LINEAR OPERATORS FOR WHICH $T^{*} T$ AND $T+T^{*}$ COMMUTE

Stephen L. Campbell

Abstract

This paper is about the bounded linear operators T acting in a separable Hilbert space h such that $T * T$ and $T+T^{*}$ commute. It will be shown that such operators are normal if they are either compact or quasinilpotent. It is conjectured that if $T^{*} T$ and $T+T^{*}$ commute, then $T=A+Q$ where $A=$ $A^{*}, A Q=Q A$, and Q is quasinormal. This conjecture is shown to be equivalent to [$\left.T^{*} T-T T^{*}\right] T\left[T^{*} T-T T^{*}\right]$ being hermitian.

For bounded linear operators X, Y, let $[X, Y]=X Y-Y X$. Let $\theta=\left\{T:\left[T^{*} T, T+T^{*}\right]=0\right\}$. The defining condition for θ appears in the work of Embry. She has shown that if $\sigma\left(T^{*}\right) \cap \sigma(T)=\varnothing$ and T or T^{*} are in θ, then T is normal [9, p. 236]. She has also shown that if $T \in \theta$ and $\left[T^{*} T, T T^{*}\right]=0$, then T is quasinormal [8, p. 459]. On the other hand if Q is quasinormal, $A=A^{*}$, and $[A, Q]=0$, then $A+Q \in \theta$. Thus Embry's result shows that the intersection of the class $(\mathrm{BN})=\left\{T:\left[T^{*} T, T T^{*}\right]=0\right\}$ (see [4] and [5]) and θ is trivial, i.e., the quasinormals. In particular, there are no nonquasinormal centered [11] operators in θ. These last observations are helpful when trying to construct examples of nonquasinormal operators in θ since (BN) includes all weighted shifts and most weighted translation operators. Using [13] it is also easy to see that if T^{2} is normal and $T \in \theta$, then T is normal.

It seems reasonable to make the following conjecture:

$$
\begin{equation*}
\theta=\left\{A+Q:\left[Q, Q^{*} Q\right]=0,[Q, A]=0, A^{*}=A\right\} \tag{C}
\end{equation*}
$$

If (C) is true, then using the canonical form for quasinormals given in [1], it is easy to see that every operator in θ is subnormal. While we have not been able to resolve (C) we shall present several results which show that the operators in θ behave much as if they were hyponormal. In particular, we shall show that if $T \in \theta$ is compact or quasinilpotent, then it is normal. This will strengthen the result in [6] which asserts that if $T \in \theta$ and T is trace class, then T is normal.

Finally, let $B(\lambda)=\left(\lambda-T^{*}\right)(\lambda-T)=\lambda^{2}-\lambda\left(T^{*}+T\right)+T^{*} T$. Note that if $T \in \theta$, then the values of $B(\lambda)$ form a commutative family of normal operators.
2. Main results. Recall from [6] that if $T \in \theta$, then $\lambda+T \in \theta$ for real λ. Also if $T \in \theta$, then the null space of $T, N(T)$, is reducing.

Finally, $T \in \theta$ if and only if $T^{*}\left[T^{*}, T\right]=\left[T^{*}, T\right] T$.
Theorem 1. Suppose that $T \in \theta$ and λ is an eigenvalue of T. Then the eigenspace of T associated with λ is reducing.

Proof. Suppose that $T \in \theta$ and λ is an eigenvalue. If λ is real, we are done. Suppose that λ is not real. Since $N(T)$ is reducing we may also assume that T is one-to-one. Let ϕ be such that $T \phi=$ $\lambda \phi$. Then $\left[T^{*}, T\right] \phi=(\lambda-T) T^{*} \phi$. Thus $T^{*}\left[T^{*}, T\right] \phi=\left[T^{*}, T\right] T \phi$ becomes $B(\lambda) T^{*} \phi=0$. Since $B(\lambda)$ is normal, and $B(\lambda)^{*}=B(\bar{\lambda})$, we have $B(\bar{\lambda}) T^{*} \phi=0$. Thus

$$
0=\lambda B(\bar{\lambda}) T^{*} \phi=B(\bar{\lambda}) T^{*} T \phi=T^{*} T B(\bar{\lambda}) \phi,
$$

so that $B(\bar{\lambda}) \phi=0$. But then

$$
0=B(\bar{\lambda}) \phi=\left(\bar{\lambda}-T^{*}\right)(\bar{\lambda}-T) \phi=(\bar{\lambda}-\lambda)\left(\bar{\lambda}-T^{*}\right) \phi
$$

Hence $T^{*} \phi=\bar{\lambda}_{\phi}$ and the eigenspace is reducing.
That the eigenspaces of a hyponormal operator are reducing is well known. See, for example, [12, p. 420].

