CLASSIFICATION OF SINGULAR INTEGRALS OVER A LOCAL FIELD

CHARLES DOWNEY

The singular integral operators over a local field K whose kernels are multiplicative characters of the unit sphere of K are shown to be precisely those continuous operators on $\mathscr{L}_2(K)$ which commute with translation and dilation, anticommute with an appropriately defined rotation, and whose multipliers satisfy a smoothness condition. The characterization is analogous to that of the Hilbert transform over the real numbers.

1. Classically, the Hilbert transform over R is, up to a constant multiple, the only continuous operator on $\mathscr{L}_2(R)$ which commutes with translation and (positive) dilation and anti-commutes with reflection. See [9], page 55. The Hilbert transform is a singular integral operator with kernel the only (nontrivial) multiplicative character of the unit sphere of R.

Singular integrals over a local field have been developed. (See, for example, Phillips [6], Phillips-Taibleson [7], and Chao [1].) Those with kernel a multiplicative character of the unit sphere satisfy a classification similar to that of the classical Hilbert transform.

The classification theorem is in § 4. The main results are Theorems 4.1 and 4.2. Section 3 contains the necessary results regarding the character group of the unit sphere of a local field; §2 contains other preliminary results, notation, and definitions.

2. Let Z, Z^+, Q, R , and C denote the integers, the positive integers, the rational number, the real numbers, and the complex numbers, respectively. F_{p^n} will denote the (unique) field with p^n elements. The symbols Q_p and Z_p will denote the *p*-adic numbers and the *p*-adic integers, respectively. For any set S, ξ_s will denote the characteristic function of S. The complement of S will be written S_c .

The necessary analysis on local fields is stated without proof below. Most of it may be found in Chapters I and II of Weil [11].

A local field is a nondiscrete, locally compact, zero-dimensional topological (commutative) field. These have been completely classified. Those of characteristic $p \neq 0$ can be identified as the fields of formal power series over a finite field. Those of characteristic 0 are either the *p*-adic numbers of finite extensions of the *p*-adic numbers. See [11], page 11.

Let K be a local field with λ Haar measure for (K, +). The modular function for K, $|\cdot|$, is given by $|x| = \lambda(xS)/\lambda(S)$ for $0 < \lambda(S) < \infty$. Haar measure for the multiplicative group $K^{\times} = K \sim \{0\}$ is $\lambda/|\cdot|$.

Let R be the ring of integers of the local field K and P be the unique maximal ideal of R. Then ord (R/P) = q, the module of K, a prime power. The ideal P has a generator π , so that $\pi R = P$. We have $|\pi| = q^{-1}$, and, in fact, any $x \in K$ with $|x| = q^{-1}$ will generate P. Those elements of modulus q^{-1} will be called primes in K.

For $n \in \mathbb{Z}$ we define

$$P^n = \{x \in K: \ | \ x \ | \ \leq q^{-n} \}; \ D^n = \{x \in K: \ | \ x \ | \ = q^{-n} \}$$
 .

Then $P^{1} = P$, $P^{0} = R$, and $R \sim P = D^{0}$. The set $\{P^{n}\}_{n=0}^{\infty}$ is a neighborhood base at 0 of open and closed subgroups of (K, +). The set $\{1 + P^{n}\}_{n=1}^{\infty}$ is a neighborhood base at 1 of open and closed subgroups for the topological group (K^{\times}, \cdot) .

We define the operators τ_{δ} for $\delta \neq 0$ on functions by $\tau_{\delta}f(x) = f(\delta x)$. Regarding the prime π as fixed, we single out a set of such operators, the dilation operators, \mathscr{D}_j , defined by $\mathscr{D}_j f(x) = f(\pi^j x) j \in Z$. A function f is homogeneous degree zero if $\mathscr{D}_j f = f$ for all $j \in Z$. For $x \in K$, translation operators T_x are defined on functions by $T_x f(y) =$ f(x + y).

There is a character χ of the additive group of K which is identically one on R and nontrivial on P^{-1} . Then for any $y \in K$, $\chi_{y}(x) = \chi(xy)$ defines a character of K. In fact, the mapping $y \to \chi_{y}$ is a topological isomorphism of (K, +) onto its dual. We thus identify K with its dual.

