CLASSIFICATION OF SINGULAR INTEGRALS OVER A LOCAL FIELD

Charles Downey

Abstract

The singular integral operators over a local field K whose kernels are multiplicative characters of the unit sphere of K are shown to be precisely those continuous operators on $\mathscr{L}_{2}(K)$ which commute with translation and dilation, anticommute with an appropriately defined rotation, and whose multipliers satisfy a smoothness condition. The characterization is analogous to that of the Hilbert transform over the real numbers.

1. Classically, the Hilbert transform over R is, up to a constant multiple, the only continuous operator on $\mathscr{L}_{2}(\boldsymbol{R})$ which commutes with translation and (positive) dilation and anti-commutes with reflection. See [9], page 55. The Hilbert transform is a singular integral operator with kernel the only (nontrivial) multiplicative character of the unit sphere of \boldsymbol{R}.

Singular integrals over a local field have been developed. (See, for example, Phillips [6], Phillips-Taibleson [7], and Chao [1].) Those with kernel a multiplicative character of the unit sphere satisfy a classification similar to that of the classical Hilbert transform.

The classification theorem is in §4. The main results are Theorems 4.1 and 4.2. Section 3 contains the necessary results regarding the character group of the unit sphere of a local field; §2 contains other preliminary results, notation, and definitions.
2. Let $Z, Z^{+}, \boldsymbol{Q}, \boldsymbol{R}$, and \boldsymbol{C} denote the integers, the positive integers, the rational number, the real numbers, and the complex numbers, respectively. $F_{p^{n}}$ will denote the (unique) field with p^{n} elements. The symbols \boldsymbol{Q}_{p} and Z_{p} will denote the p-adic numbers and the p-adic integers, respectively. For any set S, ξ_{S} will denote the characteristic function of S. The complement of S will be written S_{c}.

The necessary analysis on local fields is stated without proof below. Most of it may be found in Chapters I and II of Weil [11].

A local field is a nondiscrete, locally compact, zero-dimensional topological (commutative) field. These have been completely classified. Those of characteristic $p \neq 0$ can be identified as the fields of formal power series over a finite field. Those of characteristic 0 are either the p-adic numbers of finite extensions of the p-adic numbers. See [11], page 11.

Let K be a local field with λ Haar measure for $(K,+)$. The modular function for $K,|\cdot|$, is given by $|x|=\lambda(x S) / \lambda(S)$ for $0<$ $\lambda(S)<\infty$. Haar measure for the multiplicative group $K^{\times}=K \sim\{0\}$ is $\lambda /|\cdot|$.

Let R be the ring of integers of the local field K and P be the unique maximal ideal of R. Then ord $(R / P)=q$, the module of K, a prime power. The ideal P has a generator π, so that $\pi R=P$. We have $|\pi|=q^{-1}$, and, in fact, any $x \in K$ with $|x|=q^{-1}$ will generate P. Those elements of modulus q^{-1} will be called primes in K.

For $n \in Z$ we define

$$
P^{n}=\left\{x \in K:|x| \leqq q^{-n}\right\} ; D^{n}=\left\{x \in K:|x|=q^{-n}\right\} .
$$

Then $P^{1}=P, P^{0}=R$, and $R \sim P=D^{0}$. The set $\left\{P^{n}\right\}_{n=0}^{\infty}$ is a neighborhood base at 0 of open and closed subgroups of $(K,+)$. The set $\left\{1+P^{n}\right\}_{n=1}^{\infty}$ is a neighborhood base at 1 of open and closed subgroups for the topological group ($\left.K^{\times}, \cdot\right)$.

We define the operators τ_{δ} for $\delta \neq 0$ on functions by $\tau_{\delta} f(x)=f(\delta x)$. Regarding the prime π as fixed, we single out a set of such operators, the dilation operators, \mathscr{D}_{j}, defined by $\mathscr{D}_{j} f(x)=f\left(\pi^{j} x\right) j \in Z$. A function f is homogeneous degree zero if $\mathscr{D}_{j} f=f$ for all $j \in Z$. For $x \in K$, translation operators T_{x} are defined on functions by $T_{x} f(y)=$ $f(x+y)$.

