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NOTES ON STABLE CURRENTS

HirosHI MORI

With additional assumptions we answer a conjecture pro-
posed by Lawson and Simons.

In a work [5], H. B. Lawson, Jr. and J. Simons proved that
there exist no stable rectifiable currents on an n-dimensional unit
sphere S” in the (n + 1)-dimensional Euclidean space R"*. And con-
cerning to this fact, they conjectured as follows.

Conjecture. Let M be a compact, simply-connected Riemannian
manifold with the sectional curvature satisfying 1/4 < K, < 1 for all
tangent two planes 0. Then there exist no stable rectifiable currents
on M.

We obtain the following results with respect to this conjecture.

Let M be a compact, connected n-dimensional Riemannian manifold
isometrically immersed in (n + 1)-dimensional Euclidean space RB"*.
Let 0 be a constant with 0 < 6 <1, and suppose that at each point
x of M, with respect to a suitable unit normal, every principal curva-
ture »; of M satisfies
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THEOREM. Let M be a compact, connected Riemannian manifold
satisfying the conditions expressed above. Associate to each & —
Z(M) a quadratic form Q. on 7 as follows. For Ve 7; let ¢, be
the flow generated by V and set

dz

QAV) = e

M($:+.5) ¢ -

Then for all &7 € FZ(M)
trQ. < p(®+ 1 —ndé — M) .
(For definitions of 7~ and F(M), see below.)

COROLLARY 1. Under the assumptions of the Theorem, for all
p with 1<p<nd+0—1, any rectifiable p-current & <« Z,(M)
18 not stable. If 0 satisfies nj/(n + 1) <0 <1, then any rectifiable
p-current & € FH,(M) is not stable for each p with 1< p<n — 1.
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COROLLARY 2. Under the assumptions of the Theorem, if 0
satisfies n/(n + 1) < 0 £ 1, then

H,(M; Z) = H,(S"; Z)

for each p with 0 < p < n. Therefore, in particular, if n =2 or
n = 5, then M is homeomorphic to S*. (This conclusion follows from
weaker conditions.)

The author is grateful to Professor H. Kitahara for his many
valuable suggestions in this research. The author also wishes to
thank Mr. Maeda for his kind advice.

1. In the following, we use the same notation as in [5]. Also
see [5] for detailed definitions. Let M be a compact n-dimensional
Riemannian manifold with Riemannian metric g and canonical connec-
tion . For a point xe€ M, T, (M) denotes the tangent space of M at
x. Let ZZ,(M) be the set of all rectifiable p-currents on M, where
0=p=mn. For a current & e Z,(M), ,5; denotes an orientation of
&, that is, for S#°7-almost all x € &7 9”: is a simple p-vector of unit
length which represents T,(.5”), where S#°? is the Hausdorff p-measure
on M. Let V be a smooth vector field on M. We define a linear
mapping &7": T,(M)— T.(M) by 7"(X): =V, V for Xe T,(M). This
mapping can be extended uniquely as a derivation to A? T,(M), that
is, as a linear map .&7": A? T.(M)— A?T.(M) which for simple vectors
is given by

MV(XI/\.../\XP):éX’-/\.../\Xi—l/\L/Q/VXi/\Xi-I-I/\.../\XP'

At xe M, we define also the linear map 7y, - V: T.(M) — T.(M) by
drx Vi =V, F3V =V, 3V for Xe T,(M), where X is any extension
of X to a local vector field. The definition is independent of any
extension X, and the map carries over uniquely as a derivation to
A?T.(M). Consider a current e Z,(M) and a vector field V on
M. Let ¢,: M— M, t€ R be the 1-parameter group of diffeomorphisms
generated by V. Then for each ¢t e R we have the rectifiable current
$,4(.5”) which, as a linear functional on A?(M), is given by

(8N @) = S (g7 w)

for we A? (M), where A” (M) is the space of all smooth p-forms on
M. Let M denote the usual norm of a linear functional on A?” (M)
which has the usual Fréchet topology. Then,

M) = | Y 6t & Sl
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where ||.&7|] is a measure on M defined, by using the p-dimensional
Hausdorff measure 5#” on M, as follows: for a Borel set X C M,
ZI(X) = 2£2°(X N .57).

DEFINITION. A rectifiable p-current &7 e <2, (M) is said to be
stable if, for each vector field V the following two conditions hold:

) gt—M(qswy)n:o ~0,
d2
(s2) a0 M($155)11=0 = 0 .

The following is obtained by Lawson and Simons in [5].

PROPOSITION 1. Let M be a compact Riemannian manifold and

V a vector field on M with associated flow ¢,. Then for any recti-
Jfiable p-current & e F,(M),

(1) L MG = | (G Py

L MG Yoo = | |~ (7T P+ (D), P
(2) - =
+ | (A + Py 2V, I

REMARK. In the special case that V =V f(= the gradient of f)
for some f e C*JM), the transformation .7 is symmetric and (2)
simplifies to

(2) LM )ima = | (=7 P+ 2]

+ PV, ANl .

