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BANACH-BUCK MEASURE, DENSITY, AND
UNIFORM DISTRIBUTION IN RINGS
OF ALGEBRAIC INTEGERS

Siu KwoNG Lo AND H. NIEDERREITER

The theory of uniform distribution of sequences of algebraic
integers in a fixed algebraic number field K, as initiated by
Kuipers, Niederreiter, and Shiue, is developed from a measure-
theoretic viewpoint. After establishing some general facts
in § 2, in particular, the analogy between uniform distribution
of sequences of algebraic integers in K and of sequences of
lattice points, a method of enumerating all algebraic integers
in K into a uniformly distributed sequence is discussed in §3.
This enumeration method is useful for the construction of
other uniformly distributed sequences as well and plays a role
in the density theory. In §4, a so-called Banach-Buck measure
is defined on the ring of all algebraic integers in K. Various
relations between this measure and the property of uniform
distribution are exhibited. Based on Buck’s general concept
of density, the notions of relative density and of density of
sets of algebraic integers in K are introduced in the final
section. Connections among the concepts of uniform distri-
bution, measurability, and relative density of sequences of
algebraic integers in K are established.

1. Introduction. The definition of uniform ‘distribution of se-
quences of algebraic integers in a fixed algebraic number field K
was introduced by Kuipers, Niederreiter, and Shiue [5]. In the
present paper, we shall develop the theory from a measure-theoretic
viewpoint.

After establishing some general facts in §2, in particular, the
analogy between uniform distribution of sequences of algebraic integers
in K and of sequences of lattice points, we discuss in §3 a method
of enumerating all algebraic integers in K into a uniformly distributed
sequence. This enumeration method is useful for the construction of
other uniformly distributed sequences and plays a role in the density
theory. In §4, we define a so-called Banach-Buck measure on the
ring of all algebraic integers in K. Various relations between this
measure and the property of uniform distribution are exhibited. Based
on Buck’s general concept of density, we introduce in the final section
the ideas of relative density and of density of sets of algebraic
integers in K. We establish connections among the concepts of
uniform distribution, measurability, and relative density of sequences
of algebraic integers in K. A variety of interesting problems emerge
in this study.
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2. Generalities. Let K be a given algebraic number field of
degree [K: Q] = k over the rationals, and let O be the ring of all
algebraic integers in K. Let I O be a nontrivial integral ideal with
norm I If &= (a,), n=12, ..., is a sequence of elements in
O, then A(N, a + I, %) will denote the number of 7,1 <n < N,
such that @, =a (modI). The following two definitions can be found
in [5].

DEFINITION 2.1. Let Ic O be a nontrivial integral ideal. Then

the sequence &% is uniformly distributed modulo I (u.d. mod I) if

1 A(N,CK-I-I,._%): 1
11vl—I£ N AN

for every coset  + I of I.

DEFINITION 2.2. The sequence . is uniformly distributed in O
(u.d. in O) if & is u.d. mod I for every nontrivial integral ideal
IcO.

LEMMA 2.3. Let J & I be nontrivial integral ideals, and let &7
be a sequence of algebraic integers in O. Then, if & ts u.d. mod J,
it 1s also u.d. mod I.

Proof. This follows immediately from the identity
AN, a + I, &7) = AN, 8 + J, &) ,

where the sum is taken over all distinct cosets 8+J with 8= a(mod I).

THEOREM 2.4. The sequence 7 of algebraic integers in O is u.d.
in O if and only if & is u.d. modulo the principal ideal mO for
every rational integer m = 2.

Proof. The necessity is trivial. To prove sufficiency, we choose
a nontrivial integral ideal I O. Since O/I is an additive group of
order .#"I, we have the coset identity (#"I)(1+ I)=1, and so
(#"I)0 = I. The rest follows from Lemma 2.3.

