LINEAR OPERATORS FOR WHICH T^*T AND $T + T^*$ COMMUTE

STEPHEN L. CAMPBELL

This paper is about the bounded linear operators T acting in a separable Hilbert space $\mathscr L$ such that T^*T and $T+T^*$ commute. It will be shown that such operators are normal if they are either compact or quasinilpotent. It is conjectured that if T^*T and $T+T^*$ commute, then T=A+Q where $A=A^*$, AQ=QA, and Q is quasinormal. This conjecture is shown to be equivalent to $[T^*T-TT^*]T[T^*T-TT^*]$ being hermitian.

For bounded linear operators X, Y, let [X, Y] = XY - YX. Let $\theta = \{T: [T^*T, T + T^*] = 0\}$. The defining condition for θ appears in the work of Embry. She has shown that if $\sigma(T^*) \cap \sigma(T) = \emptyset$ and T or T^* are in θ , then T is normal [9, p. 236]. She has also shown that if $T \in \theta$ and $[T^*T, TT^*] = 0$, then T is quasinormal [8, p. 459]. On the other hand if Q is quasinormal, $A = A^*$, and [A, Q] = 0, then $A + Q \in \theta$. Thus Embry's result shows that the intersection of the class $(BN) = \{T: [T^*T, TT^*] = 0\}$ (see [4] and [5]) and θ is trivial, i.e., the quasinormals. In particular, there are no nonquasinormal centered [11] operators in θ . These last observations are helpful when trying to construct examples of nonquasinormal operators in θ since (BN) includes all weighted shifts and most weighted translation operators. Using [13] it is also easy to see that if T^2 is normal and $T \in \theta$, then T is normal.

It seems reasonable to make the following conjecture:

(C)
$$\theta = \{A + Q : [Q, Q^*Q] = 0, [Q, A] = 0, A^* = A\}.$$

If (C) is true, then using the canonical form for quasinormals given in [1], it is easy to see that every operator in θ is subnormal. While we have not been able to resolve (C) we shall present several results which show that the operators in θ behave much as if they were hyponormal. In particular, we shall show that if $T \in \theta$ is compact or quasinilpotent, then it is normal. This will strengthen the result in [6] which asserts that if $T \in \theta$ and T is trace class, then T is normal.

Finally, let $B(\lambda) = (\lambda - T^*)(\lambda - T) = \lambda^2 - \lambda(T^* + T) + T^*T$. Note that if $T \in \theta$, then the values of $B(\lambda)$ form a commutative family of normal operators.

2. Main results. Recall from [6] that if $T \in \theta$, then $\lambda + T \in \theta$ for real λ . Also if $T \in \theta$, then the null space of T, N(T), is reducing.

Finally, $T \in \theta$ if and only if $T^*[T^*, T] = [T^*, T]T$.

THEOREM 1. Suppose that $T \in \theta$ and λ is an eigenvalue of T. Then the eigenspace of T associated with λ is reducing.

Proof. Suppose that $T \in \theta$ and λ is an eigenvalue. If λ is real, we are done. Suppose that λ is not real. Since N(T) is reducing we may also assume that T is one-to-one. Let ϕ be such that $T\phi = \lambda \phi$. Then $[T^*, T]\phi = (\lambda - T)T^*\phi$. Thus $T^*[T^*, T]\phi = [T^*, T]T\phi$ becomes $B(\lambda)T^*\phi = 0$. Since $B(\lambda)$ is normal, and $B(\lambda)^* = B(\overline{\lambda})$, we have $B(\overline{\lambda})T^*\phi = 0$. Thus

$$0 = \lambda B(\overline{\lambda}) T^* \phi = B(\overline{\lambda}) T^* T \phi = T^* T B(\overline{\lambda}) \phi$$
 ,

so that $B(\overline{\lambda})\phi = 0$. But then

$$0 = B(\overline{\lambda})\phi = (\overline{\lambda} - T^*)(\overline{\lambda} - T)\phi = (\overline{\lambda} - \lambda)(\overline{\lambda} - T^*)\phi.$$

Hence $T^*\phi = \bar{\lambda}\phi$ and the eigenspace is reducing.

That the eigenspaces of a hyponormal operator are reducing is well known. See, for example, [12, p. 420].

THEOREM 2. If $T \in \theta$ and T is quasinilpotent, then T = 0.