The Fourier transform for K is initially defined on $\mathcal{L}_1(K)$ by

$$\mathscr{F}f(x) = \widehat{f}(x) = \int_{K} f(y) \overline{\chi(xy)} dy$$
.

[The integral is taken with respect to λ . Here and elsewhere the λ will be suppressed.] The transform \mathscr{F}^{-1} is defined by $\mathscr{F}^{-1}f(x) = \check{f}(x) = \int_{\mathcal{K}} f(y)\chi(xy)dy$. Both \mathscr{F} and \mathscr{F}^{-1} extend uniquely to \mathscr{L}_2 . It is easy to see that, as \mathscr{L}_2 operators, $\tau_{\delta}\mathscr{F} = |\delta|^{-1}\mathscr{F}\tau_{\delta^{-1}}$ and $\tau_{\delta}\mathscr{F}^{-1} = |\delta|^{-1}\mathscr{F}^{-1}\tau_{\delta^{-1}}$.

The following result will be used extensively in the sequel: Let L be a continuous linear operator from $\mathscr{L}_2(K)$ to $\mathscr{L}_2(K)$. Then a necessary and sufficient condition that L commute with translation is that there exist a function m, in $\mathscr{L}_{\infty}(K)$, such that $\mathscr{F}(Lf) = m\mathscr{F}f$ for all $f \in \mathscr{L}_2(K)$. See [5], pp. 92-94.

The space \mathcal{J} of test functions on K and its topological dual \mathcal{J}' , the space of distributions, are defined as in [8]. Both are

complete linear spaces. The action of a $\mu \in \mathcal{J}'$ on an $f \in \mathcal{J}$ will be denoted (μ, f) .

The space \mathcal{J} is contained densely in $\mathcal{L}_p, 1 \leq p < \infty$. The Fourier transform is thus will-defined on \mathcal{J} . The Fourier transform on \mathcal{J}' is given by $(\hat{\mu}, f) = (\mu, \hat{f})$. Thus defined, the Fourier transform is a linear topological isomorphism on both \mathcal{J} and \mathcal{J}' .

Functions and measures will be identified with the distributions they induce. Convolution of a distribution and a test function is defined by $\mu * f(x) = (\mu, T_x \tilde{f})$, where $\tilde{f}(x) = f(-x)$.

Let $\mu \in \mathscr{J}'$, and let σ be a (not necessarily unitary) multiplicative character of $K^{\times}(=K \sim \{0\})$. Then, as in [8], we say μ is homogeneous of degree σ if for all $t \in K^{\times}$, $\mu_t = \sigma(t)\mu$, where μ_t is that distribution defined by $(\mu_t, \phi) = (\mu, |t|^{-1}\tau_{t-1}\phi)$.

We take M to be $M^{\times} \cup \{0\}$, where M^{\times} is the group of roots of unity in K of order prime to p. Then M^{\times} is the unique cyclic group of order q-1 ([11], p. 16). Let g be a generator of M^{\times} . Then each $0 \neq x \in K$ may be written uniquely as $x = \pi^j g^k (1 + p_x)$, where $k, j \in \mathbb{Z}, 0 \leq k \leq q-2, p_x \in P$. A multiplicative character of K^{\times} is given by its values at π, g , and on 1 + P.

Let ω be a multiplicative character of K^{\times} . There is some $n \in Z$ such that ω is trivial on $1 + P^n$. If ω is trivial on $1 + P^n$ but not on $1 + P^{n-1}$, $n \ge 1$, we say ω is ramified of degree n. If ω is trivial on D^0 , we say ω is unramified. Given a character ω of 1 + P, ω is the restriction of a character of K^{\times} , say ω' . The ramification degree of ω' depends only on ω , and we define the ramification degree of ω to be that of ω' .

We define the local field gamma function on ramified characters of K^{\times} by

$$arGamma(\omega) = \mathrm{p.v.} \int_{\kappa} rac{\chi(x)\omega(x)dx}{\mid x \mid}$$
 ,

where

p.v.
$$\int_K f(x)dx = \lim_{n\to\infty} \int_{P^{-1}\cap (P^{+n})^c} f(x)dx$$
.