If an integral basis W= {w, -+, w,} of K over @ is chosen,
then for every @ € O we have a = 3%, 2,0, with z,€Z for 1 <1< k.
The identification of a with the lattice point (x,, ---, #;) provides a
group isomorphism between O and Z*. Thus, all the subsequent
results that depend only on the set-theoretic or additive structure
of O have an analogue in Z*, and vice versa. In the sequel, we shall
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sometimes identify a sequence in O with one in Z%, and vice versa.
An equivalent form of the following definition can be found in

[6].
DEFINITION 2.5. Let X = (z,), n =1,2, ---, be a sequence of

lattice points in Z*. Then X is called u.d. modmZ@ --- P mZ,
m = 2 a rational integer, if

lim X AN, (G, -+, ) + (MZ B --- B mZ), X) = =
Now N mk
for every (j, -+, 7.) € Z*, the counting function having the obvious

meaning. Furthermore, if X is u.d. mod mZ & .- P mZ for every
m = 2, then X is called u.d. in Z*.

If one identifies the integral ideal mO of O with the subgroup
mZLP --- PmZ of Z*, then in view of Theorem 2.4 and Definition
2.5, the uniform distribution of a sequence in O is equivalent to the
uniform distribution of the corresponding sequence in Z*.

We shall write exp (¢) = ¢ for any real number ¢. Further-
more, if ¢ = (a,, --+, a;) and b = (b, ---, b,) are two vectors of the
euclidean space RF, then a-b = X%, a;b, will denote their standard
inner product. The following is well-known (see [10] for the case
k=1 and [6] for the general case).

THEOREM 2.6 (Weyl criterion). A sequence X =(x,), n =1,2, «+--,
n Z* is u.d. modmZ @ --- DmZ if and only if
hml i exp ((ﬁ, oo, '&‘.)gn) =0
N N 2=t m m

for all those (4, ---, 7,) € Z* for which not all of the coordinates are
divisible by m.

3. The cube method. We describe a method of obtaining a
u.d. sequence in Z* out of k sequences that are u.d. in Z. Suppose
we are given k sequences X, ..., X, of rational integers with X, =(x,,),

n=12 ..., for 1 =% =<%k. Then the lattice point (x,,;, -, Tu,1) I8
said to lie in the mth cube if max;_,..,7n; = m. We now enumerate
all elements of the form (,,,, ---, ,,:) by starting with the element

in the first cube, then enumerating all the elements in the second
cube in an arbitrary order, then all the elements in the third cube
in an arbitrary order, and so on. Then a sequence in Z* resulting
from this construction is called a sequence arising from X, ---, X,
by the cube method.

THEOREM 3.1. A sequence ¥ = (y,), n =1,2, ---, arising from
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the sequences X,, ---, X, by the cube method is u.d. in Z* if and
only iof X, is ud. in Z for i =1, ---, k.

Proof. Suppose first that each X, = (z,,), n=1,2, ---, is u.d.
in Z. Choose a rational integer m = 2 and (4, ---, J) € Z%, not all
of the j, being divisible by m. Then,

tm gz Soww (B 2)e) = im e L (Brewe (o)

= I (im B (fran)) = 0

by taking k& = 1 in Theorem 2.6. By elementary estimates, this limit
relation implies

lim = > ex << ,ﬂ> n):(),
Now N nz‘ 1 P m’ m Y
so that Y is u.d. in Z* by Theorem 2.6 and Definition 2.5.

Now assume that Y is u.d. in Z*. Without loss of generality,
we shall prove that X, is u.d. in Z. Let m = 2 be a rational integer,
and let 0 < 5 < m. Then,

N e (o) = (F2 exe (Low)) 1L (5
= i.% exp <<m 0, ---, 0)?_/n> .

Letting N — <, we have

lim — Z exp< ) =0
N—oo n=

by Theorem 2.6, and the desired conclusion follows from the Weyl

criterion for u.d. in Z.

The cube method can be used to find an enumeration (without
repetition) of all lattice points in Z* into a u.d. sequence in Z* (or,
equivalently, an enumeration, without repetition, of all elements of
O into a u.d. sequence in O).

DEFINITION 3.2. Let each of the sequences X,, ---, X, be identical
to the sequence 0,1, —1,2, —2, --.. Then a sequence B = (r,), n =
1,2, ..., arising from the sequences X, ---, X, by the cube method
is called a sequence of all lattice points in Z* enumerated by the
cube method.
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THEOREM 3.3. A sequence of all lattice points in Z* enumerated
by the cube method is u.d. in Z*.

Proof. This follows immediately from Theorem 3.1 and the fact
that the sequence 0,1, —1,2, —2, ... is u.d. in Z.

DEFINITION 3.4. A lattice point z = (%, ---, 2,) € Z"* is called a
positive lattice point if ;=1 for 1 <1 < k.