There is a character χ of the additive group of K which is identically one on R and nontrivial on P^{-1}. Then for any $y \in K$, $\chi_{y}(x)=\chi(x y)$ defines a character of K. In fact, the mapping $y \rightarrow \chi_{y}$ is a topological isomorphism of $(K,+)$ onto its dual. We thus identify K with its dual.

The Fourier transform for K is initially defined on $\mathscr{L}_{1}(K)$ by

$$
\mathscr{F} f(x)=\widehat{f}(x)=\int_{K} f(y) \overline{\chi(x y)} d y .
$$

[The integral is taken with respect to λ. Here and elsewhere the λ will be suppressed.] The transform \mathscr{F}^{-1} is defined by $\mathscr{F}^{-1} f(x)=$ $\check{f}(x)=\int_{K} f(y) \chi(x y) d y$. Both \mathscr{F} and \mathscr{F}^{-1} extend uniquely to \mathscr{L}_{2}. It is easy to see that, as \mathscr{L}_{2} operators, $\tau_{\dot{\delta} \mathcal{F}}=|\delta|^{-1} \mathscr{F}^{\boldsymbol{F}} \tau_{\dot{\delta}-1}$ and $\tau_{\dot{\delta}} \mathscr{F}^{-1}=|\delta|^{-1} \mathscr{F}^{-1} \tau_{\dot{\dot{j}}}-1$.

The following result will be used extensively in the sequel: Let L be a continuous linear operator from $\mathscr{L}_{2}(K)$ to $\mathscr{L}_{2}(K)$. Then a necessary and sufficient condition that L commute with translation is that there exist a function m, in $\mathscr{L}_{\infty}(K)$, such that $\mathscr{F}(L f)=m \mathscr{F} f$ for all $f \in \mathscr{L}_{2}(K)$. See [5], pp. 92-94.

The space \mathscr{J} of test functions on K and its topological dual \mathscr{J}^{\prime}, the space of distributions, are defined as in [8]. Both are
complete linear spaces. The action of a $\mu \in \mathcal{J}^{\prime}$ on an $f \in \mathscr{J}$ will be denoted (μ, f).

The space \mathscr{J} is contained densely in $\mathscr{L}_{p}, 1 \leqq p<\infty$. The Fourier transform is thus will-defined on \mathscr{J}. The Fourier transform on \mathcal{J}^{\prime} is given by $(\hat{\mu}, f)=(\mu, \widehat{f})$. Thus defined, the Fourier transform is a linear topological isomorphism on both \mathscr{J} and \mathcal{J}^{\prime}.

Functions and measures will be identified with the distributions they induce. Convolution of a distribution and a test function is defined by $\mu * f(x)=\left(\mu, T_{x} \widetilde{f}\right)$, where $\widetilde{f}(x)=f(-x)$.

Let $\mu \in \mathcal{J}^{\prime}$, and let σ be a (not necessarily unitary) multiplicative character of $K^{\times}(=K \sim\{0\})$. Then, as in [8], we say μ is homogeneous of degree σ if for all $t \in K^{\times}, \mu_{t}=\sigma(t) \mu$, where μ_{t} is that distribution defined by $\left(\mu_{t}, \phi\right)=\left(\mu,|t|^{-1} \tau_{t^{-1}} \phi\right)$.

We take M to be $M^{\times} \cup\{0\}$, where M^{\times}is the group of roots of unity in K of order prime to p. Then M^{\times}is the unique cyclic group of order $q-1$ ([11], p. 16). Let g be a generator of M^{\times}. Then each $0 \neq x \in K$ may be written uniquely as $x=\pi^{j} g^{k}\left(1+p_{x}\right)$, where $k, j \in Z, 0 \leqq k \leqq q-2, p_{x} \in P$. A multiplicative character of K^{\times}is given by its values at π, g, and on $1+P$.

