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CLASSIFICATION OF SINGULAR INTEGRALS
OVER A LOCAL FIELD

CHARLES DOWNEY

The singular integral operators over a local field K whose
kernels are multiplicative characters of the unit sphere of
K are shown to be precisely those continuous operators on
^2(K) which commute with translation and dilation, anti-
commute with an appropriately defined rotation, and whose
multipliers satisfy a smoothness condition. The characteri-
zation is analogous to that of the Hubert transform over
the real numbers.

1* Classically, the Hubert transform over R is, up to a constant
multiple, the only continuous operator on Sf^R) which commutes
with translation and (positive) dilation and anti-commutes with re-
flection. See [9], page 55. The Hubert transform is a singular
integral operator with kernel the only (nontrivial) multiplicative
character of the unit sphere of JR.

Singular integrals over a local field have been developed. (See,
for example, Phillips [6], Phillips-Taibleson [7], and Chao [1].) Those
with kernel a multiplicative character of the unit sphere satisfy a
classification similar to that of the classical Hubert transform.

The classification theorem is in § 4. The main results are Theorems
4.1 and 4.2. Section 3 contains the necessary results regarding the
character group of the unit sphere of a local field; §2 contains other
preliminary results, notation, and definitions.

2* Let Z, Z+, Q, R, and C denote the integers, the positive
integers, the rational number, the real numbers, and the complex
numbers, respectively. Fpn will denote the (unique) field with p*
elements. The symbols Qp and Zp will denote the p-adic numbers
and the p-adic integers, respectively. For any set S, ξs will denote
the characteristic function of S. The complement of S will be written
S..

The necessary analysis on local fields is stated without proof
below. Most of it may be found in Chapters I and II of Weil [11].

A local field is a nondiscrete, locally compact, zero-dimensional
topological (commutative) field. These have been completely classified.
Those of characteristic p Φ 0 can be identified as the fields of formal
power series over a finite field. Those of characteristic 0 are either
the p-adic numbers of finite extensions of the p-adic numbers. See
[11], page 11.
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Let K be a local field with λ Haar measure for (if, +). The
modular function for if, | |, is given by \x\ = X(xS)/X(S) for 0 <
λ(S) < oo, Haar measure for the multiplicative group ifx = K ~ {0}
is λ/| |.

Let R be the ring of integers of the local field K and P be the
unique maximal ideal of R. Then ord (R/P) = q9 the module of if,
a prime power. The ideal P has a generator π, so that πR = P. We
have I π \ = q~\ and, in fact, any xe K with | x | = q~ι will generate
P. Those elements of modulus q"1 will be called primes in if.

For ne Z we define

P* = {x e if: I a? | ^ g"*}; Z>u = {x e if: \ x \ = q~n} .

Then P1 = P, P° = R, and R ~ P= D°. The set {Pn}n^ is a neigh-
borhood base at 0 of open and closed subgroups of (if, +). The set
{1 + Pn}n=i is a neighborhood base at 1 of open and closed subgroups
for the topological group (Kx, •).

We define the operators τδ for δ Φ 0 on functions by τδf(x) = f(δx).
Regarding the prime π as fixed, we single out a set of such operators,
the dilation operators, ^ , defined by &όf(x) = f(πjx)j e Z. A
function / is homogeneous degree zero if ^ / = / for all j e Z. For
x e Ky translation operators Tx are defined on functions by Txf(y) =

f(χ + y).
There is a character χ of the additive group of K which is

identically one on R and nontrivial on P~\ Then for any yeK,
Xv(%) = X(%y) defines a character of K. In fact, the mapping y —> χy

is a topological isomorphism of (if, +) onto its dual. We thus identify
K with its dual.

The Fourier transform for K is initially defined on =S^(if) by

'fix) = /(») = ( f(y)l(χy)dy .