See [8] for details and further definition of Γ .

3. LEMMA 3.1. Let K be a local field of characteristic $p \neq 0$ with module $q = p^{f}$. Let $\{\alpha_{i_1}, \dots, \alpha_{f}\}$ be a basis for F_q over F_p . Then given $x \in P$ and $N \in Z^+$,

(a) there are unique integers $a_{i,j}$, n_j , ν_j , with $0 \leq a_{i,j} < p$, $(n_j, p) = 1$ for $1 \leq i \leq f$, $1 \leq j \leq N$, such that $1 + x = \prod_{j=1}^{N} \prod_{i=1}^{f} (1 + \alpha_i \pi^{n_j})^{a_i, j p^{\nu_j}} (p^{N+1})$, and (b) $1 + x \in (1 + P^N) \sim (1 + P^{N+1})$ if and only if $a_{i,j} = 0$ for $1 \leq i \leq f, 1 \leq j \leq N$ and at least one of the $a_{i,N} \neq 0, 1 \leq i \leq f$.

Proof. The proof is similar to that of Proposition 10, page 34 of [11], and is omitted.

Given $N \in Z^+$ we establish the following notation to be used in the following lemma and theorem. For each $j, 1 \leq j \leq N$, write $j = n_j P^{\nu_j}$, where $(n_j, p) = 1$; define m_j as the smallest integer such that $m_j \geq \log_p ((N+1)/n_j)$ then define β_j as a primitive $p^{m_j \text{th}}$ root of 1 in C.

LEMMA 3.2. With the above notation, $m_N = \nu_N + 1$.

Proof. The proof is a direct computation and is omitted.

THEOREM 3.1. Let K be a local field of characteristic $p \neq 0$ and ω a character of $1 + P \subset K$ ramifield degree N + 1. Then for $x \in 1 + P$, ω is given by

$$\omega(x) = \prod_{j=1}^{N} \prod_{i=1}^{f} \beta_{j}^{k_{i,j}a_{i,j}p^{\nu}j},$$

where

(*)
$$x \equiv \prod_{j=1}^{N} \prod_{i=1}^{f} (1 + \alpha_{i} \pi^{n_{j}})^{a_{i,j} p^{\nu_{j}}} (P^{N+1})$$

for some unique $k_{i,j}$, $0 \leq k_{i,j} < p^{m_j}$ with at least one of $k_{i,N}$, $1 \leq i \leq f$, relatively prime to p.

Proof. Since ω is constant on cosets of P^{N+1} it suffices to consider $x \mod P^{N+1}$. For any $x \in 1 + P$, the numbers $a_{i,j}$, n_j , ν_j are determined as in Lemma 3.1 so that (*) holds. Clearly ω will be completely determined by its values on $\{1 + \alpha_i \pi^{n_j}\}, 1 \leq i \leq f, 1 \leq j \leq N$, and the range of ω is contained in the p^{th} power roots of unity.

The definition of m_j as the smallest integer greater than or equal to $\log_p (N+1)/n_j$ makes m_j the smallest integer such that

$$(1 + \alpha_i \pi^{n_j})^{p^{m_i}} \in 1 + P^{N+1}$$

Thus $(\omega(1 + \alpha_i \pi^{n_j}))^{p^{m_j}} = 1$, and $\omega(1 + \alpha_i \pi^{n_j}) = \beta_j^{k_{i,j}}$ for some unique $k_{i,j}$, $0 \leq k_{i,j} < p^m$. Thus ω has the form required. The remainder of the theorem follows easily from the fact that β_N is a $p^{m_N \text{th}}$ root of unity and ω must be nontrivial on P^N .

From Proposition 9 of Chapter II, § 3 of [11], we have:

PROPOSITION. Let K be a d-dimensional extension of Q_p . Then there is an integer $m \ge 0$ such that 1 + P, as a multiplicative group is isomorphic to the additive group $Z_p^d \times F_{p^m}$, where m is the largest integer such that K contains a primitive p^{mth} root of unity. For proof see [11].