Let ω be a multiplicative character of K^{\times}. There is some $n \in Z$ such that ω is trivial on $1+P^{n}$. If ω is trivial on $1+P^{n}$ but not on $1+P^{n-1}, n \geqq 1$, we say ω is ramified of degree n. If ω is trivial on D^{0}, we say ω is unramified. Given a character ω of $1+P, \omega$ is the restriction of a character of K^{\times}, say ω^{\prime}. The ramification degree of ω^{\prime} depends only on ω, and we define the ramification degree of ω to be that of ω^{\prime}.

We define the local field gamma function on ramified characters of K^{\times}by

$$
\Gamma(\omega)=\mathrm{p} \cdot \mathrm{v} \cdot \int_{K} \frac{\chi(x) \omega(x) d x}{|x|}
$$

where

$$
\text { p.v. } \int_{K} f(x) d x=\lim _{n \rightarrow \infty} \int_{P^{-1} \cap\left(P^{+n) c}\right.} f(x) d x
$$

See [8] for details and further definition of Γ.
3. Lemma 3.1. Let K be a local field of characteristic $p \neq 0$ with module $q=p^{f}$. Let $\left\{\alpha_{i}, \cdots, \alpha_{f}\right\}$ be a basis for F_{q} over F_{p}. Then given $x \in P$ and $N \in Z^{+}$,
(a) there are unique integers $a_{i, j}, n_{j}, \nu_{j}$, with $0 \leqq a_{i, j}<p$, $\left(n_{j}, p\right)=1$ for $1 \leqq i \leqq f, 1 \leqq j \leqq N$, such that $1+x=\prod_{j=1}^{N} \prod_{i=1}^{f}(1+$ $\left.\alpha_{i} \pi^{n_{j}}\right)^{a_{i} ; p^{\nu}{ }_{j}}\left(p^{N+1}\right)$, and
(b) $1+x \in\left(1+P^{N}\right) \sim\left(1+P^{v+1}\right)$ if and only if $a_{i, j}=0$ for $1 \leqq i \leqq f, 1 \leqq j \leqq N$ and at least one of the $a_{i, N} \neq 0,1 \leqq i \leqq f$.

Proof. The proof is similar to that of Proposition 10, page 34 of [11], and is omitted.

Given $N \in Z^{+}$we establish the following notation to be used in the following lemma and theorem. For each $j, 1 \leqq j \leqq N$, write $j=n_{i} P^{\nu j}$, where ($\left.n_{j}, p\right)=1$; define m_{j} as the smallest integer such that $m_{j} \geqq \log _{p}\left((N+1) / n_{j}\right)$ then define β_{j} as a primitive $p^{m_{j} \text { th }}$ root of 1 in C.

Lemma 3.2. With the above notation, $m_{N}=\nu_{N}+1$.
Proof. The proof is a direct computation and is omitted.
Theorem 3.1. Let K be a local field of characteristic $p \neq 0$ and ω a character of $1+P \subset K$ ramifield degree $N+1$. Then for $x \in 1+P, \omega$ is given by

$$
\omega(x)=\prod_{j=1}^{v} \prod_{i=1}^{f} \beta_{j}^{k_{i}^{k}, j_{i} \alpha_{i}, j \nu_{j}^{\nu}},
$$

where

$$
\begin{equation*}
x \equiv \prod_{j=1}^{N} \prod_{i=1}^{f}\left(1+\alpha_{i} \pi^{n_{j}}\right)^{a_{i, j}, p^{\nu} j}\left(P^{v+1}\right) \tag{*}
\end{equation*}
$$

for some unique $k_{i, j}, 0 \leqq k_{i, j}<p^{m_{j}}$ with at least one of $k_{i, n}, 1 \leqq i \leqq f$, relatively prime to p.