[The integral is taken with respect to λ. Here and elsewhere the λ
will be suppressed.] The transform ^'x is defined by ^~xf{x) =
f(x) = [ fiy)Xixy)dy. Both &~ and j ^ " 1 extend uniquely to S^.
It is easy to see that, as £f% operators, τδ^ = \ δ \-ι^τδ-ι and

The following result will be used extensively in the sequel: Let
L be a continuous linear operator from =S^(if) to =S^(if). Then a
necessary and sufficient condition that L commute with translation
is that there exist a function m, in SfJ^K), such that ^(Lf) = m^f
for all fe^iK). See [5], pp. 92-94.

The space ^ of test functions on K and its topological dual
the space of distributions, are defined as in [8]. Both are
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complete linear spaces. The action of a μ e J?' on an / e J? will
be denoted (μ, / ) .

The space J? is contained densely in £(%, 1 ̂  p < °o. The
Fourier transform is thus will-defined on ̂ . The Fourier transform
on ^f' is given by (μ, f) = (μ, / ) . Thus defined, the Fourier trans-
form is a linear topological isomorphism on both ^f and ̂ \

Functions and measures will be identified with the distributions
they induce. Convolution of a distribution and a test function is
defined by μ*f(x) = (μ, Txf), where f(x) = f(-x).

Let μ e ̂ ' , and let σ be a (not necessarily unitary) multiplicative
character of Kx( = K~ {0}). Then, as in [8], we say μ is homo-
geneous of degree σ if for all teKx, μt = σ(t)μ, where ^ is that
distribution defined by (μt, <f) = (μ, \t l" 1^-^).

We take M to be Mx U {0}, where M x is the group of roots of
unity in K of order prime to p. Then Mx is the unique cyclic group
of order q — 1 ([11], p. 16). Let # be a generator of ikίx. Then
each 0 Φ x e K may be written uniquely as x = πVc(l + p j , where
&, i G Z, 0 ̂  & ̂  q — 2, jλ,. G P. A multiplicative character of Kx is
given by its values at π, g, and on 1 + P.

Let ω be a multiplicative character of Kx. There is some ne Z
such that ω is trivial on 1 + P \ If ω is trivial on 1 + P% but not
on 1 + P^"1, % Ξ> 1, we say ω is ramified of degree n. If ω is trivial
on D\ we say ω is unramified. Given a character ω of 1 + P, co is
the restriction of a character of Kx, say ω\ The ramification degree
of ω' depends only on ω, and we define the ramification degree of ω
to be that of ω'.

We define the local field gamma function on ramified characters
of Kx by

Γ(ω) = p.v.
\x\

where

p.v. \ f(x)dx = lim 1 f(x)dx .
J K Λ-»OO J p - 1 n ( p + w ) c

See [8] for details and further definition of Γ.

3. LEMMA 3.1. Let K be a local field of characteristic p Φ 0
wiίfc module q — pf. Let {au -- ,af} be a basis for Fq over Fp.
Then given xeP and Ne Z+,

( a ) there are unique integers aiJt nj9 vh with 0 ̂  aifj < p,
(nd, p) = l for l^i^f,l^j^N, such that 1 + x = Πf=i Πί=i (1 +
atπ ήW'Xp"*1), and
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(b) 1 + xe (1 + PN) ~ (1 + Pγ + 1) if and only if aifj = 0 for
l ^ i ^ / , l ^ i ^ i V and at least one of the aί)N Φ 0, 1 ̂  i ^ /.

Proof. The proof is similar to that of Proposition 10, page 34
of [11], and is omitted.

Given Ne Z+ we establish the following notation to be used in
the following lemma and theorem. For each j , 1 ̂  j ^ N, write
j = %P v y , where (%, p) = 1; define my as the smallest integer such
that m0- ^ logp ((N + 1)/%) then define βά as a primitive pmίth root
of 1 in C.

LEMMA 3.2. With the above notation, mN = vN + 1.

Proof. The proof is a direct computation and is omitted.

THEOREM 3.1. Let Kbe a local field of characteristic p Φ 0 and
ω a character of 1 + PaK r ami field degree N + 1. Then for
x e 1 + P, co is given by

O)(X) = ft Π β*»'at»'pVi ,
l 1

Π Π

for some unique kitj9 0 :g fc^y < pmj" wΐίfe at least one of kitN, 1 ̂  ΐ ̂ / ,
relatively prime to p.

