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CLASSIFICATION OF SINGULAR INTEGRALS
OVER A LOCAL FIELD

CHARLES DOWNEY

The singular integral operators over a local field K whose
kernels are multiplicative characters of the unit sphere of
K are shown to be precisely those continuous operators on
Z,(K) which commute with translation and dilation, anti-
commute with an appropriately defined rotation, and whose
multipliers satisfy a smoothness condition. The characteri-
zation is analogous to that of the Hilbert transform over
the real numbers.

1. Classically, the Hilbert transform over R is, up to a constant
multiple, the only continuous operator on 4(R) which commutes
with translation and (positive) dilation and anti-commutes with re-
flection. See [9], page 55. The Hilbert transform is a singular
integral operator with kernel the only (nontrivial) multiplicative
character of the unit sphere of R.

Singular integrals over a local field have been developed. (See,
for example, Phillips [6], Phillips-Taibleson [7], and Chao [1].) Those
with kernel a multiplicative character of the unit sphere satisfy a
classification similar to that of the classical Hilbert transform.

The classification theorem is in § 4. The main results are Theorems
4.1 and 4.2. Section 3 contains the necessary results regarding the
character group of the unit sphere of a local field; §2 contains other
preliminary results, notation, and definitions.

2. Let Z, Z*,Q, R, and C denote the integers, the positive
integers, the rational number, the real numbers, and the complex
numbers, respectively. F,» will denote the (unique) field with »”
elements. The symbols @, and Z, will denote the p-adic numbers
and the p-adic integers, respectively. For any set S, &; will denote
the characteristic function of S. The complement of S will be written
S..

The necessary analysis on local fields is stated without proof
below. Most of it may be found in Chapters I and II of Weil [11].

A local field is a nondiscrete, locally compact, zero-dimensional
topological (commutative) field. These have been completely classified.
Those of characteristic » = 0 can be identified as the fields of formal
power series over a finite field. Those of characteristic 0 are either
the p-adic numbers of finite extensions of the p-adic numbers. See
[11], page 11.
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Let K be a local field with » Haar measure for (K, +). The

modular function for K, |-|, is given by |z| = MzS)/M(S) for 0 <
MS) < . Haar measure for the multiplicative group K* = K ~ {0}
is A+ .

Let R be the ring of integers of the local field K and P be the
unique maximal ideal of R. Then ord (RB/P) = ¢, the module of K,
a prime power. The ideal P has a generator 7, so that 7R = P. We
have |7 | = q™*, and, in fact, any x€ K with |2 | = ¢~ will generate
P. Those elements of modulus ¢~ will be called primes in K.

For ne Z we define

Pr={zeK: |z|<qg"h D"={xcK:|z|=q"}.

Then P'= P, P°= R, and R~ P = D°. The set {P"};., is a neigh-
borhood base at 0 of open and closed subgroups of (K, +). The set
{1 + P"}2_, is a neighborhood base at 1 of open and closed subgroups
for the topological group (K%, -).

We define the operators 7, for d # 0 on functions by 7,/ (x) = f(0x).
Regarding the prime 7 as fixed, we single out a set of such operators,
the dilation operators, &;, defined by Z;f(x)= f(zix)jeZ. A
function f is homogeneous degree zero if 2;f = f for all je Z. For
z € K, translation operators T, are defined on functions by T.f(y) =

fx + v).
There is a character y of the additive group of K which is
identically one on R and nontrivial on P~'. Then for any ye K,

%(x) = x(xy) defines a character of K. In fact, the mapping y—,
is a topological isomorphism of (K, +) onto its dual. We thus identify
K with its dual.

The Fourier transform for K is initially defined on Z(K) by

FF@ = fw) = |y .

[The integral is taken with respect to . Here and elsewhere the \
will be suppressed.] The transform & ' is defined by & ~'f(%) =

Fz) = SK f(W)r@y)dy. Both 5 and .7~ extend uniquely to ..