Proof. Since ω is constant on cosets of P^{N+1} it suffices to consider $x \bmod P^{N+1}$. For any $x \in 1+P$, the numbers $a_{i, j}, n_{j}, \nu_{j}$ are determined as in Lemma 3.1 so that (*) holds. Clearly ω will be completely determined by its values on $\left\{1+\alpha_{i} \pi^{n i}\right\}, 1 \leqq i \leqq f, 1 \leqq j \leqq N$, and the range of ω is contained in the $p^{\text {th }}$ power roots of unity.

The definition of m_{j} as the smallest integer greater than or equal to $\log _{p}(N+1) / n_{j}$ makes m_{j} the smallest integer such that

$$
\left(1+\alpha_{i} \pi^{n_{j}}\right)^{p m_{i}} \in 1+P^{N+1} .
$$

Thus $\left(\omega\left(1+\alpha_{i} \pi^{n_{j}}\right)\right)^{p m_{j}}=1$, and $\omega\left(1+\alpha_{i} \pi^{n_{j}}\right)=\beta_{j}^{k_{i, j}}$ for some unique $k_{i, j}, 0 \leqq k_{i, j}<p^{m}$. Thus ω has the form required. The remainder of the theorem follows easily from the fact that β_{N} is a $p^{m_{N}{ }^{\text {th }}}$ root of unity and ω must be nontrivial on P^{N}.

From Proposition 9 of Chapter II, § 3 of [11], we have:

Proposition. Let K be a d-dimensional extension of \boldsymbol{Q}_{p}. Then there is an integer $m \geqq 0$ such that $1+P$, as a multiplicative group is isomorphic to the additive group $Z_{p}^{d} \times F_{p^{m}}$, where m is the largest integer such that K contains a primitive $p^{m \text { th }}$ root of unity. For proof see [11].

Let $\left\{u_{2}\right\}_{i=1}^{d}$ be those elements of $1+P$ which map to the vectors with 1 in the $i^{\text {th }}$ coordinate and zeros elsewhere by the isomorphism in the proposition. Let u_{d+1} be a primitive $p^{\text {th }}$ power root of unity in K of maximal order, say p^{m}. Then any $x \in 1+P$ is given uniquely by $x=\prod_{\imath=1}^{d+1} u_{\imath}^{a_{i}}$, where $a_{i} \in Z_{p}, 1 \leqq i \leqq d$ and $a_{d+1} \in Z, 0 \leqq a_{d+1}<p^{m}$.

Lemma 3.3. Let K be a d-dimensional extension of \boldsymbol{Q}_{p}. Then given nonnegative integers $k_{i}, 1 \leqq i \leqq d$, each $x \in 1+P \subset K$ has a representation as

$$
x=u_{d+1}^{a_{d+1}} \prod_{i=1}^{d} u_{\imath}^{n_{i}} u_{\imath}^{b_{i}}, \quad \text { where }
$$

$b_{i} \in Z_{p}$ with $\left|b_{i}\right|_{Z_{p}}<p^{-k_{i}}$ and n_{i} is a nonnegative integer. If n_{i} is picked to be as small as possible, this representation is unique.

Proof. The proof is direct from the above proposition and the density of Z^{+}in Z_{p}.

Given $N \in Z^{+}$, define, for $1 \leqq i \leqq d+1, \mathscr{L}_{1}$ to be the smallest integer such that $u_{i}^{p_{i}^{l}} \in 1+P^{N+1}$ and β_{i} to be a fixed primitive $p^{l_{i} \text { th }}$ root of $1 \in \boldsymbol{C}$. With this notation we have the following:

Theorem 3.2. Let K be a local field of characteristic 0 and ω a character of $1+P \subset K$ ramified of degree $N+1$. Then for $x \in 1+P$, ω is given for some unique $k_{i}, 0 \leqq k_{i}<p^{l_{2}}, 1 \leqq i \leqq d+1$, by

$$
\omega(x)=\prod_{\imath=1}^{d} \beta_{i}^{k_{i} n_{i}} \beta_{d+1}^{k_{d+1} a_{d+1}} \text { for } x=\prod_{i=1}^{d} u_{\imath}^{n_{i}} u_{i}^{b_{i}} u_{d+1}^{a_{d+1}}
$$

where for $1 \leqq i \leqq d, b_{i} \in Z_{p}$ with $\left|b_{i}\right|_{z_{p}}<p^{-l_{i}}$ and $n_{i} \in Z^{+}$.
Proof. The density of Z in Z_{p} shows that an (additive) character of Z_{p} is determined by its value at 1 . Thus a (multiplicative) character $1+P$ will be determined by its values at the $u_{i}, 1 \leqq i \leqq$ $d+1$. Here $\omega\left(u_{i}\right)^{p^{l} i_{i}}=1$ since $u_{i}^{p_{i}{ }_{i}} \subset 1+P^{N+1}$ and ω is ramifield of degree $N+1$. Thus $\omega\left(u_{i}\right)=\beta_{i}^{k_{i}}$ for some (unique) $k_{i}, 0 \leqq k_{i}<p^{l_{i}}$.

This characterization of the character group of K depends on
the $p^{\text {th }}$ roots of unity in K. Since K is a finite dimensional extension of \boldsymbol{Q}_{p}, we look for a relationship between the degree d of K over \boldsymbol{Q}_{p} and the existence of $p^{\text {th }}$ roots of unity in K.

Theorem 3.3. Let K be a local field of characteristic 0. If K is the p-adic field \boldsymbol{Q}_{p} for some prime $p \neq 2$, then K has no nontrivial $p^{\text {th }}$ roots of unity. If K is an extension of $\boldsymbol{Q}_{p}, p \neq 2$, let the degree of ramification (see [11]) of K over \boldsymbol{Q}_{p} be e; then,
(a) K has no $p^{\text {th }}$ roots of 1 if $(p-1)$ does not divide e,
(b) K may or may not have $p^{\text {th }}$ roots of 1 if $p-1$ divides e.

Proof. For the proof of (a) see [2]. Part (b) follows from [2] and the fact that the extension of \boldsymbol{Q}_{p} by a root of $x^{p-1}-p$ is fully ramified of degree $p-1$ and has no $p^{\text {th }}$ roots of unity.

Lemma 4.1. Let ω be a homogeneous degree zero multiplicative character of K^{x}, ramified of degree $k>0$. Then ω is a kernel for a singular integral operator. The multiplier m for the singular integral operator T with kernel ω satisfies

$$
m(x)=\omega(-1) \Gamma(\omega) \omega^{-1}(x)
$$

Proof. The operator T is defined for $f \in \mathscr{L}_{p}, 1 \leqq p<\infty$ by

$$
T f(x)=\lim _{k \rightarrow \infty} \int_{\left(P^{k}\right)^{c} c} \frac{\omega(y)}{|y|}(f(x-y) d y
$$

Theorem 3.1 of [7] gives sufficient conditions on the kernel ω for the limit to exist (in \mathscr{L}_{p}). That ω satisfies those conditions is easily verified. Then from [7] we know T is bounded on $\mathscr{L}_{p}, 1<$ $p<\infty$ and weak type (1,1).

The remainder of the lemma is done by Chao [1] for the case ω ramified of degree 1. The same proof establishes the result stated here.

Note. Chao [1] uses Theorem 4 of [8] to establish the conclusion of Lemma 4.1 for the case ω ramified of degree 1. However, he fails to compensate for the fact that he defines the Fourier transform as herein, i.e., $\mathscr{F} f(y)=\int f(x) \overline{\chi(x y)} d x$, while in [8] it is defined as $\int f(x) \chi(x y) d x$. Thus the result of [1] which corresponds to the conclusion of Lemma 4.4 above does not contain the necessary factor of $\omega(-1)$.