Proof. Since ω is constant on cosets of PN+1 it suffices to consider
x mod PN+1. For any α? e 1 + P, the numbers aif3 , nd, v5 are determined
as in Lemma 3.1 so that (*) holds. Clearly ω will be completely
determined by its values on {1 + a^ή, 1 <£ i <; /, 1 ̂  j ^ N, and
the range of ω is contained in the ptΆ power roots of unity.

The definition of ms as the smallest integer greater than or equal
to logp (N + 1)/Πj makes ms the smallest integer such that

Thus (ω(l + aiπ
n^)ym^ = 1, and ω(l + atπ

nή = /5̂ "̂ for some unique
kit3 , 0 ̂  fti.y < pm. Thus ω has the form required. The remainder
of the theorem follows easily from the fact that βN is a pm*rth root
of unity and ω must be nontrivial on PN.

From Proposition 9 of Chapter II, § 3 of [11], we have:
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PROPOSITION. Let K be a d-dimensional extension of Qp. Then
there is an integer m ^ 0 such that 1 + P, as a multiplicative group
is isomorphic to the additive group Zp x Fpm, where m is the largest
integer such that K contains a primitive pmtli root of unity. For
proof see [11].

Let {u%}d

ί=1 be those elements of 1 + P which map to the vectors
with 1 in the ith coordinate and zeros elsewhere by the isomorphism
in the proposition. Let ud+1 be a primitive ptlL power root of unity
in K of maximal order, say pm. Then any x e 1 + P is given uniquely
by x = Π?=i w?S where at e Zp, 1 ̂  i <; d and ad+1 e Z, 0 <: ad+1 < pm*

LEMMA 3.8. Let K be a d-dimensional extension of Qp. Then
given nonnegative integers ki9 1 ̂  i rg d, each xe 1 + PaK has a
representation as

d

x = uT+X1 Π u^ul1 , where

bi e Zp with | bt \Zp < p~kι and nt is a nonnegative integer. If nt is
picked to be as small as possible, this representation is unique.

Proof. The proof is direct from the above proposition and the
density of Z+ in Zp.

Given Ne Z+, define, for 1 ̂  i ^ d + 1, ̂  to be the smallest
integer such that uil e 1 + PN+1 and /9* to be a fixed primitive plίth

root of leC. With this notation we have the following:

THEOREM 3.2. Let K be a local field of characteristic 0 and ω
a character of 1 + PaK ramified of degree N + 1. Then for
x 6 1 + P, ω is given for some unique ku 0 ̂  kt < pι\ 1 <= i ^ d + 1,
by

ω(x) - Π βk^βk

d

d

+rdλι for x - Π Λ ΐ t ί 1 ,
ι = l ΐ = l

where for I <^ i <^ d, b^ Zp with \ bt \Zp < p~h and nt e Z+.

Proof. The density of Z in Zp shows that an (additive) character
of Zp is determined by its value at 1. Thus a (multiplicative)
character 1 + P will be determined by its values at the ui91 ^ i ^
d + 1. Here (ofay1* = 1 since uf*c:l + P^+1 and ω is ramifield of
degree N + 1. Thus ω(^) = β^ for some (unique) ^, 0 ̂  ^ < ph.

This characterization of the character group of K depends on
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the pth roots of unity in K. Since K is a finite dimensional extension
of Qp, we look for a relationship between the degree d of K over
Qp and the existence of ptiι roots of unity in K.

THEOREM 3.3. Let K be a local field of characteristic 0. If K
is the p-adic field Qp for some prime p Φ 2, then K has no nontrivial
ptlί roots of unity. If K is an extension of Qp, p Φ 2, let the degree
of ramification (see [11]) of K over Qp he e; then,

( a ) K has no pth roots of 1 if (p — 1) does not divide e,
(b) K may or may not have pttL roots of 1 if p — 1 divides e.

Proof. For the proof of (a) see [2]. Part (b) follows from [2]
and the fact that the extension of Qp by a root of xv~ι — p is fully
ramified of degree p — 1 and has no ptΆ roots of unity.

