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NOTES ON STABLE CURRENTS

HIROSHI MORI

With additional assumptions we answer a conjecture pro-
posed by Lawson and Simons.

In a work [5], H. B. Lawson, Jr. and J. Simons proved that
there exist no stable rectifiable currents on an ^-dimensional unit
sphere Sn in the (n + l)-dimensional Euclidean space Rn+1. And con-
cerning to this fact, they conjectured as follows.

Conjecture. Let M be a compact, simply-connected Riemannian
manifold with the sectional curvature satisfying 1/4 < Kδ ^ 1 for all
tangent two planes σ. Then there exist no stable rectifiable currents
on M.

We obtain the following results with respect to this conjecture.
Let M be a compact, connected ^-dimensional Riemannian manifold

isometrically immersed in (n + l)-dimensional Euclidean space R*+1.
Let δ be a constant with 0 < δ ^ 1, and suppose that at each point
x of M, with respect to a suitable unit normal, every principal curva-
ture Xj of M satisfies

iζ xd ^ l

j = 1, . . - , n.

THEOREM. Let M be a compact, connected Riemannian manifold
satisfying the conditions expressed above. Associate to each S^—*
&P(M) a quadratic form Q^ on 7Γ as follows. For Ve T, let φt be
the flow generated by V and set

Then for all £f e

tr Qs, ^ p(p + 1 - nd -

(For definitions of 5^ and &P(M), see below.)

COROLLARY 1. Under the assumptions of the Theorem, for all
p with l<^p<nδ + δ — 1, any rectifiable p-current £f•-&P{M)
is not stable. If δ satisfies n/(n + 1) < δ ^ 1, then any rectifiable
p-current S^ e &P(M) is not stable for each p with 1 ^ p ^ n — 1.
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COROLLARY 2. Under the assumptions of the Theorem, if d
satisfies n/(n + 1) < δ ^ 1, then

HP(M; Z) = HP(S«; Z)

for each p with 0 ^ p ^ n. Therefore, in particular, if n = 2 or
n >̂ 5, ίftew ikf is homeomorphίc to Sn. (This conclusion follows from
weaker conditions.)

The author is grateful to Professor H. Kitahara for his many
valuable suggestions in this research. The author also wishes to
thank Mr. Maeda for his kind advice.

1* In the following, we use the same notation as in [5]. Also
see [5] for detailed definitions. Let M be a compact ^-dimensional
Riemannian manifold with Riemannian metric g and canonical connec-
tion V. For a point xeM, TX(M) denotes the tangent space of M at
x. Let &9(M) be the set of all rectifiable p-currents on M, where
0 <ί p ^ n. For a current S? 6 &P(M), Sζ denotes an orientation of
£f, that is, for ^^-almost all x e <£? Sζ is a simple ^-vector of unit
length which represents TX{S^), where Sέf* is the HausdorίE p-measure
on M. Let V be a smooth vector field on M. We define a linear
mapping J^v: TX(M) -> Γ.(AΓ) by J^V(X): = FxVΐorXe TX(M). This
mapping can be extended uniquely as a derivation to Ap TX(M), that
is, as a linear map Szfv: Ap T̂ CM)—> J\PTX{M) which for simple vectors
is given by

At x e If, we define also the linear map Fv, V: TX(M) -* Γ^M) by
JF.X"^: = VvVχV- VΔγχV for Xe TX(M), where X is any extension
of X to a local vector field. The definition is independent of any
extension X, and the map carries over uniquely as a derivation to
/\PTX{M). Consider a current *9* e &P{M) and a vector field V on
M. Let &: M —> jkf, ί e R be the 1-parameter group of diffeomorpMsms
generated by V. Then for each t e B we have the rectifiable current

which, as a linear functional on Λp(^0> i s given by

for o)β Ap (Λ̂ )> where ΛP (-M") is the space of all smooth p-forms on
M. Let M denote the usual norm of a linear functional on AP CM")
which has the usual Frechet topology. Then,
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where \\S^\\ is a measure on M defined, by using the ^-dimensional
Hausdorff measure ^έf9 on M, as follows: for a Borel set XaM,

DEFINITION. A rectifiable ^-current S* e &P(M) is said to be
stable if, for each vector field V the following two conditions hold:

dt

(s2) ^3ί(ώt^)H=0 ^ 0 .
dt2

The following is obtained by Lawson and Simons in [5].

PROPOSITION 1. Let M be a compact Biemannian manifold and
V a vector field on M with associated flow φt. Then for any recti-

fiable p-current

(1) 4
dt

( 2 ) d t ]"

REMARK. In the special case that V = Ff(= the gradient of / )
for some / e C\M), the transformation j y F is symmetric and (2)
simplifies to

For future reference we shall write the integrand of (2)' at xe
M in terms of tangent vectors at x. Let {elt —-,ep, ep+1, -•-,&„} be
an orthonormal basis of TX{M) and set ξ -== e1 A A ep. Then

, ί>2 + 2\j^v(ξ)\2 + {Vv,ζV, ξ)

/g\ — i ^ x ^ \vjJf*j/( τ 2 X Σ ( ^ 7 ( 6 λ O

where \Ssfr(ξ)\ denotes the length of p-vector Ssfv(ξ).