DEFINITION 3.5. Let each of the sequences X,, ---, X, be identi-
cal to the sequence 1,2,3, ---. Then a sequence R* = (r}), n =
1,2 ..., arising from the sequences X,, .., X, by the cube method
is called a sequence of all positive lattice points in Z* enumerated by
the cube method.

THEOREM 3.6. A sequence of all positive lattice points in Z*
enumerated by the cube method is u.d. in Z*.

Proof. This follows immediately from Theorem 3.1 and the fact
that the sequence 1,2, 8, --. is u.d. in Z.

A variety of other interesting classes of u.d. sequences in Z*
can be found by the cube method. We mention a typical example.
As usual, [f] denotes the integral part of a real number .

THEOREM 3.7. Let Bt = (rf), n=1,2, -.--, be a sequence of all
positive lattice points in Z* enumerated by the cube method, with
T8 = Lpy, "+, Tux) for mn=1, and suppose a, ---,a, are k real
numbers. Then the sequence X = (x,), n =1, 2, - -+, with z, = ([¢.2,.],
cor, [@a]) for =1, is u.d. in Z* if and only if each a; is
irrational or the reciprocal of a monzero rational integer.

Proof. For 1 <1<k, let X, be the sequence X, = ([na,]),
n=12 --.. It is obvious that X is a sequence arising from the
sequences X, ---, X, by the cube method. The result follows then
from Theorem 3.1 and a result of Niven [8] (see also [4, p. 308]).

4. The Banach-Buck measure. In this section, we shall define
a finitely additive measure on O, the ring of all algebraic integers
in a fixed algebraic number field K. This idea was first used by
Buck [1] in his discussion of density of sets of rational integers.
Later on, M. and S. Uchiyama [9] applied Buck’s idea to the theory
of uniform distribution of rational integers. See also [3] and [4,
Ch. 5, §1].
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If I is an integral ideal, then the ring O of all algebraic integers
of K is partitioned into cosets of I. Let 2 consist of the empty set
and of all finite unions of cosets of nonzero ideals of O. It is easily
seen that B is an algebra.

DeFINITION 4.1. The set function p: 8+ R* (nonnegative real
numbers) is defined by (@) =0, w(E) =1/ 41 if EcB is a coset
of the nonzero integral ideal I, and wp(E, U E,) = p(E,) + p(E,) if
E,E,c® with ENE, = Q.

One checks in a straightforward manner that g is well defined.
Obviously, ¢ is a finitely additive normed measure on B. The proof
of the following simple characterization of u.d. in O can be left to
the reader.

THEOREM 4.2. Let &% =(a,), n=1,2 .-, be a sequence of
elements of O. Then &7 is u.d. in O if and only if

lim % ﬁ_. Xe(@,) = t(E) for every Ee®,
where Xz denotes the characteristic function of the set K.

Let p* be the outer measure associated with g. In detail, we
define

p*(F) = inf {{(E): F S E, Ec B}

for every subset F of O. The set functions g* and g coincide on B.

DEFINITION 4.3. Let B be the collection of all subsets F of O
such that, for any subset D of O, we have

p*(D) = p*(DN F) + (DN F'),

where F” is the complement of F' with respect to O. The elements
of B are called measurable sets.

From general measure theory, we know that B is an algebra
containing B with #* a finitely additive normed measure on it. The
following statements are equivalent:

(1) Fe%;

(2) p*@F)+p*(F) =1

(8) for any ¢ > 0, there exist E,, E,c¢®B such that E,C FC E,
and p(E\E,) < ¢&;

(4) p*(F) = p(F), where p (F) = sup {(E): F 2 E, E<cB}.

For Fe®, we shall write ¢(F) instead of y#*(F). The measure
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pt on B is called the Banach-Buck measure. The following result
shows that we could have included the finite subsets of O in the
original algebra B, as was done in [1].

THEOREM 4.4. If F is a finite subset of O, then Fe® and
H(F) = 0.

Proof. Without loss of generality, we may assume that F
consists of one algebraic integer only, say F = {a}. Let I = mO,
where m is a positive rational integer. Then .#°I = m*. Obviously,
Fca+1I, and so pu*(F) = (e + I)=m"* Letting m-— o, we
obtain p*(F') = 0, hence p. (F) = p*(F) = 0.