Theorem 2. If $T \in \theta$ and T is quasinilpotent, then $T=0$.

Proof. Suppose that $T \in \theta$ and $\sigma(T)=\{0\}$. We may assume that T is one-to-one if T is not zero. If $T^{*} T\left(T+T^{*}\right)=0$, we are done. Suppose then that $T^{*} T\left(T+T^{*}\right) \neq 0$. Since $\sigma(T)=\{0\}, B(\lambda)$ is invertible for all $\lambda \neq 0$. Let $E(\cdot)$ be the spectral measure associated with the commutative Banach *-algebra generated by $T^{*} T$ and $T+T^{*}$. Then there exist E measurable functions g, h such that

$$
T^{*} T=\int_{\Delta} g(s) E(d s), T^{*}+T=\int_{\Delta} h(s) E(d s)
$$

and Δ is a compact subset of the plane. (In fact $\Delta \subseteq \sigma\left(T^{*} T\right) \times$ $\sigma\left(T^{*}+T\right)$.) Since $\left(T^{*} T\right)\left(T+T^{*}\right) \neq 0$, there exists $s_{0} \in \Delta, s_{0}$ in the support of E, such that $g\left(s_{0}\right), h\left(s_{0}\right)$ are in the E-essential ranges of g, h, respectively, and both $g\left(s_{0}\right), h\left(s_{0}\right)$ are nonzero. The polynomial $\lambda^{2}+h\left(s_{0}\right) \lambda+g\left(s_{0}\right)$ has at least one nonzero root. Call it λ_{0}. Then

$$
B\left(\lambda_{0}\right)=\int_{A}\left(\lambda_{0}^{2}+h(s) \lambda_{0}+g(s)\right) E(d s)
$$

is not invertible which is a contradiction. Hence $T=0$.
As an immediate consequence of Theorems 1 and 2 we get:

Corollary 1. If $T \in \theta$ and T is compact, then T is normal.
Our next result has two interesting corollaries.
Theorem 3. Suppose that N is normal, $B \in \theta$, and $[N, B]=0$. Then $N+B \in \theta$ if and only if, relative to the same orthogonal decomposition of the underlying Hilbert space, $N=N_{1} \oplus N_{2}, B=$ $B_{1} \oplus B_{2}, N_{1}=N_{1}^{*}$ and B_{2} is normal.

Proof. The only if part is clear. Suppose then that $T=N+$ $B \in \theta$ where N is normal, $[N, B]=0$, and $B \in \theta$. Note that $\left[N, B^{*}\right]=0$ by Fuglede's theorem. Then $\left[T^{*}, T\right]=\left[B^{*}, B\right]$, so that $T^{*}\left[T^{*}, T\right]=$ $\left[T^{*}, T\right] T$ becomes $\left(N^{*}-N\right)\left[B^{*}, B\right]=0$. Let P be the orthogonal projection onto the null space of $N^{*}-N$. Then $P N=N P$ and $P B=$ $B P$ since P is a measurable function of N. Thus the range of P reduces both N and B, so that $N=N_{1} \oplus N_{2}, B=B_{1} \oplus B_{2}$ relative to $R(P) \oplus R(I-P)$. But $N_{1}^{*}=N_{1}$ by definition of P and B_{2} is normal since $P\left[B^{*}, B\right]=\left[B^{*}, B\right]$.

Corollary 2. If $T \in \theta, \lambda+T \in \theta$, and λ is not real, then T is normal.

Corollary 3. If $T \in \theta$ and T is completely nonnormal, then there does not exist any nonhermitian normal operator N such that $[T, N]=0$ and $T+N \in \theta$.
3. Block matrix representation. If Conjecture (C) is true, then if $T \in \theta$ and T is completely nonnormal, T must have a lower triangular block matrix representation with all zero entries except on the diagonal and first subdiagonal. All diagonal entries are the same self-adjoint operator A, and all subdiagonal entries are the same positive operator P. This decomposition follows easily from the work of Brown on quasinormal operators [1].