It is easy to see that, as &5 operators, 7, % = |0| " F 7~ and
ToF L= |0 F 'rsmu

The following result will be used extensively in the sequel: Let
L be a continuous linear operator from <5(K) to &45(K). Then a
necessary and sufficient condition that L commute with translation
is that there exist a function m, in <Z,(K), such that & (Lf) = mF f
for all fe &5(K). See [5], pp. 92-94.

The space _Z of test functions on K and its topological dual
', the space of distributions, are defined as in [8]. Both are
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complete linear spaces. The action of a e _#' on an fe 2 will
be denoted (, f).

The space _# is contained densely in &5,1=< p < . The
Fourier transform is thus will-defined on _#. The Fourier transform
on #' is given by (&, f) = (¢, 7). Thus defined, the Fourier trans-
form is a linear topological isomorphism on both _# and _#'.

Functions and measures will be identified with the distributions
they induce. Convolution of a distribution and a test function is
defined by pxf(z) = (¢, T.f), where f(z) = f(—2).

Let e _#’', and let o be a (not necessarily unitary) multiplicative
character of K*(= K ~ {0}). Then, as in [8], we say g is homo-
geneous of degree o if for all te K*, p, = o(t), where p, is that
distribution defined by (g, ¢) = (¢, | t|'c,~18).

We take M to be M* U {0}, where M* is the group of roots of
unity in K of order prime to ». Then M* is the unique cyclic group
of order ¢ — 1 ([11], p. 16). Let ¢ be a generator of M*. Then
each 0 = v e K may be written uniquely as x = nig*(1l + p,), where
k,jeZ,0<k<q—2, p,e€P. A multiplicative character of K* is
given by its values at «, g, and on 1 + P.

Let @ be a multiplicative character of K*. There is some ne Z
such that w is trivial on 1 + P*. If w is trivial on 1 + P but not
onl+ P! n =1, we say w is ramified of degree n. If w is trivial
on D° we say  is unramified. Given a character w of 1 + P, @ is
the restriction of a character of K*, say @’. The ramification degree
of w' depends only on w, and we define the ramification degree of w
to be that of w'.

We define the local field gamma function on ramified characters
of K* by

I'(w) = p.v. gxm)l%(lch_ ,

where

p.v. SK F@)de = lim S f(@)dz .

p-ln(ptne

See [8] for details and further definition of I'.

3. LeEmMA 3.1. Let K be a local field of characteristic p #= 0
with module ¢ = p*. Let {a,, ---, o} be a basis for F, over F,.
Then given x€ P and Ne Z*,

(a) there are unique integers a,; n;, Y;, with 0= a,; < D,
(s p)=1 for 1<i<f,1<35 =N, suchthat 1 + o =T 111 +
ain.‘nj)ai,jp”j(plvﬂ)’ and
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(b) 14+xze(l+ P)~ @+ P") if and only if a,; =0 for
1=1=f,1< 37 < N and at least one of the a,y +0,1 <1< f.

Proof. The proof is similar to that of Proposition 10, page 34
of [11], and is omitted.

Given Ne Z* we establish the following notation to be used in
the following lemma and theorem. For each 7,1 <7 < N, write
J = n;P, where (n;, p) = 1; define m; as the smallest integer such
that m; = log, (N + 1)/n;) then define B; as a primitive p™* root

of 1 in C.
LeMMA 3.2. With the above nmotation, my = vy + L.
Proof. The proof is a direct computation and is omitted.
THEOREM 3.1. Let K be a local field of characteristic p + 0 and

® a character of 1+ PC K ramifield degree N+ 1. Then for
xel + P, w ts given by

N f 5
(@) = 11 TI g,
Jj=11=1
where
N f .
(*) =11 II A+ az") (P
3=111=1

for some unique k;;, 0 <k, ; < p™ with at least one of kv, 1 1 < f,
relatively prime to p.

