
FACIFIC JOURNAL OF MATHEMATICS
Vol. 59, No. 2, 1975

MISCELLANY ON BIEBERBACH GROUP ALGEBRAS

DANIEL R. F ARK AS

One of the longstanding problems in the the theory of
infinite group algebras is the zero divisor conjecture: does
the group algebra of a torsion free group have zero divisors?

Results presented here grew out of an attempt to settle
the conjecture for abelian-by-finite groups. Since the problem
is not solved it seems valuable to collect in one paper most
of the information about this case.

The conjecture has been verified for some limited classes
of groups ([9], [8], [5]).

A finitely generated group Γ is called a Bieberbach group if it has
a torsion free, self-centralizing, abelian subgroup of finite index. It
is easy to see that this is equivalent to the existence of a short
exact sequence

1 >A >Γ > G >1

where A is the finite conjugate subgroup of Γ, assumed to be torsion
free, and G is a finite group. We will often refer to G as the top of
Γ. It is worth observing that Δ is a finitely generated, torsion free
abelian group containing all abelian subgroups of Γ of finite index;
consequently G acts faithfully by conjugation A. ([9] is a good
source for elementary properties of the finite conjugate subgroup.)

If F is an arbitrary field then the group algebra F[Γ] can be
partially described by exploiting the theory of central simple algebras.
Adopt the notation B = F[Δ], let K be the field of fractions of R,
and let C denote the center of F[Γ]. By inverting the nonzero ele-
ments of C we get the tower of rings

C~ιF[Γ]
U

C-'R
U

c~ιc
It turns out that C~λR = K and K is a Galois extension of C^C
whose group is G (acting by conjugation). Moreover, C~ιF[Γ] is a
prime ring with a basis over K consisting of a transversal to the
cosets Δ in Γ. It is now clear that C~ιF[Γ\ is a cross-product "in"
H2(G, if*). (The reader who wishes more details should consult Thm
6.5 in [9]). To prove that F[Γ] has no zero divisors is equivalent
to proving that C~XF[Γ] is a division algebra.
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1* A cohomology result* In tnis section we prove.

THEOREM 1. There is a natural injection H\G, Δ) S H2(G, K*).
(The notation here is continued from the introduction. ( )* denotes
the units of the ring in question.)

This theorem was proved for cyclic G in [4]; a similar result is
contained, implicitly in unpublished work of Procesi and Schacher.
All three observed that as an immediate consequence of this theorem,
the zero divisor conjecture is true when G is cyclic of prime order.
(If \G\ = p then all nonzero elements of H\G, K*) represent cross-
products of degree p and C~λF[Γ] has dimension p2 over its center.)
The following lemma is a well-known analogue of the polynomial
result.

LEMMA 1. R = F[Δ] is a unique factorization domain and R* —
F* x Δ.

LEMMA 2. Suppose G acts on a set X. If X is the free abelian
group on X then Hι(G, X) — 0.

Proof. Partition J = U : ^ a s a union of orbits. Then X — Σ i X%
and so IΓ(G, X) = Σz H\G, Xt).

(The cohomology "distributes" because G is finite. Equivalently,
one may reduce to the case of finitely many orbits and a finite sum
by considering only those generators in X which appear in the image
of a crossed-homomorphism.) We need only show that Hι(G, JQ = 0
where Xt is an orbit. In that case Xt = Z[G/H] as modules, where
H is the stabilizer of the orbit. By Shapiro's lemma ([6])
H\G, Z[G/H]) = Hι{H, Z). (The explict map is the group ring trace
of the restriction of a crossed-homomorphism.) Z has the trivial
ϋ-action, so Hι{H, Z) - Horn (H, Z). Since H is finite, Horn (H, Z).

Proof of the theorem. First apply the long cohomology sequence
to 1 -— US* -> JBΓ* -> iί*/-β* - - 1 .

> H\G, K*IR*) > Hι(G, R*) > H\G, K*)

G is a group of automorphisms of K so by Hubert's Theorem 90,
IΓ(G, K*) = 0. Thus the map H°(G, K*/R*)-+Hι(G, R*) is onto.

R* — F1* x A i s a direct product as G-modules. Since cohomology
commutes with products, the map Hι{G, R*) ~+Hι{G, F*) is onto.

Consequently the composition H\G, K*jR*) — ^ H\Gy F*) is onto.
K*/R* is a free abelian group on the irreducibles (primes) of R
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by the first lemma. Since G acts on R, it acts on the set of irre-
ducibles. We may apply Lemma 2, yielding H\G, K*/R*) = 0.