It is easy to compute what subspace the first block corresponds to. It is the closure of the range of $T^{*} T-T T^{*}$. Morrel has developed a decomposition for operators T which have a subspace of $N\left[T^{*} T-T T^{*}\right]$ invariant [10]. Applying this to $T \in \theta$ yields a lower triangular block representation for T provided that $T^{*} T-T T^{*}$ is not one-to-one. If this approach is to verify Conjecture (C) then it will be necessary and sufficient to show that $\left[T^{*} T-T T^{*}\right] T\left[T^{*} T-\right.$ $T T^{*}$] is hermitian.

Theorem 4. Suppose that $T \in \theta$ is completely nonnormal. If $\left[T^{*}, T\right] T\left[T^{*}, T\right]$ is hermitian, then $T=A+Q$ where $[A, Q]=0, A=$
$A^{*},\left[Q, Q^{*} Q\right]=0$.
Proof. Suppose that $T \in \theta$ is completely nonnormal and [T^{*}, $T] T\left[T^{*}, T\right]$ is hermitian. If $\left[T^{*}, T\right]$ is one-to-one we have $T=T^{*}$ and are done. Assume then that $\left[T^{*}, T\right]$ is not one-to-one. Since T is nonnormal we have $\left[T^{*}, T\right] \neq 0$. Thus from [10] we get that

$$
\left[\begin{array}{cccc}
A_{1} & 0 & 0 & \cdot \tag{1}\\
B_{1} & A_{2} & 0 & \cdot \\
0 & B_{2} & A_{3} & \cdot \\
\cdot & \cdot & \cdot & \cdot
\end{array}\right]
$$

on $h=\sum_{i=0}^{l} \oplus H_{i}, H_{0}=\overline{R\left(\left[T^{*}, T\right]\right)}, l \leqq \infty, \quad \operatorname{dim} H_{i} \geqq \operatorname{dim} H_{i+1} . \quad$ By assumption $A_{1}=A_{1}^{*}$. But then $\left[T^{*}, T\right]=B_{1}^{*} B_{1}$ so that B_{1} is one-to-one. Using the fact that $H_{0}=\overline{R\left(\left[T^{*}, T\right]\right)}$ one gets by direct computation from (1) that

$$
\begin{equation*}
B_{i}^{*} A_{i+1}=A_{i} B_{i}^{*}, \quad A_{i+1}^{*} A_{i+1}+B_{i+1}^{*} B_{i+1}=B_{i} B_{i}^{*}+A_{i+1} A_{i+1}^{*} \tag{2}
\end{equation*}
$$

for $i=1,2, \cdots$ where $A_{l+1}=B_{l+1}=0$ if $l<\infty$. Furthermore, by definition of the H_{i} we have B_{i} has dense range so that B_{i}^{*} is one-to-one. Now since $T^{*}\left[T^{*}, T\right]=\left[T^{*}, T\right] T$ we have that $A_{1} B_{1}^{*} B_{1}=$ $B_{1}^{*} B_{1} A_{1}$, or $B_{1}^{*} A_{2} B_{1}=B_{1}^{*} A_{2}^{*} B_{1}$ Since B_{1} is one-to-one with dense range we get that $A_{2}=A_{2}^{*}$. But then from (2), we see that $B_{2}^{*} B_{2}=B_{1} B_{1}^{*}$ and B_{2} is one-to-one. Thus from $B_{2}^{*} A_{3}=A_{2} B_{2}^{*}$ we get that $B_{2}^{*} A_{3} B_{2}=$ $A_{2} B_{2}^{*} B_{2}=A_{2} B_{1} B_{1}^{*}=B_{1} A_{1} B_{1}^{*}=B_{1} B_{1}^{*} A_{2}$. Hence $A_{3}=A_{3}^{*}$ and $\left[A_{2}\right.$, $\left.B_{2}^{*} B_{2}\right]=0$. Suppose now that $A_{i}=A_{i}^{*},\left[A_{i}, B_{i}^{*} B_{i}\right]=0, B_{i+1}^{*} B_{i+1}=B_{i} B_{i}^{*}$, and B_{i} is one-to-one with dense range for $i \leqq k$. Then B_{k+1} is one-to-one with dense range. Also $B_{k}^{*} A_{k+1} B_{k}=A_{k} B_{k}^{*} B_{k}$ and hence $A_{k+1}^{*}=$ A_{k+1}. Thus $B_{k+2}^{*} B_{k+2}=B_{k+1} B_{k+1}^{*}$ so that B_{k+2} is one-to-one with dense range. But then $A_{k+1} B_{k+1}^{*} B_{k+1}=A_{k+1} B_{k} B_{k}^{*}=B_{k} A_{k} B_{k}^{*}=B_{k} B_{k}^{*} A_{k+1}$. Hence $\left[A_{k+1}, B_{k+1}^{*} B_{k+1}\right]=0$.