Let $\{u_i\}_{i=1}^d$ be those elements of 1 + P which map to the vectors with 1 in the i^{th} coordinate and zeros elsewhere by the isomorphism in the proposition. Let u_{d+1} be a primitive p^{th} power root of unity in K of maximal order, say p^m . Then any $x \in 1 + P$ is given uniquely by $x = \prod_{i=1}^{d+1} u_i^{a_i}$, where $a_i \in Z_p$, $1 \leq i \leq d$ and $a_{d+1} \in Z$, $0 \leq a_{d+1} < p^m$.

LEMMA 3.3. Let K be a d-dimensional extension of Q_p . Then given nonnegative integers $k_i, 1 \leq i \leq d$, each $x \in 1 + P \subset K$ has a representation as

$$x=u_{\scriptscriptstyle d+1}^{a_{\scriptscriptstyle d+1}}\prod\limits_{\scriptscriptstyle i=1}^{d}u_{\scriptscriptstyle \imath}^{{\scriptscriptstyle n}_i}u_{\scriptscriptstyle \imath}^{{\scriptscriptstyle b}_i}$$
 , where

 $b_i \in Z_p$ with $|b_i|_{Z_p} < p^{-k_i}$ and n_i is a nonnegative integer. If n_i is picked to be as small as possible, this representation is unique.

Proof. The proof is direct from the above proposition and the density of Z^+ in Z_p .

Given $N \in Z^+$, define, for $1 \leq i \leq d+1$, \mathscr{L}_1 to be the smallest integer such that $u_i^{p_i^l} \in 1 + P^{N+1}$ and β_i to be a fixed primitive $p^{l_i^{\text{th}}}$ root of $1 \in C$. With this notation we have the following:

THEOREM 3.2. Let K be a local field of characteristic 0 and ω a character of $1 + P \subset K$ ramified of degree N + 1. Then for $x \in 1 + P$, ω is given for some unique k_i , $0 \leq k_i < p^{l_i}$, $1 \leq i \leq d + 1$, by

$$\omega(x) = \prod_{i=1}^d eta_i^{k_i n_i} eta_{d+1}^{k_{d+1} a_{d+1}} \ for \ x = \prod_{i=1}^d u_i^{n_i} u_i^{b_i} u_{d+1}^{a_{d+1}}$$
 ,

where for $1 \leq i \leq d$, $b_i \in Z_p$ with $|b_i|_{Z_p} < p^{-l_i}$ and $n_i \in Z^+$.

Proof. The density of Z in Z_p shows that an (additive) character of Z_p is determined by its value at 1. Thus a (multiplicative) character 1 + P will be determined by its values at the $u_i, 1 \leq i \leq$ d + 1. Here $\omega(u_i)^{pl_i} = 1$ since $u_i^{pl_i} \subset 1 + P^{N+1}$ and ω is ramifield of degree N + 1. Thus $\omega(u_i) = \beta_i^{k_i}$ for some (unique) $k_i, 0 \leq k_i < p^{l_i}$.

This characterization of the character group of K depends on

the p^{th} roots of unity in K. Since K is a finite dimensional extension of Q_p , we look for a relationship between the degree d of K over Q_p and the existence of p^{th} roots of unity in K.

THEOREM 3.3. Let K be a local field of characteristic 0. If K is the p-adic field Q_p for some prime $p \neq 2$, then K has no nontrivial p^{th} roots of unity. If K is an extension of Q_p , $p \neq 2$, let the degree of ramification (see [11]) of K over Q_p be e; then,

(a) K has no p^{th} roots of 1 if (p-1) does not divide e,

(b) K may or may not have p^{th} roots of 1 if p-1 divides e.

Proof. For the proof of (a) see [2]. Part (b) follows from [2] and the fact that the extension of Q_p by a root of $x^{p-1} - p$ is fully ramified of degree p-1 and has no p^{th} roots of unity.

LEMMA 4.1. Let ω be a homogeneous degree zero multiplicative character of K^x , ramified of degree k > 0. Then ω is a kernel for a singular integral operator. The multiplier m for the singular integral operator T with kernel ω satisfies

$$m(x) = \omega(-1)\Gamma(\omega)\omega^{-1}(x)$$
.