THEOREM 4.5. A set AZ O is of outer measure 1 if and only
if A intersects every coset of every nmonzero integral ideal.

Proof. Suppose there is a coset E of a nonzero integral ideal
such that ANE=@. Then AC E’, and so p*(4) < mE)=1—
#(E) <1. Now assume that p*(4) < 1. Then there is a set KB
such that A £ E and ¢(F) <1. Let I be a nonzero integral ideal
such that £ = Ui, (@; + I). Since p(E) < 1, there must be a coset
B+ I such that EN(B+I)= @, and so ANB +1I)= ©.

ExAMPLE 4.6. The set C of all composite algebraic integers of O
has outer measure 1. Because of Theorem 4.5, we need only prove that
CN(a+1I)s= o for any coset a + I of I, where I is an arbitrary nonzero
integral ideal. Without loss of generality, we may assume « == 0.
Choose a composite rational integer m satisfying m = 1 (mod.#"1),
for instance, m = (.#°I + 1)*. Then ma = a (mod I), ma # 0, ma is
not a prime in O (since m can already be decomposed nontrivially),
and ma is not a unit (otherwise, m were a unit). In other words,
mae CN(a + I).

The following two theorems were first observed by M. and S.
Uchiyama [9] in the case of rational integers. Later on, Dijksma
and Meijer [3] corrected an error in [9]. Our proof is essentially
the same as the corrected version of the argument in [9]. For the
sake of completeness, we still give the details.

THEOREM 4.7. If = (), n=12, ..+, is @ u.d. sequence in
0, then

Ilvig}% Sy 1(@) = ((F)  for every Fe® .
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Proof. Let Ee® such that FF < E. Then,

ﬁ_ x=(e,)

N
1—1\‘7 nZJ[XF(an) é "‘;‘7‘. =

for all N =1, and so
. 1 X .1 &
lim sup N 2, Yx(a,) < lim N 2 As(e) = (E)
by Theorem 4.2. It follows that
. 1 &
lim sup N 2 Arla) = 14(F)
Similarly, we can show that
o 1 &
t«(F) = lim inf N PIVEICHR

Since Fe®, we have p (F) = pu*(F) = i(F), and the proof is com-
plete.

THEOREM 4.8. If &= (a,),n =12, ---, is a u.d. sequence in
O, then the set A of elements of 7 satisfies p*(4) =1. Conversely,
let € =,), n=12, ..., be a sequence of all algebraic integers in
O enumerated without repetition in such a way that it s u.d. in
0. If «=(a,),n=12, --.,1s a subsequence of &, and tf the set
A of elements of .7 satisfies Ac®B and p(A) =1, then & s u.d.
wn O.

Proof. To prove the first assertion, let E€®B such that A < E.
Then,

N N
1=lim L 3 7)< lim & 3% () = 4(B)

by Theorem 4.2. Therefore, p*(4) = 1.

The second assertion is shown as follows. Denote by .&7(m) the
number of elements in . which precede 7, in the sequence & or
are equal to v,. Then,

tim L) — jim L 3y (7, = m(4) = 1
m m—0 M, n=1

m—0

by Theorem 4.7. For given N = 1, there exists an m with ay =7,,.
Then, for every Ec®B we have
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é xe(@,) = 27:‘4 Xena(Vn) = —— }1:: Xena(Va)

1 1 L1
N N ()m

and so

N m
lim < 3 yu(er,) = lim L 3 7204(7,) = (BN A) .
N— N n=1 m—oo I, n=1

But w(E) = (ENA) + M(ENA") and (ENA) S (A =1— p(4) = 0
so that #(E N A) = (¥). Thus,

lim = Z A=) = (UE) ,

N—»oo

and .&7 is u.d. in O by Theorem 4.2.

REMARK. We can even prove that a set AZ O satisfies p*(4) =1
if and only if its elements can be arranged into a u.d. sequence in
0. The sufficiency follows, of course, from Theorem 4.8. In the
proof of the necessity, techniques of a different type are involved.
The reader is referred to [7].

COROLLARY 4.9. If & 1is a sequence of all algebraic integers in O
which is u.d. in O, and if 7 is a subsequence of & such that the
set A of elements of 7 is measurable and intersects every coset of
every monzero integral ideal, then 7 is u.d. im O.