Apply the long cohomology sequence to 1 —> F* —• K*jA —•

> H\G, K*/R*) -2-+ H\G, F*) -—> H'(G, K*jA)

> H\G9 K*/R*) > .

If one "chases" the fact that Φ is onto, one finds iΓ(G, K*/A) S
H\G, K*/R*) = 0.

Finally, apply the long cohomology sequence to 1 —> A —> K* —>
K*/A~*l.

> H\G, K*jA) > H\G, A) > H2(G, K*) >

But we have just shown that H'iG, K*/A) = 0.

2* Reduction to Sylow subgroups* The zero divisor conjecture
can be simplified somewhat by showing that the problem need only
be solved when tops are p-groups. In proving this we will use the
identification of H\G, A) inside H2(G, K*) given by Theorem 1, although
this is not strictly necessary.

Now an element of H\G, A) represents a group extension as well
as a crossproduct of dimension |G| 2 over its center (see e.g. [7],
Chapter 4). Recall that a simple algebra is a full matrix ring over
a division algebra and that the degree of the simple algebra is the
square-root of the dimension of this division algebra over its center.
Thus for Bieberbach groups we may state the zero divisor conjecture
as follows:

If / G H2(G, A) represents a torsion-free extension then its degree
is |G|.

If if is a subgroup of G then we will write the restriction map as

We can now state

THEOREM 2. Assume f e HZ(G, A) represents a torsion free ex-
tension. If the degree of τesG^P f is \P\ for each Sylow subgroup,
P, of G then the degree of f is \G\.

As a consequence of this theorem, the zero divisor conjecture is
affirmed for F[Γ] once it is known for each F[π] where π is the
inverse image in Γ of a Sylow subgroup of G.

We will need two preliminary lemmas, the first of which is trivial
and the the second of which is well known.
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LEMMA 3. If f e H2(G, A) represents a torsion free extension
then YesG-+H f represents a torsion free extension for every non-
identity subgroup, H, of G.

LEMMA 4. res^^: H2(G, K*) —»H\H, K*) is induced from the
map of simple algebras with center KG (fixed points under G) to
simple algebras with center KH given by A H A ®KG KHH

Proof. See [1] (Chapter V §7) or [10].

Proof of the theorem. Let G be an arbitrary finite group and
let P be a Sylow p-subgroup of G.

If / e H2(G, A) we can uniquely write / = Σ Λ where fq is in
the Sylow g-subgroup of H\G, A) for primes q dividing |G|. Since
res is a homomorphism, τesG^Pfq is annihilated by a power of q.
However, every element in H\P, A) is annihilated by \P\. Thus

By assumption the degree of res fp in H\P, K*) is \P\. As an
easy consequence of Lemma 4 the degree of fp is not less than \P\.
By [7] (pp. 120-121), the degree of fp is a power of p dividing |G| .
Thus the degree of fp is exactly \P\. By the argument of [7]
(Theorem 4.4.6), the degree of / is the product of the degrees of
the fp for p | |G | . The degree of / is |G|.

3* The second center is trivial* Theorem 2 reduces the zero
divisor conjecture for Bieberbach groups to solvable Bieberbach groups.
One may ask the status of torsion free nilpotent Bieberbach groups.
It is known (though unrecorded) that these must be abelian. In this
section we obtain a refinement of this proposition.

Let ζ( ) denote the center of a group. Pardoning the abuse of
notation, we have.

THEOREM 3. // Γ is a Bieberbach group then ζ(Γ/ζ(Γ)) = 1.

Proof. Suppose 7 is in the inverse image of ζ(Γ/ζ(Γ)). This
means that ΊgΊ~γg~γ e ζ(Γ) whenever g e Γ.

If a e A then ΊaΊ~γ = za for some z e ζ(Γ). Since Γ is Bieberbach
we can find an integer n ^ 0 so that ΎneA. Thus a = {Ί^a^Y1 =
azn. That is, z* — 1. Since ζ(Γ) Q A and A is torsion free, z — 1.
7 centralizes the self-centralizing subgroup A so 7e A.

If g e Γ then gΊg~x = wΎ for some w e ζ(Γ) and gm e A for some
m ^ 0. Since Ύ e A, gm and 7 commute. Now the argument above
shows that gΎg~ι = 7V# € Γ. But then 7 e ζ(Γ) as desired.
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COROLLARY. Nilpotent Bieberbach groups are abelian.

4* Arbitrary tops* Let G be an arbitrary finite group and let
l _ j γ ^ φ ^ β _ » l be a free presentation with Φ finitely generated.
Set A = Φ/[N, N]. It is not difficult to show that A(A) = N/[N, N].