With notation as in Theorem 3.1, we define rotation operators $S_{i, j}$ for functions on a p-series field as follows:

$$
S_{1,0} f(x)=f(g x),
$$

where g is a fixed primitive $(q-1)^{\text {st }}$ root of unity in K; and

$$
S_{i, j} f(x)=f\left(\left(1+\alpha_{i} \pi^{n j}\right) x\right)
$$

for $1 \leqq i \leqq f, j \geqq 1$.
Given N we determine $\beta_{j}, 1 \leqq j \leqq n$ as in Theorem 3.1, and let β_{0} be a $(q-1)^{\text {st }}$ root of unity in C. Also as in that theorem, note that given N the choice of integers $k_{i, j}, 0 \leqq k_{i, j}<p^{m_{j}}, 1 \leqq i \leqq f$, $1 \leqq j \leqq N$ determines a character of $1+P$. If we also pick a $k_{1,0}$, $0 \leqq k_{1,0}<q-1$, and set $\omega(g)=\beta^{k_{1} 0}$, then the set $\left\{k_{i, j}\right\}$ determines character of D^{0}. That character will be called the character determined by $\left\{k_{i, j}\right\}$. As it may be used as a kernel for a singular integral operator, that operator will be identified as the one determined by $\left\{k_{i, j}\right\}$.

We can how state
Theorem 4.1. Let K be a p-series field and L a continuous linear operator from $\mathscr{L}_{2}(K)$ to $\mathscr{L}_{2}(K)$ which satisfies
(a) \mathscr{L} commutes with translation and dilation,
(b) there is some $N \geqq 0$ such that the multiplier corresponding to L is constant on cosets of P^{N+1},
(c) L anti-commutes with the rotations $S_{i, j}, 1 \leqq i \leqq f, 1 \leqq j \leqq N$, and $S_{1,0}$ in the sense that

$$
L S_{i, j}=\beta_{j}^{-k_{i, j}} S_{i, j} L
$$

for some $k_{i, j}$. Then L is a constant multiple of the singular integral operator determined by $\left\{k_{i, j}\right\}$.

Before proving Theorem 4.1, we consider the p-adic case. Let $u_{i}, 1 \leqq i \leqq d+1$ be as in Theorem 3.2, and let $u_{0}=g$, the fixed $(q-1)^{\text {st }}$ root of $1 \in K$. In this case we define rotation operators as: $S_{i} f(x)=f\left(u_{i} x\right), 0 \leqq i \leqq d+1$. Given N, we determine $\beta_{i}, 0 \leqq i \leqq$ $d+1$ by: β_{0} is a primitive $(q-1)^{\text {st }}$ root of $1 \in \boldsymbol{C} ; \beta_{i}, 1 \leqq i \leqq d+1$, is a primitive $p^{l_{i} \text { th }}$ root of $1 \in \boldsymbol{C}$, where l_{i} is the smallest integer such that $u_{i}^{p_{i}} \in 1+P^{N+1}$. Also, for each i we consider integers k_{i} such that $0 \leqq k_{0}<q-1,0 \leqq k_{i}<p^{l_{i}}, 1 \leqq i \leqq d+1$.

By Theorem 3.2 and the fact that $D^{0}=M^{\times} x(1+P)$, the set $\left\{k_{i}\right\}_{i=0}^{d+1}$ determines a unique character of D^{0} by $\omega\left(u_{i}\right)=\beta_{\imath}^{k_{i}}$. The character ω will be called the character determined by the $\left\{k_{i}\right\}$. It is clearly constant on $1+P^{N+1}$.