Proof. Since w is constant on cosets of P¥*' it suffices to consider
xz mod P"*', For any xe1 + P, the numbers a, ;, n;, v; are determined
as in Lemma 3.1 so that (*) holds. Clearly w will be completely
determined by its values on {1 + a;z"},1<¢<f,1<j=<N, and
the range of w is contained in the »* power roots of unity.

The definition of m; as the smallest integer greater than or equal
to log, (N + 1)/n; makes m; the smallest integer such that

(1 + azm)miel + PV

Thus (w1 + az"))*™i =1, and w(l + az")) = Bk for some unique
ki;, 0 =<k,; <p™. Thus w has the form required. The remainder
of the theorem follows easily from the fact that g, is a p™¥™ root
of unity and @ must be nontrivial on P”.

From Proposition 9 of Chapter II, §3 of [11], we have:
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PROPOSITION. Let K be a d-dimensional extension of Q,. Then
there is an integer m = 0 such that 1 + P, as a multiplicative group
18 1somorphic to the additive group Z° X Fym, where m is the largest
integer such that K contains a primitive p™™ root of unity. For
proof see [11].

Let {u,}{-, be those elements of 1 + P which map to the vectors
with 1 in the 7'" coordinate and zeros elsewhere by the isomorphism
in the proposition. Let u,,, be a primitive p™ power root of unity
in K of maximal order, say p™. Then any xe1 4+ P is given uniquely
by » = [[%!u%, where a;€ Z,,1 <1 =<d and a,.€ Z, 0 < ay, < P".

LEmmA 3.3. Let K be a d-dimensional extension of Q,. Then
gtven nonnegative integers k,1 <1 <d, each xe¢l+ PC K has a
representation as

d
® = ugii IT uriult ,  where

i=1
b.e Z, with |b;|,, < p™" and n; is a nonnegative integer. If m; is
picked to be as small as possible, this representation s unique.

Proof. The proof is direct from the above proposition and the
density of Z* in Z,.

Given Ne Z*, define, for 1 <t <d + 1, & to be the smallest
integer such that w?iel + P¥* and B, to be a fixed primitive ph*
root of 1eC. With this notation we have the following:

THEOREM 3.2. Let K be a local field of characteristic 0 and ®
o character of 1+ PC K ramified of degree N + 1. Then for
xel+ P, w is given for some unique k;, 0 <k, <pr,1<isd+1,
by

d d
w(@) = I[ Bl R for o = [T ul'uiuzil",
=1 =1
where for 1 <1 =d, b€ Z, with [b;|,, <p™" and n,€ Z".

Proof. The density of Z in Z, shows that an (additive) character
of Z, is determined by its value at 1. Thus a (multiplicative)
character 1 + P will be determined by its values at the u,1 <1 =
d+ 1. Here w(u;)": =1 since u?ic1+ P and  is ramifield of

degree N + 1. Thus w(u;) = 8% for some (unique) %;, 0 < k, < ph.

This characterization of the character group of K depends on
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the p™ roots of unity in K. Since K is a finite dimensional extension
of Q,, we look for a relationship between the degree d of K over
@, and the existence of p™ roots of unity in K.

TREOREM 3.3. Let K be a local field of characteristic 0. If K
1s the p-adic field Q, for some prime p # 2, then K has no nontrivial
o™ roots of unity. If K is an extension of Q,, p #* 2, let the degree
of ramification (see [11]) of K over Q, be e; then,

(a) K has mo p™ roots of 1 ¢f (p — 1) does not divide e,

(b) K may or may not have p™ roots of 1 if p — 1 divides e.

Proof. For the proof of (a) see [2]. Part (b) follows from [2]
and the fact that the extension of Q, by a root of «** — p is fully
ramified of degree » — 1 and has no p* roots of unity.