Proof. The operator T is defined for $f \in \mathscr{L}_p, 1 \leq p < \infty$ by

$$Tf(x) = \lim_{k \to \infty} \int_{(P^k)\sigma} \frac{\omega(y)}{|y|} (f(x-y)dy).$$

Theorem 3.1 of [7] gives sufficient conditions on the kernel ω for the limit to exist (in \mathscr{L}_p). That ω satisfies those conditions is easily verified. Then from [7] we know T is bounded on \mathscr{L}_p , 1 and weak type (1, 1).

The remainder of the lemma is done by Chao [1] for the case ω ramified of degree 1. The same proof establishes the result stated here.

Note. Chao [1] uses Theorem 4 of [8] to establish the conclusion of Lemma 4.1 for the case ω ramified of degree 1. However, he fails to compensate for the fact that he defines the Fourier transform as herein, i.e., $\mathscr{F}f(y) = \int f(x)\overline{\chi(xy)}dx$, while in [8] it is defined as $\int f(x)\chi(xy)dx$. Thus the result of [1] which corresponds to the conclusion of Lemma 4.4 above does not contain the necessary factor of $\omega(-1)$.

With notation as in Theorem 3.1, we define rotation operators $S_{i,j}$ for functions on a *p*-series field as follows:

$$S_{\scriptscriptstyle 1,0}f(x)=f(gx)$$
,

where g is a fixed primitive $(q-1)^{st}$ root of unity in K; and

$$S_{i,j}f(x) = f((1 + \alpha_i \pi^{n_j})x)$$

for $1 \leq i \leq f$, $j \geq 1$.

Given N we determine $\beta_j, 1 \leq j \leq n$ as in Theorem 3.1, and let β_0 be a $(q-1)^{\text{st}}$ root of unity in C. Also as in that theorem, note that given N the choice of integers $k_{i,j}, 0 \leq k_{i,j} < p^{m_j}, 1 \leq i \leq f$, $1 \leq j \leq N$ determines a character of 1 + P. If we also pick a $k_{1,0}$, $0 \leq k_{1,0} < q-1$, and set $\omega(g) = \beta^{k_1 0}$, then the set $\{k_{i,j}\}$ determines character of D^0 . That character will be called the character determined by $\{k_{i,j}\}$. As it may be used as a kernel for a singular integral operator, that operator will be identified as the one determined by $\{k_{i,j}\}$.

We can how state

THEOREM 4.1. Let K be a p-series field and L a continuous linear operator from $\mathcal{L}_2(K)$ to $\mathcal{L}_2(K)$ which satisfies

(a) \mathcal{L} commutes with translation and dilation,

(b) there is some $N \ge 0$ such that the multiplier corresponding to L is constant on cosets of P^{N+1} ,

(c) L anti-commutes with the rotations $S_{i,j}$, $1 \leq i \leq f$, $1 \leq j \leq N$, and $S_{1,0}$ in the sense that

$$LS_{i,j}=eta_j^{-k_{i,j}}S_{i,j}L$$
 ,

for some $k_{i,j}$. Then L is a constant multiple of the singular integral operator determined by $\{k_{i,j}\}$.

Before proving Theorem 4.1, we consider the *p*-adic case. Let $u_i, 1 \leq i \leq d+1$ be as in Theorem 3.2, and let $u_0 = g$, the fixed $(q-1)^{\text{st}}$ root of $1 \in K$. In this case we define rotation operators as: $S_i f(x) = f(u_i x), 0 \leq i \leq d+1$. Given *N*, we determine $\beta_i, 0 \leq i \leq d+1$ by: β_0 is a primitive $(q-1)^{\text{st}}$ root of $1 \in C$; $\beta_i, 1 \leq i \leq d+1$, is a primitive $p^{l_i \text{th}}$ root of $1 \in C$, where l_i is the smallest integer such that $u_i^{p_i} \in 1 + P^{N+1}$. Also, for each *i* we consider integers k_i such that $0 \leq k_0 < q-1, 0 \leq k_i < p^{l_i}, 1 \leq i \leq d+1$.