We will need the following lemma whose proof is quoted from

[11].

LEMMA 5. If G is solvable then A has a finite normal series
whose factors are all isomorphic to Z.

Proof. There is a finite normal series Φ = Φo > Φx |> \> Φk = N
with Φi/Φi+1 abelian and Φ« a finitely generated free group. Consider
the series Φ > [ΦOf Φo] > [Φlf ΦJ > - - > [**, * J - [#, ΛΓ]. Φ/[Φ0, Φo]
is certainly a finitely generated torsion free abelian group. Since
ΦJΦi+1 is abelian, Φi+ι 2 [Φi9 Φt] 2 [Φ,+1, Φ,+J. Thus [Φ,, ΦJ/[Φ<+1, Φ<+1]
is a subgroup of the finitely generated torsion free group Φί+1l[Φi+1y
Φi+1]. Now refine the series in the obvious way.

One simple and well known consequence of this lemma is that A
is torsion free for arbitrary G. A new one is.

THEOREM 3. If G is an arbitrary finite group then F[Λ] has
no zero divisors.

Proof. Let P be a Sylow p-subgroup of G and H its inverse
image in Φ. Then 1—>iV—+H-+P—>1 is a free presentation of P
and H/[N, N] is the inverse image of P in A. The Sylow reduction
Theorem 2 now implies that we might as well assume that G is a
p-group.

But then G is solvable. It is well known that whenever A has
a normal series as described in the lemma, F[A] has no zero divisors.
(See [9], Thm 26.7 or observe that F[A] is a "twisted polynomial
ring").

5* Particular tops* Arguments of the previous section show
(cf. [2]) that any finite group can be the top of a torsion free
Bieberbach group. That makes the short list of tops for which the
zero divisor conjecture is known depressingly small.

We'll say a group is cyclish provided it has a cyclic subgroup
of index two or less. Notice that this class of groups is closed under
subgroups and homomorphic images.

If Mis any group we write ζ*(M) — {me M\xmx'1 = m or xmx'1 =
m"1 for all xeM}. Beware that ζ*(M) is not a subgroup of M.
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However ζ(M) Q ζ*(M) £ A(M).
If Γ is a Bieberbach group, we let T: Γ —+Δ denote the transfer

homomorphism.
By the (Hirsch) rank of an abelian-by-finite group we mean the

torsion free rank of the abelian subgroup of finite index.

LEMMA 6. Let Γ be a Bieberbach group. Then rank (Γ/Ker T) =
rank (Γ/[Γ, Γ]).

Proof. Let "—" be the canonical map Γ-+Γ/[Γ, Γ]. Since
[Γ, Γ]£Ker Γ, it suffices to show that rank (Γ/Ker T) = rank (f). We
do this by proving that that Ker T is periodic. Set n = \Γ/A\. If
g e Ker T then gn e A. T(gn) is the product of n conjugates of gn by
coset representatives of Δ in Γ. Thus T{gn) = {gf\ But T(g) = 1.

LEMMA 7. Let Γ be a Bieberbach group. Γ has an infinite
cyclic homomnrphic image if and only if ζ(Γ) Φ 1.

Proof. {*=)IίlφZ£ ζ(Γ) then T(z) - zn where n = \Γ/Δ\. Since
zn Φ 1, Γ(Γ) is a finitely generated abelian group which is not finite.

(=>) Suppose ζ(Γ) = 1. If aeΔ then Γ(α)Gζ(Γ). Since the
transfer is trivial on Δ, it is trivial on Γ. In particular,

rank (Γ/Ker T) = 0 .

By Lemma 6, |Γ: [Γ, Γ] | < oo; Γ has no infinite abelian images.

LEMMA 8. Let M be an arbitrary group and let N <\M with
\M/N\ = 2. // ζ(N) Φ 1 then ζ*(Λf) ^ 1.

Proo/. Let M = <iV, 6> where b2eN and suppose 1 Φ ξeζ(N).
Then δίδ-16 ζ(N). 6(ί(6f6-1))6~1 - (δίδ"1)? = ί^ίδ"1) so ίίδfδ-1) e ζ(M).
We are done unless ζφζb-1) = 1. In that case δίδ"1 = Γ 1 so ί e ζ*(ikf).

THEOREM 5. Lei Γ be a Bieberbach group. Then Γ has an
infinite cyclish image (i.e. infinite cyclic or infinite dihedral) if and
only if ζ*(Γ) Φ 1.