For future reference we shall write the integrand of (2)" at x¢
M in terms of tangent vectors at x. Let {&, ---, &, €,4y, -*+, €.} be
an orthonormal basis of T.(M) and set £=¢&, A --- A &, Then

—(TE O+ 2| T + eV, 8
o =Eeren] veg £ e
+ 3TV Ey
where | .77 (€)| denotes the length of p-vector .o7"(¢).

2. Now we assume that M is isometrically immersed in (n + 1)-
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dimensional Euclidean space R"*' with canonical Riemannian metric
{,> and canonical Riemannian connection 7. For all local formulas
we may consider the isometric immersion f of M into R"™' as an
imbedding and thus identify xe M with f(x)e R**'. The tangent
space T,.(M) is identified with a subspace of the tangent space T,(R"*).
The normal space T is the subspace of T,(R"™') consisting of all {e
T.(R™*) which are orthogonal to T.(M) with respect to the Riemannian
metric {,>. For each point x of M, choose a field { of unit normal
vectors defined on a neighborhood U of x. Then we have the basic
formulas

PxY =7xY + (AX, V)X
7XC = '—AcX

where X and Y are smooth vector fields tangent to M, and A, is a
tensor field of type (1, 1), called the second fundamental form as-
sociated with {. The Gauss equation expresses the curvature tensor
R of M as follows.

R(X, Y)Z = (A Y, ZYAX — (AX, ZYAY

where X, Y and Z are smooth vector fields tangent to M.

Let 0 be a constant with 0 <0 <1, and suppose that at each
point x of M, with respect to a suitable field { of unit normals,
every principal curvature \; of M satisfies 16 < \; <1,5=1, ---, n.

REMARK. The above assumption implies that M has the sectional
curvature satisfying 6 < K, < 1 for all tangent two planes 0. And
from the continuity of the eigen-values of the linear map A.: T, (M) —
T.(M), called the principal curvatures of M, the above assumption
also implies that M is orientable. Therefore we can choose a global
field ¢ of unit normals on M which satisfies the above condition, and
then we can write 4, = A.

3. To estimate the left hand side of (s,) we begin with the
space of functions # = {y|M; +: R"**— R is linear}, and define

7 =y peF}.
Then there is a natural isomorphism
(4) 7 = R

which associates to v € B"** the gradient of the function () = {v, x)

on M. This identification introduces a natural inner product on 77
To any simple unit p-vector ée A” T.(M), at any x€ M, we can

associate a quadratic form Q. on 7° as follows. For Ve 7; let 4,
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be the flow generated by V, and define

QV) = gt lims -

dt?
Then we have the following.

PROPOSITION 2. Under the assumptions as expresses above, we
have

tr@Q:<pl+1—md—9).

Proof. Suppose Ve7 corresponds to ve R"' under the iso-
morphism (4). Then at any ye M

V(y) =v— <vy Cy>Cy ’

and then for Xe T,(M),VxV = V)" = (v,{,>AX, where ( )* denotes
orthogonal projection T,(R"*')— T,(M). Thus,

(5) K X)=VV =< v, HAX.
And it follows easily that
(6) VypxV=—(V,AVYAX + (v, L)V (AX) — (v, YAV X)

where X is any extension of X to a local vector field.

We now choose an orthonormal basis {x, = {,, 2, = e, + -, &, = €,}
for R**', where ¢; is an eigenvector corresponding to the eigenvalue
N of A4,5=1, .-+, n. Via (4) this fixes an orthonormal basis {V,,
Vy +++, Va} of 70 It then follows from .(5) and (6) that /y, -V, =
K=o ="n=0and ¥o=A4,Vy, - Vi=-—NA,j=1,--m,
as transformations of T,(}). For given simple unit p-vector &€
A? T.(M), we can choose an orthonormal basis {¢,, -- -, €,, €p11, **, €,}
of T,(M) with é=¢, A --- A &,. It then follows from (2), (2), (3)
and above formulas that

tr (Q) = 3, Q)

(3 orie, @) + 23 3 (orle, 8y

+ JZ: e,V m}

= (ﬁ (4e;, :>> 21 ai (A7, &) — 33 (AT, )
DY

”

fl

-

J=

ﬁ i M(AE;, €5

=1 j=1
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b

= 23,148, + 3. (47, 2)(AT;, &) — 2(AT;, )

9=
i

M

o~
I

y y4
- JZ=1 (Ae;, &;)" — " ;M(Aéjy €;) -
By the assumption, Vosn;Z1,j=1,=1,.--,n, we get |Ae;|*<1,
and V6 < (Ae;, e;> <1 for 1, ..-, n. Thus we have

tr (Q:) =< 2p + p(p — 1) — p0 — nPd
=p(p+1—md—79).

Combining Proposition 1 and Proposition 2 we get the theorem
and the Corollary 1. And by virtue of the basic theorems on integral
currents, we have the Corollary 2, see [2] or [5].
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