By Theorem 3.2 and the fact that $D^{\circ} = M^{\times}x(1+P)$, the set $\{k_i\}_{i=0}^{k+1}$ determines a unique character of D° by $\omega(u_i) = \beta_i^{k_i}$. The character ω will be called the character determined by the $\{k_i\}$. It is clearly constant on $1 + P^{N+1}$.

THEOREM 4.2. Let K be a local field of characteristic 0, and let L be a continuous linear operator from $\mathcal{L}_2(K)$ to $\mathcal{L}_2(K)$ which satisfies

(a) L commutes with translation and dilation,

(b) there is some N such that the multiplier for L is constant on cosets of P^{N+1} ,

(c) L anti-commutes with the rotations $S_i, 0 \leq i \leq d+1$ in the sense that

$$LS_i = \beta_i^{-k_i} S_i L$$
.

Then L is a constant multiple of the singular integral transform determined by the $\{k_i\}$. The proof of Theorems 4.1 and 4.2 will utilize the following Lemma.

LEMMA 4.2. Let K be a local field. If characteristic K = 0, let L satisfy the hypothesis of Theorem 4.2. If characteristic $K = p \neq 0$, let L satisfy the hypothesis of Theorem 4.1. Then for $f \in \mathcal{J}$, L is given by convolution with a unique distribution μ , homogeneous of degree $\omega/|\cdot|$, where ω is the character of D^0 determined the $\{k_{i,j}\}$ or $\{k_i\}$ in the characteristic $p \neq 0$ and characteristic 0 case, respectively.

Proof. Since L is a bounded linear operator from \mathscr{L}_2 to \mathscr{L}_2 which commutes with translation, by Theorem 9 of [10], it is given, on \mathscr{J} , by convolution with a unique distribution μ . We need only to show μ homogeneous of degree ν , where $\nu(x) = \omega(x)/|x|, x \neq 0$.

There is a function m in $\mathscr{L}_{\infty}(K)$ so that for $f \in \mathscr{L}_{1}(K)$, $(Lf)^{\wedge} = m\hat{f}$. For $f \in \mathcal{J}, \hat{f} \in \mathcal{J}$, thus $m\hat{f} \in \mathscr{L}_{1}(K)$ since $m \in \mathscr{L}_{\infty}(K)$. Then $Lf = (m\hat{f})^{\vee}$ is continuous since it is the inverse Fourier transform of an \mathscr{L}_{1} function.

Let $\gamma \in 1 + P^{N+1}$. Then $\gamma^{-1} \in 1 + P^{N+1}$, and, since *m* is constant on cosets of P^{N+1} , we have:

$$(L au_{\tau}f)^{(x)} = m(au_{\tau}f)^{(x)} = m(x)\hat{f}(\gamma^{-1}x) = m(\gamma^{-1}x)\hat{f}(\gamma^{-1}x) = au_{\tau}^{-1}m\hat{f}(x) \;.$$

Thus

$$L au_{ au}f= au_{ au}Lf$$
 in \mathscr{L}_2 .

Fix $t \in K^{\times}$. By (a) and (c) of Theorems 4.1 and 4.2 and the above equality, we have:

$$L\tau_t f = \omega^{-1}(t)\tau_t L f$$
 in \mathscr{L}_2

and

$$L\tau_t f(x) = \omega^{-1}(t)\tau_t L f(x)$$
 a.e.

424

But since both $L\tau_i f$ and $\tau_i L f$ are continuous, we have the above equality everywhere.

For $f \in \mathcal{J}$,

$$\mu * au_t f(0) = \omega^{-1}(t)(\mu * f)(t \cdot 0)$$
 ,

and

$$(\mu, \tau_t \tilde{f}) = \omega^{-1}(t)(\mu, \tilde{f})$$
.