Proof. This is a direct consequence of Theorems 4.5 and 4.8.

ExAMPLE 4.10. There is a sequence .7 satisfying the condition
in Corollary 4.9, but still differing from & by infinitely many terms.
Let [K: Q] =k =2and let #Z = (0,),n=1,2,---, be a sequence of all
algebraic integers in O enumerated by the cube method with respect
to a given integral basis (see Definition 3.2 and the remarks following
Theorem 2.4). Let . be the subsequence consisting of all points of
# except those on the axes. Then, obviously, .o differs from <&
by infinitely many terms. We shall show that .27 satisfies the con-
ditions in Corollary 4.9.

Obviously, AN (¢ + mO) = @ for any nonzero rational integer
m and any ac€O, so that A intersects any coset of any nonzero
integral ideal. To show that A is measurable, consider the principal
ideal mO for any m = 2, me Z. There are m* — k(m — 1) — 1 cosets
contained completely in A. The measure of their union is given by
(m* — km + k — 1)/m*, so that
k E—1

mk—i + mk

p(4) =1 —
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Letting m — -, we get p,(4) =1. So, p.(4)=1= p*(4), and A
is measurable.

If £ =1, one may take for & the sequence 0,1, —1,2, —2, ...
and for .& the subsequence consisting of all positive or negative
composite rational integers.

COROLLARY 4.11. Let & be as in Corollary 4.9, and suppose
&7 1s a subsequence of & that is u.d. in 0. If 7', the complement
sequence with respect to &, is also u.d. in O, then the set A of
elements of .7 1is mot measurable.

Proof. By the first part of Theorem 4.8, we know that p*(4) =1
and p*(A') = 1. If A were measurable, we would have

1*(4) + p*4) =1,
a contradiction.

COROLLARY 4.12. Let & be as in Corollary 4.9. Suppose &7
18 a subsequence of &, and let A be the set of elements of 7 If
A 1s measurable and p(A) = 0, then 7’ is u.d. in O.

Proof. Since A is measurable, so is A’. Furthermore, p(4') =
1 — p¢(A) =1. Then, by the second part of Theorem 4.8, .o’ is

u.d. in O.

5. Density. The following notion of density can be thought
of as a special case of Buck’s general concept of density in [2].
Suppose W is an integral basis for K over @, and let &2 = (p,),
n=1,2, -, be a sequence of all algebraic integers in O enumerated
by the cube method with respect to W (see Definition 3.2 and the
remarks following Theorem 2.4).

DEFINITION 5.1. If 4 € O, we define
N
B(N, 4) = By(N, 4) = 3, 74(04)
where y, is the characteristic function of A. If the limit Dy(A4) =
limy_., B(N, A)/N exists, then D,(A4) is called the relative density of
A with respect to W.

REMARKS. (i) Dy(A4) is independent of the exact arrangement
of elements in &%, since
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lim BV, 4) _ . B(@t+ 1), 4)
yoo N oo (20 + 1)

(ii) If Fe®B, then D,(F) exists and D, (F) = p(F). This follows
from Theorem 4.7 and the fact that <2 is u.d. in O.

(iii) Denote by B, the set of all subsets T of O for which Dy (T)
exists. Then we have BB = By,.

(iv) If TeB,, then p(T) < Dy(T) < #*(T). To prove this,
choose e ®B such that TS E. Then we have

DAT) = lim B 1) <y B E) _ iy
N—co N N-oo N
and so Dy (T) =< ¢*(T). Similarly, one proves that p. (7)< Dy(T).

(v) For any Fe®, the relative density is independent of the
integral basis chosen. This is a direct consequence of Remark (ii) and
the fact that p(F') is independent of the integral basis chosen.

The following questions arise naturally. Let Ae%w; if another
integral basis V is chosen, is it necessary that Ae%v in general?
If it were, is it true that D, (4) = D,(A)? The first question is still
open. Our conjecture is that the answer is negative. As to the
second question, the answer turns out to be negative.