2. Now we assume that M is isometrically immersed in (n + 1)-
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dimensional Euclidean space Rn+1 with canonical Riemannian metric
<,) and canonical Riemannian connection V. For all local formulas
we may consider the isometric immersion / of M into Rn+1 as an
imbedding and thus identify xeM with f(x)eRn+1. The tangent
space TZ(M) is identified with a subspace of the tangent space Tx(Rn+1).
The normal space T£ is the subspace of Tx(Rn+1) consisting of all ζ e
Tx(Rn+1) which are orthogonal to TX(M) with respect to the Riemannian
metric <,>. For each point x of M, choose a field ζ of unit normal
vectors defined on a neighborhood U of x. Then we have the basic
formulas

FxY=PxY+<AζX, Y)ζ

Vxζ = -AζX

where X and Y are smooth vector fields tangent to M, and Aζ is a
tensor field of type (1, 1), called the second fundamental form as-
sociated with ζ. The Gauss equation expresses the curvature tensor
R of M as follows.

R(X, Y)Z = <AζY, Z)AζX- (AζX, Z)AζY

where X, Y and Z are smooth vector fields tangent to M.
Let δ be a constant with 0 < d <; 1, and suppose that at each

point x of M, with respect to a suitable field ζ of unit normals,
every principal curvature X3 of M satisfies λ/S <̂  λ̂  ^ 1, j = 1, , n.

REMARK. The above assumption implies that M has the sectional
curvature satisfying d ^ Kδ ^ 1 for all tangent two planes σ. And
from the continuity of the eigen-values of the linear map Aζ: Tx(M)—>
TX(M), called the principal curvatures of M, the above assumption
also implies that M is orient able. Therefore we can choose a global
field ζ of unit normals on M which satisfies the above condition, and
then we can write Aζ = A.

3. To estimate the left hand side of (s2) we begin with the
space of functions ^ = {ψ\M; ψ:Rn+1-+R is linear}, and define

T = {Pψ; ψ e J H .

Then there is a natural isomorphism

(4) T~Rn+1

which associates to v e Rn+1 the gradient of the function ψv(x) = (v, x)
on M. This identification introduces a natural inner product on T.

To any simple unit p-vector £e ΛP TX{M), at any xeM, we can
associate a quadratic form Qξ on T as follows. For Ve ψ\ let φt
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be the flow generated by V, and define

at

Then we have the following.

PROPOSITION 2. Under the assumptions as expresses above, we
have

tr Qt

Proof. Suppose VeT corresponds to veRn+1 under the iso-
morphism (4). Then at any y e M

and then for Xe TX(M),FXV= ψxV)τ = <v, ζm}AX, where ( )τ denotes
orthogonal projection Tx{Bn+1) -> TX{M). Thus,

FZV= <v, ζx)AX

And it follows easily that

(6) Vv,xV= -<V,AV)AX + (v, ζx}Pv(AX) - (v, ζx)A{VvX)

where X is any extension of X to a local vector field.
We now choose an orthonormal basis {x0 = ζβ, x1 — el9 , xn = en}

for Rn+1, where es is an eigenvector corresponding to the eigenvalue
X3 of A, j = 1, , n. Via (4) this fixes an orthonormal basis {VQ,
Vu , Vn} of T. It then follows from (5) and (6) that FFo, Fo =
Ssfvi = . . . = sfvn = 0 and J^ F o = A, ί7 .̂, . Vό = - λ ^ , i = 1, -^,
as transformations of TX{M). For given simple unit p-vector ξe
ΛP ^(ikf), we can choose an orthonormal basis {elf , ePf ep+1, , en}
of TX{M) with ί = ei Λ Λ ep. It then follows from (2), (2)', (3)
and above formulas that

Σ Σ
j=i a--=p+l

= ( Σ <Aeif β»Y + 2 Σ Σ <Aed, eα>
2 - Σ Σ <λ|AβΛ e3 >

- (Σ <AeJt esγ) + 2 Σ ( l ^ - | 2 - Σ <Aeό, etγ)
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= 2 Σ \Aes\
2 + Σ «Aeif etχAe3 , e» - 2(Aejf e,}2)

3=1 < , i = i

p n p

3 = 1 " 3 1 = 1 3 = 1

By the assumption, VΎ<L λ, <* 1, i = 1, j = 1, , w, we get | Aê  |2 ^ 1,
and VΊΓ^ (Aejf e3-} ̂  1 for 1, , n. Thus we have

tr (Qξ) ^ 2p + p(p — 1) — pδ — ^ δ

= p(p + 1 — nd — δ) .

Combining Proposition 1 and Proposition 2 we get the theorem
and the Corollary 1. And by virtue of the basic theorems on integral
currents, we have the Corollary 2, see [2] or [5].
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