Thus

$$egin{aligned} &(\mu_t,\,f)=(\mu,\,|\,t\,|^{-1} au_{t^{-1}}f)\ &=|\,t\,|^{-1}(\mu,\, au_{t^{-1}}f)\ &=rac{\omega(t)}{|\,t\,|}\,(\mu,\,f)=
u(t)(\mu,\,f)\;. \end{aligned}$$

Since this holds for all $f \in \mathcal{J}, \mu_t = \nu(t)\mu$.

Now we are ready for the

Proof of Theorems 4.1 and 4.2. By Lemma 4.2 for $f \in \mathcal{J}$, $Lf = \mu * f$, where μ is homogeneous of degree $\omega/|\cdot|$. But by Lemma 5 of [8], the only distributions which are homogeneous of degree σ , σ multiplicative character of K^{\times} such that $\sigma(x)$ is not identically $|x|^{-1}$, are constant multiples of σ . Thus $\mu = c\omega/|\cdot|$, and $Lf = (c\omega)/(|\cdot|)*f$, $f \in \mathcal{J}$. Thus, on the test functions, a dense subset of \mathcal{L}_2 , L agrees with L', the singular integral operator defined by $L'f(x) = c \int (\omega(y))/(|y|)f(x-y)dy$. But since L and L' are continuous, L = L' on \mathcal{L}_2 .

5. Example. The conclusions of Theorems 4.1 and 4.2 may be obtained by direct calculation. We indicate the method in the case q = 3 and ω ramified of degree 1. Here $M^{\times} = \{1, -1\}$ and ω will assume only the values ± 1 . [This is the "exact" analog of the Hilbert transform for the reals.]

Let H be the singular integral operator with ω as kernel. Both theorems then have the form: Theorem: Let K be local field with module q = 3 and L be a continuous operator on $\mathscr{L}_2(K)$ which satisfies:

(a) L commutes with translation and dilation;

(b) the multiplier, m, for L is constant on 1 + P;

(c) L anti-commutes with the rotation τ_{-1} by $L\tau_{-1} = -\tau_{-1}L$. Then L is a constant multiple of H.

Proof. From the relation $(Lf)^{\uparrow} = m\hat{f}$ it follows as in the real

case (see [9]) that m(-x) = -m(x). Since any $x \in K^{\times}$ may be written $x = \pm \pi^{j}(1 + \rho_{x}), \ \rho_{x} \in P, \ m(x) = \pm m(1) = \omega^{-1}(x)m(1)$. The theorem then follows from Lemma 4.1.

Lemma 4.1 may also be shown directly. For the case above we may even evaluate the multiplier m_H explicitly. Taking the fundamental character χ to be that given in [1] (a variation of that given in [6]), and the form of m_H from [7], we obtain $m_H(x) = (i)/(\sqrt{3})\omega(x)$. As in [1], a similar easy calculation gives $\Gamma(\omega) = -i/\sqrt{3}$, exemplifying Lemma 4.1. In further analogy with the real case, it is apparent from the multiplier that $H^2 = -(1/3)I$.

References

 J. A. Chao, H^p-spaces of conjugate systems on local fields, Stucka Math., 49 (1974), 267-287.

2. H. Hasse, Zalentheorie, Berlin Akademie-Verlag, 1963.

3. E. Hewitt and K. A. Ross, Abstract Harmonic Analysis II, Springer-Verlag, 1970.

4. P. J. McCarthy, Algebraic Extensions of Field, Blaisdell, 1966.

5. R. Larsen, An Introduction to the Theory of Multipliers, Springer-Verlag, 1971.

6. K. Phillips, Hilbert transforms for the p-adic and p-series fields, Pacific J. Math., 23 (1967), 329-347.

7. K. Phillips and M. H. Taibleson, Singular integrals in several variable over a local field, Ibid., **30** (1969), 209-231.

8. P. J. Sally and M. H. Taibleson, Special functions on locally compact fields, Acta Math., **116** (1966) 279-309.

9. E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, 1970.

10. M. H. Taibleson, Harmonic analysis on n-dimensional vector spaces over local fields. I, Math. Annalen, 176 (1968), 191-207.

11. A. Weil, Basic Number Theory, Springer-Verlag, 1967.

Received October 14, 1974 and in revised form April 12, 1975.

UNIVERSITY OF NEBRASKA AT OMAHA