LEMMA 4.1. Let ω he a homogeneous degree zero multiplicative
character of Kx, ramified of degree k > 0. Then ω is a kernel for
a singular integral operator. The multiplier m for the singular
integral operator T with kernel ω satisfies

m(x) = ω(-

Proof. The operator T is defined for / e Sfv, 1 ^ p < co by

Tf(x) = lim ί ^ή- {f{x - y)dy .

Theorem 3.1 of [7] gives sufficient conditions on the kernel ω
for the limit to exist (in ^fp). That ω satisfies those conditions is
easily verified. Then from [7] we know T is bounded on J*fp, 1 <
p < co and weak type (1, 1).

The remainder of the lemma is done by Chao [1] for the case ω
ramified of degree 1. The same proof establishes the result stated
here.

Note. Chao [1] uses Theorem 4 of [8] to establish the conclusion
of Lemma 4.1 for the case ω ramified of degree 1. However, he fails
to compensate for the fact that he defines the Fourier transform as

herein, i.e., ^f(y) = \ f(x)χ(xy)dx, while in [8] it is defined as

\ f(%)X(xy)dx. Thus the result of [1] which corresponds to the

conclusion of Lemma 4.4 above does not contain the necessary factor
of ω(~l).

With notation as in Theorem 3.1, we define rotation operators
Sifj for functions on a p-series field as follows:
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S1)Of(χ) = f(gχ) ,

where g is a fixed primitive (q — l) s t root of unity in K; and

Sttίf(x) = /((I + a^)x)

for 1 ^ i ^ /, j ^ 1.
Given N we determine β3 , 1 <Ξ y <J w as in Theorem 3.1, and let

β0 be a (g — l) s t root of unity in C. Also as in that theorem, note
that given N the choice of integers kitί, 0 ^ feifi < pmj, 1 ^ i ^ / ,
1 ^ i ^ N determines a character of 1 + P. If we also pick a fc1>0,
0 ^ ft1>0 < g — 1, and set ω(g) — βk^- °, then the set {ktJ} determines
character of D°. That character will be called the character deter-
mined by {ki}j}. As it may be used as a kernel for a singular integral
operator, that operator will be identified as the one determined by

{KJ}

We can how state

THEOREM 4.1. Let K be a p-series field and L a continuous linear
operator from Jzfz(K) to J5f2(K) which satisfies

(a) S^ commutes with translation and dilation,
(b) there is some N ^ 0 such that the multiplier corresponding

to L is constant on cosets of PN+\
(c) L anti-commutes with the rotations Si)3; l^i^f, l^j^N,

and S1}Q in the sense that

LSiti = βik*»'SitjL ,

for some kitj. Then L is a constant multiple of the singular integral
operator determined by {kifj}.

Before proving Theorem 4.1, we consider the p-adic case. Let
ul9 1 ^ i ^ d + 1 be as in Theorem 3.2, and let u0 = g, the fixed
(q — l) s t root of 1 e K. In this case we define rotation operators as:
Sif(x) = f(UiX), 0<:i^d + l. Given N, we determine βi9 0 ^ i ^

d + 1 by: β0 is a primitive (q — l) s t root of 1 e C; βiy 1 ^ i ^ d + 1,
is a primitive phth root of 1 e C, where lt is the smallest integer such
that uf1 e 1 + PN+1. Also, for each i we consider integers kt such
that 0 ^ k0 < q - 1, 0 ^ fe, < pS 1 ^ i ^ d + 1.

By Theorem 3.2 and the fact that D° = Mxx(l + P), the set {kJS
determines a unique character of D° by ω{u%) — βϊ*. The character
ω will be called the character determined by the {kt}. It is clearly
constant on 1 + PN+1.

THEOREM 4.2. Let K be a local field of characteristic 0, and
let L be a continuous linear operator from Jΐf2(K) to Sf2{K) which
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satisfies
( a ) L commutes with translation and dilation,
(b) there is some N such that the multiplier for L is constant

on cosets of PN+1,
(c ) L anti-commutes with the rotations Sif 0 ^ i ^ d + 1 in

the sense that

Then L is a constant multiple of the singular integral transform
determined by the {fcj. The proof of Theorems 4.1 and 4.2 will utilize
the following Lemma.