ExXAMPLE 5.2. Let k=2, and let W= {w, ---, w,} be a given
integral basis. We shall show that for every ¢ > 0 there exists a
set AS O and an integral basis V such that D,(4) =27% but
D,(4) <e. For a positive rational integer ¢, consider the integral
basis V=1{y, ---, v} with v, = 0,, v, = cw, + ®,, and vy, = v, for
31k Let A={3L, yv,eO0:94, =0, y,>0 for 21k}
Then we have, of course, Dy(4)=2"%  Furthermore, we get
By (2t + 1), A) =¥ 33, [4/c] for every rational integer ¢ > 1. By
trivial estimates, we obtain

po(MEED g < B + 1), 4) s pr EEL),
2¢ P 2¢

so that

o B DA 1
Dy(A) = lim Br A) 1
w(d) = lim = D) 2+ig

This can be made smaller than a given ¢ > 0 by choosing ¢ sufficiently
large.

The following theorem is concerned with the relationship between
relative densities with respect to different integral bases.

THEOREM 5.3. Let W= {w, -+, ®,} and V={y, ---, v} be two
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integral bases. Then there exist two positive constants ¢, and c,,
depending on W and V only, such that for all AecD,,

6.Dy(4) < lim inf _B*’(—NA;A_) < lim sup 1_91(11\\”441 < ,D,(A) .

N-ooo

Proof. Let ¢t be the smallest positive integer such that the set
Skixw:x,eZ x| <t for 1 £1 <k} contains the set

k
{Z‘.yivi:yieZ,lyilél for léiék}.

Then for every N =1, the set {3\% ., x,w,;:2,€Z, |x,| < Nt for 1 <
12 < k} contains the set {3, yvi iy, eZ, |y, < Nfor1<i=<k}. It
follows that

B,((2N + 1)}, A) < B, (2Nt + 1)*, 4),
and so

By((@N + 1)}, A) _ 2Nt + 1)* By (2Nt + 1), 4)
(2N + 1) = (2N + 1) (Nt + 1)~

Therefore,

: By(2N + 1" A) .
hn; sup @N T+ 1) < t* Dy (4) .

The right-hand side of the inequality follows with ¢, = t*.

The left-hand side can be proved in a similar way. We choose
the smallest positive integer s such that the set {3.L,ywv:i:vy;€ Z,
|y, < s for 1 <1 <k} contains the set {35, z,w;:2,€Z, |z, | <1 for
1<i¢=<k}). Then for every N=1, theset {3\f,yv.:9.€Z, |y;| = Ns
for 1 < <k} contains the set {3f.xw: . eZ |2, N for 1 =
1 < k}. It follows that

By (2N + 1)*, A) < B,((2Ns + 1)*, 4),
and so

(2Ns + 1)%, A)
(2Ns + 1)r  ~

L Dy(4) = tim inf B
s Novoo
Thus we have the desired result with ¢, = s7*.

REMARK. The values of ¢ and s in the proof of the preceding
theorem can be determined as follows. Since W is an integral basis,
we have

k
v, = > a;;0; for 1 £ ¢ <k, with a,;€Z.
j=1



BANACH-BUCK MEASURE, DENSITY, AND UNIFORM DISTRIBUTION 203

Every “vertex” of the “unit cube” {3\, yv.:y.€Z |y,| <1 for 1<
1 < k} is of the form 3\, ¢y, where ¢, =1 or —1. However,

k

k k

DY, = Z( eia’ia'>wj .

i=1 j=1 \i=1

Therefore, ¢ = max;_,...; >, |a@;;|. By interchanging the roles of
W and V, the value of s can be found in the same way.

COROLLARY 5.4. If Dy(A) =0 or 1, then D,(A) = 0 or 1, respec-
tively.

Proof. If Dy(A) =0, then D,(4) =0 by Theorem 5.3. If
D,(4) =1, then D,(A) =0, and so D,(A4') =0, which implies
D,(4) = 1.

If the relative density of a given set A £ O is independent of
the integral basis chosen, then we simply call it the density of A
and denote it by D(4). Let B be the collection of all A S O such
that D(4) exists.

We have shown that B B and, if A < O with relative density
0 or 1, then Ae®B. The following question arises: is it necessary,
in general, that a set of density 0 or 1 be a measurable set? We
shall answer this question by giving the following example.

