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A NOTE ON STARSHAPED SETS

P. R. GOODEY

If S is a compact subset of Rd, it is shown that S is
starshaped if and only if S is nonseparating and the inter-
section of the stars of the (c£-2)-extreme points of S is non-
empty.

Let S c Rd. The (d-2)-extreme points of S are by definition those
points of S such that if D c S is a (ώ-l)-dimensional simplex then
x $ relint D (the relative interior of D). The totality of (ώ-2)-extreme
points of S is denoted by E(S). For each yeS we define S(y), the
star of y by S(y) = {z: [y, z]czS}, where [y, z] denotes the closed line
segment from y to z. S is said to be starshaped if Ker S Φ 0 where
Ker S = {S(y): y e S}. In [2] it is shown that if S is a compact
starshaped set in Rd then Ker S = Π {S(y): y e E(S)}. Thus the follow-
ing question arises: if S is such that Γ\ {S(y): y e E(S)} Φ 0, under
what hypothesis is S starshaped? It is clearly desirable that the
hypothesis should be as weak as possible in order to indicate to what
extent Π {S(y): y e E(S)} Φ 0 implies that S is starshaped. In [3] it
is shown that one suitable hypothesis is that S should have the half-
ray property, that is, for any point x in Rd\S there is a half-line I
with vertex x such that I Π S = 0 . Now we note that this hypothesis
is a rather strong one especially as it is being used to deduce the
fact that a certain set is starshaped. Thus one suspects that a much
weaker hypothesis might suffice. This suspicion is further strengthened
by the example given in [3] to show that, in fact, some hypothesis
is necessary. More precisely, the example given is a separating set
that is, its complement is not connected. The purpose of this note
is to prove the following

THEOREM. If S c Rd is a nonseparating compact set and
Π {S(y): y e E(S)} Φ 0 , then S is starshaped.

Proof. Let zef\{S(y): ye E(S)}. We shall show that for any
x in Rd\S, l(x, z) Π S = 0 where l(x, z) is the half-line with vertex x
which does not contain z but is such that the line containing l{x, z)
does contain z. Clearly this suffices to show that S is starshaped.

Choose x0 in the complement of the convex hull of S, then
l(x0, z) Π S = 0 . Now since S is a nonseparating compact set, its
complement is a path-connected unbounded open set (see [1, p. 356]).
Thus any point in Rd\S can be "joined" to x0 by a finite polygonal
path in Rd\s such that if t is any segment of the path then the line
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containing t does not contain z.
Now we assume l(x, z) Π S Φ 0 for some point x in E^S and

seek a contradiction. Let P be a polygonal path as described
above with consecutive vertices vx = x, v2, v3, , v% = x0. Put i =
max {j: l(vjf Z)ΓΪSΦ 0} then 1 <; i < n. Let the closed segment
[vu vi+ί] be the image under the continuous function / of the unit
interval, with /(0) = vt and /(I) = vi+ί. Note that if p Φ q then
ί(/(p), z) Π ϊ(/(g), s) = 0 . Now I(/(l), ^ ) n S = 0 and so, since S is
compact we can put p = max {g: l(f(q), z) f) S Φ 0} and then 0 <£ p < 1.
Let y be the point of S on l(f(p), z) which is furthest from z. Now
suppose D is a (d — l)-simplex with DaS and y e relint Iλ

Then 2/ must be the mid-point of a segment which is contained
in S Π Q where Q is the plane through z, vif vi+1. But this is im-
possible because of the definition of y and the fact that l{f{q), z) Π
S = 0 f o r p < ? ^ l . Hence y e E(S) and so f(p) e S. This contra-
diction shows that l(x, z) Π S = 0 and thus completes the proof.

Finally, as a result of the above theorem and the comments made
in [2] we are led to ask: if S has the half-ray property and has a
point which "sees" just the extreme points of the convex hull of S and
not all the (cί-2)-extreme points, is S necessarily starshaped? The
following example shows that the answer is negative:

S = {(x, v) e R*: | x | <£ 1, | y \ £ l}\{(x, y) e R*: \ x | < i . 12/1 > i-} .

Similarly we observe that if we rotate S about the /̂-axis we obtain
a three dimensional set with the required properties.
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