The author thanks the referee for suggestions which led to some
shorter proofs and some improvements in the layout of this paper.
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