If $l<\infty$, then the l th equation is $A_{l+1}^{*} A_{l+1}=B_{l} B_{l}^{*}+A_{l+1} A_{l+1}^{*}$. As before we get $A_{l+1}^{*}=A_{l+1}$ and hence $B_{l}=0$. But then $B_{i}=0$ for all i which is a contradiction of the nonnormality of T. Thus $l=\infty$. Now let

$$
A=\left[\begin{array}{cccc}
A_{1} & 0 & & \\
0 & A_{2} & & \\
& & . & \\
& & & .
\end{array}\right] \text { and } \quad B=\left[\begin{array}{cccc}
0 & 0 & 0 & \cdot \\
B_{1} & 0 & 0 & \cdot \\
0 & B_{2} & 0 & \cdot \\
\cdot & \cdot & \cdot & \cdot
\end{array}\right]
$$

Then $B^{*} A=A B^{*}$ from (2). But $A=A^{*}$ so that $[B, A]=0$. Hence $B=T-A \in \theta$. However $B^{*}\left[B^{*}, B\right]=0$ so that $B^{*}\left(B^{*} B\right)=\left(B^{*} B\right) B^{*}$ and B is quasinormal as desired.
3. Comments. The conclusion of Theorem 1, that eigenspaces are reducing, appears in the work of Berberian. Using Theorem 1, it follows immediately from [3, p. 276] that if $T \in \theta, \sigma(T)$ is countable, and T is reduction-isoloid [3, p. 277], then T is normal.

In studying nonnormal operators one usually picks off a normal summand and studies the completely nonnormal operator that is left. Theorem 1 tells us that any condition which provides for eigenvalues is incompatible with the complete nonnormality of a $T \in \theta$. Thus one can prove results such as [2, p. 190], [3, p. 277].

Theorem 5. If $T \in \theta$ is completely nonnormal and T is also (G_{1}) or restriction convexoid, then $\sigma(T)$ has no isolated points.

Finally, we note that the restriction of a $T \in \theta$ to an invariant subspace is not necessarily in θ. The quasinormal operator in [7] whose restriction to an invariant subspace is not quasinormal is an example.

References

1. Arlen Brown, On a class of operators, 4 (1953), 723-728.
2. S. K. Berberian, Some conditions on an operator implying normality, Math. Ann., 184 (1970), 188-192.
3. S. K. Berberian, Some conditions on an operator implying normality, II, Proc. Amer. Math. Soc., 26 (1970), 277-281.
4. Stephen L. Campbell, Linear operators for which $T^{*} T$ and $T T^{*}$ commute, Proc. Amer. Math. Soc., 34 (1972), 177-180.
5. ——, Linear operators for which $T^{*} T$ and $T T^{*}$ commute, II, Pacific J. Math., 53 (1974), 355-361.
6. - Operator-valued inner functions analytic on the closed disc, II, Pacific J. Math., (to appear).
7. —, Subnormal operators with non-trivial quasinormal extensions, Acta Sci. Math. Szeged. (to appear).
8. Mary R. Embry, Conditions implying normality in Hilbert space, Pacific J. Math., 18 (1966), 457-460.
9. -, A connection between commutativity and separation of spectra of operators, Acta Sci. Math. Szeged., 32 (1971), 235-237.
10. Bernard B. Morrel, A decomposition for some operators, Indiana Univ. Math. J., 23 (1973), 497-511.
11. Bernard B. Morrel and P. S. Muhly, Centered operators, Studia Math., LI (1974), 251-263.
12. C. R. Putnam, Spectra of polar factors of hyponormal operators, Trans. Amer. Math. Soc., 188 (1974), 419-428.
13. H. Radjavi and P. Rosenthal, On roots of normal operators, J. Math. Anal. and Appl., 34 (1971), 653-664.

Received May 28, 1975 and in revised form July 28, 1975.
North Carolina State University--Raleigh