Proof. Suppose that $T \in \theta$ and $\sigma(T) = \{0\}$. We may assume that T is one-to-one if T is not zero. If $T^*T(T+T^*)=0$, we are done. Suppose then that $T^*T(T+T^*)\neq 0$. Since $\sigma(T)=\{0\}$, $B(\lambda)$ is invertible for all $\lambda \neq 0$. Let $E(\cdot)$ be the spectral measure associated with the commutative Banach *-algebra generated by T^*T and $T+T^*$. Then there exist E measurable functions g, h such that

$$T^*\,T=\int_{\mathbb{Z}}\!g(s)E(ds),\,\,T^*\,+\,\,T=\int_{\mathbb{Z}}\!h(s)E(ds)$$

and Δ is a compact subset of the plane. (In fact $\Delta \subseteq \sigma(T^*T) \times \sigma(T^*+T)$.) Since $(T^*T)(T+T^*) \neq 0$, there exists $s_0 \in \Delta$, s_0 in the support of E, such that $g(s_0)$, $h(s_0)$ are in the E-essential ranges of g, h, respectively, and both $g(s_0)$, $h(s_0)$ are nonzero. The polynomial $\lambda^2 + h(s_0)\lambda + g(s_0)$ has at least one nonzero root. Call it λ_0 . Then

$$B(\lambda_0) = \int_{\mathbb{R}} \Bigl(\lambda_0^2 + h(s)\lambda_0 + g(s)\Bigr) E(ds)$$

is not invertible which is a contradiction. Hence T=0.

As an immediate consequence of Theorems 1 and 2 we get:

COROLLARY 1. If $T \in \theta$ and T is compact, then T is normal.

Our next result has two interesting corollaries.

THEOREM 3. Suppose that N is normal, $B \in \theta$, and [N, B] = 0. Then $N + B \in \theta$ if and only if, relative to the same orthogonal decomposition of the underlying Hilbert space, $N = N_1 \oplus N_2$, $B = B_1 \oplus B_2$, $N_1 = N_1^*$ and B_2 is normal.

Proof. The only if part is clear. Suppose then that $T=N+B\in\theta$ where N is normal, [N,B]=0, and $B\in\theta$. Note that $[N,B^*]=0$ by Fuglede's theorem. Then $[T^*,T]=[B^*,B]$, so that $T^*[T^*,T]=[T^*,T]T$ becomes $(N^*-N)[B^*,B]=0$. Let P be the orthogonal projection onto the null space of N^*-N . Then PN=NP and PB=BP since P is a measurable function of N. Thus the range of P reduces both N and B, so that $N=N_1\oplus N_2$, $B=B_1\oplus B_2$ relative to $R(P)\oplus R(I-P)$. But $N_1^*=N_1$ by definition of P and P is normal since $P[B^*,B]=[B^*,B]$.

COROLLARY 2. If $T \in \theta$, $\lambda + T \in \theta$, and λ is not real, then T is normal.

COROLLARY 3. If $T \in \theta$ and T is completely nonnormal, then there does not exist any nonhermitian normal operator N such that [T, N] = 0 and $T + N \in \theta$.

3. Block matrix representation. If Conjecture (C) is true, then if $T \in \theta$ and T is completely nonnormal, T must have a lower triangular block matrix representation with all zero entries except on the diagonal and first subdiagonal. All diagonal entries are the same self-adjoint operator A, and all subdiagonal entries are the same positive operator P. This decomposition follows easily from the work of Brown on quasinormal operators [1].

It is easy to compute what subspace the first block corresponds to. It is the closure of the range of T^*T-TT^* . Morrel has developed a decomposition for operators T which have a subspace of $N[T^*T-TT^*]$ invariant [10]. Applying this to $T\in\theta$ yields a lower triangular block representation for T provided that T^*T-TT^* is not one-to-one. If this approach is to verify Conjecture (C) then it will be necessary and sufficient to show that $[T^*T-TT^*]T[T^*T-TT^*]$ is hermitian.

THEOREM 4. Suppose that $T \in \theta$ is completely nonnormal. If $[T^*, T]T[T^*, T]$ is hermitian, then T = A + Q where [A, Q] = 0, A = 0

$$A^*$$
, $[Q, Q^*Q] = 0$.