THEOREM 4.2. Let K be a local field of characteristic 0, and let L be a continuous linear operator from $\mathscr{L}_{2}(K)$ to $\mathscr{L}_{2}(K)$ which
satisfies
(a) L commutes with translation and dilation,
(b) there is some N such that the multiplier for L is constant on cosets of P^{N+1},
(c) L anti-commutes with the rotations $S_{i}, 0 \leqq i \leqq d+1$ in the sense that

$$
L S_{i}=\beta_{i}^{-k_{i}} S_{i} L
$$

Then L is a constant multiple of the singular integral transform determined by the $\left\{k_{i}\right\}$. The proof of Theorems 4.1 and 4.2 will utilize the following Lemma.

Lemma 4.2. Let K be a local field. If characteristic $K=0$, let L satisfy the hypothesis of Theorem 4.2. If characteristic $K=p \neq 0$, let L satisfy the hypothesis of Theorem 4.1. Then for $f \in \mathscr{J}, L$ is given by convolution with a unique distribution μ, homogeneous of degree $\omega /|\cdot|$, where ω is the character of D^{0} determined the $\left\{k_{i, j}\right\}$ or $\left\{k_{i}\right\}$ in the characteristic $p \neq 0$ and characteristic 0 case, respectively.

Proof. Since L is a bounded linear operator from \mathscr{L}_{2} to \mathscr{L}_{2} which commutes with translation, by Theorem 9 of [10], it is given, on \mathcal{F}, by convolution with a unique distribution μ. We need only to show μ homogeneous of degree ν, where $\nu(x)=\omega(x) /|x|, x \neq 0$.

There is a function m in $\mathscr{L}_{\infty}(K)$ so that for $f \in \mathscr{L}_{2}(K),(L f)^{\wedge}=m \hat{f}$. For $f \in \mathscr{J}, \hat{f} \in \mathscr{F}$, thus $m \hat{f} \in \mathscr{L}_{1}(K)$ since $m \in \mathscr{L}_{\infty}(K)$. Then $L f=(m \hat{f})^{\vee}$ is continuous since it is the inverse Fourier transform of an \mathscr{L}_{1} function.

Let $\gamma \in 1+P^{N+1}$. Then $\gamma^{-1} \in 1+P^{v+1}$, and, since m is constant on cosets of P^{N+1}, we have:

$$
\begin{aligned}
\left(L \tau_{r} f\right)^{\wedge}(x) & =m\left(\tau_{r} f\right)^{\wedge}(x)=m(x) \hat{f}\left(\gamma^{-1} x\right) \\
& =m\left(\gamma^{-1} x\right) \hat{f}\left(\gamma^{-1} x\right)=\tau_{r}^{-1} m \hat{f}(x) .
\end{aligned}
$$

Thus

$$
L \tau_{r} f=\tau_{\gamma} L f \quad \text { in } \quad \mathscr{L}_{2}
$$

Fix $t \in K^{\times} . \quad$ By (a) and (c) of Theorems 4.1 and 4.2 and the above equality, we have:

$$
L \tau_{t} f=\omega^{-1}(t) \tau_{t} L f \quad \text { in } \quad \mathscr{L}_{2}
$$

and

$$
L \tau_{t} f(x)=\omega^{-1}(t) \tau_{t} L f(x) \quad \text { a.e. }
$$

But since both $L \tau_{t} f$ and $\tau_{t} L f$ are continuous, we have the above equality everywhere.

For $f \in \mathscr{J}$,

$$
\mu * \tau_{t} f(0)=\omega^{-1}(t)(\mu * f)(t \cdot 0)
$$

and

$$
\left(\mu, \tau_{t} \tilde{f}\right)=\omega^{-1}(t)(\mu, \tilde{f})
$$

Thus

$$
\begin{aligned}
\left(\mu_{t}, f\right) & =\left(\mu,|t|^{-1} \tau_{t^{-1}} f\right) \\
& =|t|^{-1}\left(\mu, \tau_{t^{-1}} f\right) \\
& =\frac{\omega(t)}{|t|}(\mu, f)=\nu(t)(\mu, f)
\end{aligned}
$$