LEMMA 4.1. Let w be a homogeneous degree zero multiplicative
character of K*, ramified of degree k> 0. Then  is a kernel for
a singular integral operator. The multiplier m for the singular
integral operator T with kernel @ satisfies

m(z) = o(—1)(w)o(z) .
Proof. The operator T is defined for fe 5,1 <p < = by

i@ =lim| 2D (@ — iy .
e e 1Y

Theorem 3.1 of [7] gives sufficient conditions on the kernel w
for the limit to exist (in &4;). That ® satisfies those conditions is
easily verified. Then from [7] we know 7T is bounded on &, 1 <
» < e and weak type (1, 1).

The remainder of the lemma is done by Chao [1] for the case w
ramified of degree 1. The same proof establishes the result stated
here.

Note. Chao [1] uses Theorem 4 of [8] to establish the conclusion
of Lemma 4.1 for the case w ramified of degree 1. However, he fails
to compensate for the fact that he defines the Fourier transform as
herein, i.e., F f(y) = S F@)y(xy)de, while in [8] it is defined as
Sf (x)x(xy)dx. Thus the result of [1] which corresponds to the
conclusion of Lemma 4.4 above does not contain the necessary factor
of w(—1).

With notation as in Theorem 3.1, we define rotation operators
S; ; for functions on a p-series field as follows:
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Syof (@) = f(g) ,

where g is a fixed primitive (¢ — 1)** root of unity in K; and
S.;f (@) = f(A + a,x")x)

forisisf,5=1.

Given N we determine B;,1 < j < n as in Theorem 3.1, and let
Be be a (¢ — 1)*° root of unity in C. Also as in that theorem, note
that given N the choice of integers %, ;, 0 <k, ; <p™,1<i< f,
1 < j £ N determines a character of 1 + P. If we also pick a %,
0=k,<gqg—1, and set w(g) = B* 0, then the set {k,;} determines
character of D°. That character will be called the character deter-
mined by {k;;}. As it may be used as a kernel for a singular integral
operator, that operator will be identified as the one determined by
{k: s}

We can how state

THEOREM 4.1. Let K be a p-series field and L a continuous linear
operator from F(K) to LK) which satisfies

(a) & commutes with translation and dilation,

(b) there is some N = 0 such that the multiplier corresponding
to L is constant on cosets of P ',

(c) L anti-commutes with the rotations S;; 1=t f,1<j=<N,
and S,, in the sense that

LSi,j = Bfki’js,;’jL ’

for some k; ;. Then L is a constant multiple of the singular integral
operator determined by {k; ;}.

Before proving Theorem 4.1, we consider the p-adic case. Let
u,1 <1 <d+1 be as in Theorem 3.2, and let u, = g, the fixed
(@ — 1)** root of 1€ K. In this case we define rotation operators as:
Sf@)=fux),0<1<d+ 1. Given N, we determine B, 0 <17 =
d+ 1 by: B, is a primitive (¢ — 1)** root of 1€C; B, 1<t =d + 1,
is a primitive p**® root of 1€ C, where [, is the smallest integer such
that u?iel + P+, Also, for each ¢ we consider integers k; such
that 0=k <q—1,0=Zk, <o, 1 <0< d+ 1.

By Theorem 3.2 and the fact that D° = M*x(1 + P), the set {k}i;
determines a unique character of D" by w(u;) = B%. The character
o will be called the character determined by the {k;}. It is clearly
constant on 1 + PV*,

THEOREM 4.2. Let K be a local field of characteristic 0, and
let L be a continuous linear operator from £(K) to £(K) which
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satisfies

(a) L commutes with translation and dilation,

(b) there is some N such that the multiplier for L is constant
on cosets of P,

(¢) L anti-commutes with the rotations S, 0=i=d+1 in
the semse that

Then L is a constant multiple of the singular integral transform
determined by the {k;}. The proof of Theorems 4.1 and 4.2 will utilize
the following Lemma.