LEMMA 4.2. Let K be a local field. If characteristic K — 0, let
L satisfy the hypothesis of Theorem 4.2. If characteristic K—pφQ,
let L satisfy the hypothesis of Theorem 4.1. Then for f s^ft L is
given by convolution with a unique distribution μ, homogeneous of
degree a>/| |, where a) is the character of D° determined the {ki}j} or

in the characteristic pφQ and characteristic 0 case, respectively.

Proof. Since L is a bounded linear operator from £f% to
which commutes with translation, by Theorem 9 of [10], it is given,
on ^ by convolution with a unique distribution μ. We need only
to show μ homogeneous of degree v, where v(x) = o)(x)/\ x\,xΦto.

There is a function m in SfJK) so that for / e £?%(K\ (LfΓ=mf.
For / 6 ̂ ff f e J", thus mf e ^{K) since m e SfJK). Then Lf = (mf)v

is continuous since it is the inverse Fourier transform of an £fx

function.
Let Ί e 1 + PN+1. Then 7"1 e 1 + PN+1, and, since m is constant

on cosets of PN+1, we have:

(LτrfΓ(x) = m(τrfΓ(x) - m{x)f{y-ιx)

= m{Ί~ιx)f{^~^) = τy'mfix) .

Thus

Lτrf = τγLf in £(\

Fix t e Kx. By (a) and (c) of Theorems 4.1 and 4.2 and the above
equality, we have:

LzJ = ω-\t)τtLf in j ^

and

LτJ{x) - ω~ι(t)τtLf(x) a.e.
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But since both Lτtf and τtLf are continuous, we have the above
equality everywhere.

For / j

μ*τtf(O)=ω-ί(t)(μ*f)(t.O),

and

(μ, τj) = ω-HMμ, f) .

Thus

Since this holds for all f

Now we are ready for the

Proof of Theorems 4.1 and 4.2. By Lemma 4.2 for
Lf = μ*/, where μ is homogeneous of degree α>/| |. But by Lemma
5 of [8], the only distributions which are homogeneous of degree σ,
σ multiplicative character of Kx such that σ(x) is not identically
I a I"1, are constant multiples of σ. Thus μ = cω/\ |, and L/ =
(cω)/(| | ) * / , fe^f. Thus, on the test functions, a dense subset of
.S^, L agrees with L', the singular integral operator defined by
L'f(x) = c ((ω(τ/))/(| y \)f(x - T/)^. But since L and 1/ are continuous,
L = L' on j ^ .

5* Example* The conclusions of Theorems 4.1 and 4.2 may be
obtained by direct calculation. We indicate the method in the case
q = 3 and ω ramified of degree 1. Here Mx = {1, -1} and ω will
assume only the values ± 1 . [This is the "exact" analog of the
Hubert transform for the reals.]

Let H be the singular integral operator with ω as kernel. Both
theorems then have the form: Theorem: Let K be local field with
module q = 3 and L be a continuous operator on J*?2{K) which
satisfies:

(a) L commutes with translation and dilation;
(b) the multiplier, m, for L is constant on 1 + P;
(c ) L anti-commutes with the rotation τ^ by Lτ_L = —τ^L.

Then L is a constant multiple of H.

Proof. From the relation (L/Γ = mf it follows as in the real



426 CHARLES DOWNEY

case (see [9]) that m(—x) — —m(x). Since any x e Kx may be written
x = ±πj(l + ρx), pxeP, m{x) = ±ra(l) = ω'^mil). The theorem
then follows from Lemma 4.1.

Lemma 4.1 may also be shown directly. For the case above we
may even evaluate the multiplier mH explicitly. Taking the funda-
mental character X to be that given in [1] (a variation of that given
in [6]), and the form of mH from [7], we obtain mH(x) = (i)/(τ/ 3 )ω(x).
As in [1], a similar easy calculation gives Γ(ω) — —ijVZ , exempli-
fying Lemma 4.1. In further analogy with the real case, it is apparent
from the multiplier that H2 = -(1/3)1.
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