Since this holds for all $f \in \mathscr{J}, \mu_{t}=\nu(t) \mu$.
Now we are ready for the
Proof of Theorems 4.1 and 4.2. By Lemma 4.2 for $f \in \mathscr{J}$, $L f=\mu * f$, where μ is homogeneous of degree $\omega / \| \cdot \mid$. But by Lemma 5 of [8], the only distributions which are homogeneous of degree σ, σ multiplicative character of K^{\times}such that $\sigma(x)$ is not identically $|x|^{-1}$, are constant multiples of σ. Thus $\mu=c \omega \| \cdot \mid$, and $L f=$ $(c \omega) /(\} \cdot\{) * f, f \in \mathscr{F}$. Thus, on the test functions, a dense subset of \mathscr{L}_{2}, L agrees with L^{\prime}, the singular integral operator defined by $L^{\prime} f(x)=c \int(\omega(y)) /(|y|) f(x-y) d y$. But since L and L^{\prime} are continuous, $L=L^{\prime}$ on \mathscr{L}_{2}.
5. Example. The conclusions of Theorems 4.1 and 4.2 may be obtained by direct calculation. We indicate the method in the case $q=3$ and ω ramified of degree 1 . Here $M^{\times}=\{1,-1\}$ and ω will assume only the values ± 1. [This is the "exact" analog of the Hilbert transform for the reals.]

Let H be the singular integral operator with ω as kernel. Both theorems then have the form: Theorem: Let K be local field with module $q=3$ and L be a continuous operator on $\mathscr{L}_{2}(K)$ which satisfies:
(a) L commutes with translation and dilation;
(b) the multiplier, m, for L is constant on $1+P$;
(c) L anti-commutes with the rotation τ_{-1} by $L \tau_{-1}=-\tau_{-1} L$. Then L is a constant multiple of H.

Proof. From the relation $(L f)^{\wedge}=m \hat{f}$ it follows as in the real
case (see [9]) that $m(-x)=-m(x)$. Since any $x \in K^{\times}$may be written $x= \pm \pi^{j}\left(1+\rho_{x}\right), \rho_{x} \in P, m(x)= \pm m(1)=\omega^{-1}(x) m(1)$. The theorem then follows from Lemma 4.1.

Lemma 4.1 may also be shown directly. For the case above we may even evaluate the multiplier m_{H} explicitly. Taking the fundamental character χ to be that given in [1] (a variation of that given in [6]), and the form of m_{H} from [7], we obtain $m_{H}(x)=(i) /(\sqrt{3}) \omega(x)$. As in [1], a similar easy calculation gives $\Gamma(\omega)=-i / \sqrt{3}$, exemplifying Lemma 4.1. In further analogy with the real case, it is apparent from the multiplier that $H^{2}=-(1 / 3) I$.

References

1. J. A. Chao, H^{P}-spaces of conjugate systems on local fields, Stucka Math., 49 (1974), 267-287.
2. H. Hasse, Zalentheorie, Berlin Akademie-Verlag, 1963.
3. E. Hewitt and K. A. Ross, Abstract Harmonic Analysis II, Springer-Verlag, 1970.
4. P. J. McCarthy, Algebraic Extensions of Field, Blaisdell, 1966.
5. R. Larsen, An Introduction to the Theory of Multipliers, Springer-Verlag, 1971.
6. K. Phillips, Hilbert transforms for the p-adic and p-series fields, Pacific J. Math., 23 (1967), 329-347.
7. K. Phillips and M. H. Taibleson, Singular integrals in several variable over a local field, Ibid., 30 (1969), 209-231.
8. P. J. Sally and M. H. Taibleson, Special functions on locally compact fields, Acta Math., 116 (1966) 279-309.
9. E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, 1970.
10. M. H. Taibleson, Harmonic analysis on n-dimensional vector spaces over local fields. I, Math. Annalen, 176 (1968), 191-207.
11. A. Weil, Basic Number Theory, Springer-Verlag, 1967.

Received October 14, 1974 and in revised form April 12, 1975.
University of Nebraska at Omaha