LeMMA 4.2. Let K be a local field. If characteristic K =0, let
L satisfy the hypothesis of Theorem 4.2. If characteristic K = p # 0,
let L satisfy the hypothesis of Theorem 4.1. Then for fe_Z L is
given by convolution with a unique distribution ft, homogeneous of
degree w/|-|, where @ is the character of D' determined the {k,;} or
{k;} in the characteristic p = 0 and characteristic 0 case, respectively.

Proof. Since L is a bounded linear operator from & to &3
which commutes with translation, by Theorem 9 of [10], it is given,
on _# by convolution with a unique distribution #. We need only
to show g homogeneous of degree vy, where v(z) = o(z)/|z|, x # 0.

There is a function m in <Z.(K) so that for f e #(K), (Lf )":ﬂzf.
For fe_g fe_g thus mf e F(K) since me £(K). Then Lf =(mf)"
is continuous since it is the inverse Fourier transform of an &
function.

Let vel + P¥, Then v ‘el + P¥", and, since m is constant
on cosets of P¥*', we have:

Lz f) (@) = m(z, ) (x) = m(@)F (7 )
= m(2)f(vz) = T;‘mf(x) .

Thus
Lt,f =7, Lf in %.

Fix te K*. By (a) and (c) of Theorems 4.1 and 4.2 and the above
equality, we have:

Lr,f = w'(@)c, Lf in &
and

Lz, f(x) = o™ '), Lf(x) a.e.
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But since both Lz.f and z.Lf are continuous, we have the above
equality everywhere.

For fe_Jg
7, f(0) = 07O x ) 0)
and
(&, ©of) = 07 @), ) -
Thus
(¢ ) = (1, [ t]7'T1f)
= [t (¢, T1f)
= 9]%) (1, F) = ¥(t)(et, f) -

Since this holds for all fe_Z p, = v(t)p.
Now we are ready for the

Proof of Theorems 4.1 and 4.2. By Lemma 4.2 for fe_Z
Lf = pxf, where ¢ is homogeneous of degree w/|-|. But by Lemma
5 of [8], the only distributions which are homogeneous of degree o,
o multiplicative character of K* such that o(x) is not identically
2|, are constant multiples of o. Thus ¢ =cw/|-|, and Lf =
(co)/() - D=f, fe_# Thus, on the test functions, a dense subset of
4, L agrees with L', the singular integral operator defined by

L'f(x)=c¢c S (w¥)/(|y )f(x — y)dy. But since L and L’ are continuous,
L=L on &4

5. Example. The conclusions of Theorems 4.1 and 4.2 may be
obtained by direct calculation. We indicate the method in the case
¢ =38 and w ramified of degree 1. Here M* = {1, —1} and ® will
assume only the values 1. [This is the “exact” analog of the
Hilbert transform for the reals.]

Let H be the singular integral operator with ® as kernel. Both
theorems then have the form: Theorem: Let K be local field with
module ¢ =8 and L be a continuous operator on Z5(K) which
satisfies:

(a) L commutes with translation and dilation;

(b) the multiplier, m, for L is constant on 1 + P;

(¢) L anti-commutes with the rotation z_, by Lz_, = —7_,L.
Then L is a constant multiple of H.

Proof. From the relation (Lf)" = mf it follows as in the real
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case (see [9]) that m(—x) = —m(x). Since any x € K* may be written
= xm1 + p,), 0, € P, m(x) = xm(l) = o (x)m(l). The theorem
then follows from Lemma 4.1.

Lemma 4.1 may also be shown directly. For the case above we
may even evaluate the multiplier m, explicitly. Taking the funda-
mental character X to be that given in [1] (a variation of that given
in [6]), and the form of m, from [7], we obtain m,(x) = (3)/(V 3 )@(x).
As in [1], a similar easy calculation gives I'(w) = —i/1” 3, exempli-
fying Lemma 4.1. In further analogy with the real case, it is apparent
from the multiplier that H* = —(1/3)1.
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