ExampLE 5.5. There exists a set A £ O with D(4) = 0 such that
A is not measurable. Enumerate all distinct cosets of all nonzero
ideals of O into a denumerable sequence (&,), n =12, -... Let
B = (0.), n=1,2, .-+, be a sequence of all algebraic integers in O
enumerated by the cube method with respect to an integral basis W.
We shall use the notation @ = B if a is equal to or after @ in the
sequence 2. Let A= {a, «, ---} be constructed inductively as
follows: choose «, € E,; then choose a,¢ E, with «, # «, and a, = p,;
in general, choose «, € E, with «, # a, for ¢ <= and @, = 0,.. This
construction is possible since each FE, is infinite. Note that By (N? A)<N
for N=1, so that D(4) = 0. We claim that A is not measurable.
Indeed, it follows from the above construction that A intersects
every coset of every nonzero integral ideal, and so p*(4)=1 by
Theorem 4.5. On the other hand, p¢.(4) < D(A) = 0 by Remark (iv)
following Definition 5.1, hence A is not measurable.

The following question is also of interest: let Ae §, D(A) +0, 1;
is Ae®B in general? The answer turns out to be negative.

ExAMPLE 5.6. For a fixed integral basis W= {w,, ---, w,}, consider
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the set A={3\,x,0w,€0:2, > 0}. Let V={y, ..., v,} be any integral
basis. Then, for N =1 we have

(2N + 1)* = 2B,((2N + 1), A) + M(N),

where M(N) is the number of a= 3t ,yy, with |y,| < N for
1<+=<kEk, such that the coefficient of ®, in the representation
a =Sk xw, is zero. Now

k
vi:zaij(l)j for 1§'&.§k,af”'ez,
j=1

so that M(N) = card{(y, -+, ¥y € Z*: S a,y; =0, |y:| =N for
1<7=k}. But at least one of the @, is nonzero, so that a trivial
upper bound for M(N) is (2N + 1)**. It follows that

@N + 1)t —2(2N T g eN+ 1 4) < @N 2+ 1

and so D,(4) = 1/2. Since V was arbitrary, we have D(A) = 1/2.

However, A is not measurable. To see this, we note first that 4
intersects every coset of every-nonzero integral ideal, so that #*(4)=1
by Theorem 4.5. On the other hand, A contains no coset completely,
and so p¢,(4) = 0.

To sum up, we have established the following chain of inclusions:
BCBBSDB,,

where W is any integral basis. The last inclusion is proper for
k> 1 (see Example 5.2), the other inclusions are proper in all cases
(see Theorem 4.4 and Example 5.5). One should observe that ¥ is
not an algebra. This is well-known for k£ =1 (see [1]). For £ > 1,
we have constructed in Example 5.2 a finite intersection of ‘“half-
spaces” (with respect to the integral basis V) that is not in ®.
However, each individual half-space is in B by the argument in
Example 5.6.

We discuss now some relations between density and uniform
distribution. We remark that relations of a different type between
density of sets of lattice points and uniform distribution mod 1 have
been found by Volkmann [11].

LEmMmA 5.7. Let <& = (0,), n=1,2, .-+, be a sequence of all
algebraic integers in O enumerated by the cube method with respect
to a given integral basis W. Then the subsequence & = (a,),
n=12 ---, of & is u.d. in O if and only if
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lim Bu ¥, A1 B)

=N = p(E) for every Ee®B,

where A is the set of elements of 7

Proof. Suppose the condition is satisfied. For any a,, there
exists an N such that «,, = py. So

im Br (N, AD B)

1 = (K
e

lim L 3 yu(a,) =
m—co I, n=1
for every Ee B, hence . is u.d. in O by Theorem 4.2.
For the converse, choose N =1 and let m = By(N, A). Then
S Az(e,) = By(N, AN E) for every Ee®B, and so

. By(N,ANE) . 1 _
lim BN A ngm 2 un(en) = WE) .

THEOREM 5.8. Let 2 be a sequence of all algebraic integers in
O enumerated by the cube method with respect to a given integral
basis, and let .7 be a subsequence of . If the set A of elements
of . satisfies D(A) =1, then & is u.d. in O.

Proof. Without loss of generality, assume 4 = O. Let £ B be
arbitrary. Then

B(N,ANE) _ BIN,E) N

B(N, A) N B(N, 4)
_B(N,ANE) B(NA) N
B(N, 4" N B(N, A)

for sufficiently large N. Since
B(N, 4"

m— N —1, imBWNA)
¥ BN, 4) T N

and 0 < B(N, A'n E)/B(N, A") = 1, it follows that

lim B, ANE) _

BB _
v-=  B(N, A) voo N

and so .o is u.d. in O by Lemma 5.7.