Proof. (=>) If Γ has an infinite cyclish image it has a subgroup
of index at most 2 with an infinite cyclic image. Apply Lemmas 7
and 8.

(<=) With additive notation, A may be regarded as a Z[Γ/A]~
module. If ζ * ( Γ ) ^ l then AQZQ has a one-dimensional Q[Γ/A]-
submodule, say A. By Maschke's theorem there exists another
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submodule, B, so that A φ B = A ®z Q. Set X = B Π A. The rank
of X is one less than the rank of Δ and X <\Γ. That is, Γ/X has
rank 1. By modding out the elements of Δ(Γ/X) with finite order
we have constructed a homomorphic image of Γ which is a Bieberbach
group of rank 1. But it is easy to see that the only such groups
are the infinite cyclic group (Z) and the infinite dihedral group
(Z/2Z*Z/2Z).

Theorem 5 is valuable in conjunction with a result developed in
[3], [8], and especially [5]. Suppose we have a free product with
amalgamation, Y = H1*N H2. The key result is that if -Pf-ffJ and
F[H2] have no zero divisors and if F[N] is a well behaved ring (e.g.
noetherian) then F[Y] also has no zero divisors. We are interested
in the particular case Y/N ~ Z/2Z*Z/2Z. Note that if Y is arbitrary,
Y/N = Z and F[N] has no zero divisors then F[ Y] has none by a
"twisted polynomial ring" argument. Thus by inducting on the rank
of a Bieberbach group we have.

THEOREM 6. Suppose ίg is a class of finite groups closed under
taking subgroups and homomorphic images. If Γ always has an
infinite cyclish image whenever it is torsion free and Γ/Δ e !Q then
F[Γ] has no zero divisors.

We now come to our main application of the previous two
theorems.

THEOREM 7. If Γ is a torsion free Bieberbach group and Γ/Δ
is cyclish then F[Γ] has no zero divisors.

Proof. It suffices to prove that if Γ/Δ is cyclic then ζ(Γ) Φ 1.
So suppose Γ — {A, g) where gkeA. Clearly gkeζ(Γ).

In summary, the zero divisor conjecture is true when the Sylow
subgroups of the top are cyclish. These finite groups are well un-
derstood. A list of cyclish 2-groups can be found in [14] (p. 150).
The solvable groups with cyclish Sylow subgroups were classified in
[15] (cf. [13] p. 176). The nonsolvable groups are described in [12].

We can use these methods to settle the zero divisor conjecture
for groups with low rank.

LEMMA 9. Suppose Γ/Δ — UQ)Z/2Z. If W is the inverse image
of U in Γ and ζ*(W) Φ 1 then ζ*(Γ) Φ 1.

Proof. Let be Γ be an inverse image of the generator of Z/2Z.
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If 1 Φ ξ eζ*(TF) then ζ and bξb"1 are contained in the abelian group
A. As in Lemma 8, b{ξ{bξb-ι))b-χ = ξibξb'1). Let we W. The actions
of w and b on A commute, wξw'1 = ξ*(s — ±1) implies wiζφξb'^w1 =
(wζw'ί)b(wξw-1)b'-1 = (ξφξb-ψ. That is, ξφξb'1) e ζ*(Γ). Now finish
as in Lemma 8.

THEOREM 8. If Γ is a torsion free abelian-by-finite group of
rank ^ 3 then F[Γ] has no zero divisors.

Proof. Write r for the rank of A. According to the Bieberbach
theorems ([13]) Γ can be realized as a discrete group of isometries
of r-dimensional Euclidean space. A is identified with the translations
in Γ and Γ/A is referred to as a crystallographic point group. These
groups were classified for r ^ 3 during the last century. They are

the cyclic groups of order 1, 2, 3, 4, or 6
the dihedral groups of order 2 '4, 6, 8, or 12
the tetrahedral group of order 12
the octahedral group of order 24
any of the groups listed above 0 Z/2Z

(see e.g. [13])

Direct inspection shows that the Sylow subgroups of the first four
types of groups are cyclish. By the Sylow reduction Theorem 2,
Lemma 9, and the spirit of Theorem 7, F[Γ] has no zero divisors.

Note added in proof. K. A. Brown has used Theorem 2 to prove
the zero divisor conjecture for arbitrary Bieberbach group algebras
over a field of characteristic zero. His result appears in the paper,
"Zero-divisors in group." Subsequently, R. Snider and this author
verified the conjecture for polycyclic group algebras in characteristic
zero. That work will appear in Journal of Algebra under the title,
"Ko and Noetherian group rings."
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