EXAMPLE 5.9. The converse of the above theorem is not true.
In fact, there is a subsequence .o = (a,), n=1,2, ---, of , a
sequence of all algebraic integers in O enumerated by the cube method
with respect to the integral basis W = {w,, ---, @}, such that .7 is
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u.d. in O but the set 4 of elements of &7 satisfies D(4) = 0. Let
Bt =), n=1,2, ---, be the subsequence of .2 consisting of the
positive lattice points (see Definition 3.4) in the identification of 2
with a sequence of lattice points. Now put «, = o) + nlw, for
n=1,2 -... To show D(A) =0, it suffices to prove Dy(A4) = 0. For
N =1, let ¢ be the smallest positive integer with N < q!. Then
B((2N + 1)f, A) < B((2q! + 1)}, A) < ¢ + 1, and so

B(@N + 1)%, 4) _ ¢+1
@N +1F = (@g - D! + 1

This implies already D,(4) = 0. :
Let m = 2 be a rational integer. Then

a, = P35 + nlw, = o5 (mod mO)

for all w = m. Thus, apart from finitely many initial terms, the
sequence %7 is identical mod mO with the sequence <#*. Since the
latter is u.d. in O by Theorem 8.6, .% is u.d. mod mO. By Theorem
2.4, we are done.

Obviously, the uniform distributivity of . is not sufficient to
guarantee D(A) = 1. We need a stronger hypothesis.

THEOREM 5.10. Let <2 be a sequence of all algebraic integers
in O enumerated by the cube method with respect to a given integral
basis. Furthermore, assume 7 1s a subsequence of # containing a
nonempty set e B and 7 is u.d. in O. Then the set A of elements
of &7 satisfies D(A) = 1.

Proof. We have
B(N,A) _ B(N,4)  BW{N,ANE)

N B(N, An E) N
_ (B(N, An E))”‘ . BN, E)
B(N, 4) N

for all sufficiently large N, so that lim,_. B(N, A)/N=(uE))"'(E)=1
by Lemma 5.7 and Remark (ii) following Definition 5.1.

The following theorem was first proved by Niven [8] in the case
of rational integers. The proof of its generalization to the case of
algebraic integers goes through in exactly the same way, and so it
is omitted.

THEOREM 5.11. Let <2 be a sequence of all algebraic integers im
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O enwmerated by the cube method with respect to an integral basts
W. Let &7 be a subsequence of 2 with complement sequence .7’
with respect to Z. If liminf,_.. By(N, A)/N >0 and o7 is u.d.
in O, then &' is u.d. in O.

ExAMPLE 5.12. Let the sequence .27 be as in Example 5.9. Then
#* is u.d. in O by Theorem 3.6 and has the following additional
properties: the set R* of elements of <Z* is not measurable and
satisfies D, (R*) = 27%, and the complement sequence (") is u.d. in
O (by Theorem 5.11).

Let <#Z be a sequence of all algebraic integers in O enumerated
by the cube method with respect to an integral basis W. Let 4, &
A, C --- be an increasing sequence of infinite subsets of O with
A=z, 4,. For each 7=1, let .o be the subsequence of <Z made
up of the elements of A,, and let the sequence . be constructed
from A in the same way. Suppose each .%7 is u.d. in O. It is easily
seen that if lim,.. Dy(4;,) =1, then & is again u.d. in O (use
Theorem 5.8). However, in general, .~ need not be u.d. in O.

ExAMPLE 5.13. Let W= {w, ---, 0.}, and let m = 2 be a rational
integer. Set

k
Bi:{Zx,-cojeO: —1 = x; <0 for 1§jgk}nm0
Jj=1

for2=1,2, ---,

and let A,=R"UB, for 1=1,2, --.. It is trivial that 4,Z 4,,,
for 1 =1,2, ..., and that .7 is u.d. in O for every <. We shall
show that .97 is not u.d. mod mO. In fact, for any rational integer
t =1, we have A((tm)* + t*, mO, &) = 2t*, and so

lim A(tm)* + t*, m0O, .o7) _ 2 - 1 .
too (tm)* + t* mt+1 m*
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