Proof. Suppose that $T \in \theta$ is completely nonnormal and $[T^*, T]T[T^*, T]$ is hermitian. If $[T^*, T]$ is one-to-one we have $T = T^*$ and are done. Assume then that $[T^*, T]$ is not one-to-one. Since T is nonnormal we have $[T^*, T] \neq 0$. Thus from [10] we get that

(1)
$$\begin{bmatrix} A_1 & 0 & 0 & \cdot \\ B_1 & A_2 & 0 & \cdot \\ 0 & B_2 & A_3 & \cdot \\ \cdot & \cdot & \cdot & \cdot \end{bmatrix}$$

on $\mathcal{A} = \sum_{i=0}^{l} \bigoplus H_i$, $H_0 = \overline{R([T^*, T])}$, $l \leq \infty$, $\dim H_i \geq \dim H_{i+1}$. By assumption $A_1 = A_1^*$. But then $[T^*, T] = B_1^*B_1$ so that B_1 is one-to-one. Using the fact that $H_0 = \overline{R([T^*, T])}$ one gets by direct computation from (1) that

$$(2) B_i^*A_{i+1} = A_iB_i^*, A_{i+1}^*A_{i+1} + B_{i+1}^*B_{i+1} = B_iB_i^* + A_{i+1}A_{i+1}^*$$

for $i=1, 2, \cdots$ where $A_{l+1}=B_{l+1}=0$ if $l<\infty$. Furthermore, by definition of the H_i we have B_i has dense range so that B_i^* is one-to-one. Now since $T^*[T^*, T] = [T^*, T]T$ we have that $A_1B_1^*B_1 = B_1^*B_1A_1$, or $B_1^*A_2B_1 = B_1^*A_2^*B_1$ Since B_1 is one-to-one with dense range we get that $A_2 = A_2^*$. But then from (2), we see that $B_2^*B_2 = B_1B_1^*$ and B_2 is one-to-one. Thus from $B_2^*A_3 = A_2B_2^*$ we get that $B_2^*A_3B_2 = A_2B_2^*B_2 = A_2B_1B_1^* = B_1A_1B_1^* = B_1B_1^*A_2$. Hence $A_3 = A_3^*$ and $[A_2, B_2^*B_2] = 0$. Suppose now that $A_i = A_i^*$, $[A_i, B_i^*B_i] = 0$, $B_{i+1}^*B_{i+1} = B_iB_i^*$, and B_i is one-to-one with dense range for $i \le k$. Then B_{k+1} is one-to-one with dense range. Also $B_k^*A_{k+1}B_k = A_kB_k^*B_k$ and hence $A_{k+1}^* = A_{k+1}$. Thus $B_{k+2}^*B_{k+2} = B_{k+1}B_{k+1}^*$ so that B_{k+2} is one-to-one with dense range. But then $A_{k+1}B_{k+1}^*B_{k+1} = A_{k+1}B_kB_k^* = B_kA_kB_k^* = B_kB_k^*A_{k+1}$. Hence $[A_{k+1}, B_{k+1}^*B_{k+1}] = 0$.

If $l<\infty$, then the lth equation is $A_{l+1}^*A_{l+1}=B_lB_l^*+A_{l+1}A_{l+1}^*$. As before we get $A_{l+1}^*=A_{l+1}$ and hence $B_l=0$. But then $B_i=0$ for all i which is a contradiction of the nonnormality of T. Thus $l=\infty$. Now let

$$A = egin{bmatrix} A_1 & 0 & & & \ 0 & A_2 & & & \ & & \ddots & & \ \end{bmatrix} \quad ext{and} \quad B = egin{bmatrix} 0 & 0 & 0 & \cdot \ B_1 & 0 & 0 & \cdot \ 0 & B_2 & 0 & \cdot \ \cdot & \cdot & \cdot & \cdot \end{bmatrix}.$$

Then $B^*A = AB^*$ from (2). But $A = A^*$ so that [B, A] = 0. Hence $B = T - A \in \theta$. However $B^*[B^*, B] = 0$ so that $B^*(B^*B) = (B^*B)B^*$ and B is quasinormal as desired.

3. Comments. The conclusion of Theorem 1, that eigenspaces are reducing, appears in the work of Berberian. Using Theorem 1, it follows immediately from [3, p. 276] that if $T \in \theta$, $\sigma(T)$ is countable, and T is reduction-isoloid [3, p. 277], then T is normal.

In studying nonnormal operators one usually picks off a normal summand and studies the completely nonnormal operator that is left. Theorem 1 tells us that any condition which provides for eigenvalues is incompatible with the complete nonnormality of a $T \in \theta$. Thus one can prove results such as [2, p. 190], [3, p. 277].

THEOREM 5. If $T \in \theta$ is completely nonnormal and T is also (G_1) or restriction convexoid, then $\sigma(T)$ has no isolated points.

Finally, we note that the restriction of a $T \in \theta$ to an invariant subspace is not necessarily in θ . The quasinormal operator in [7] whose restriction to an invariant subspace is not quasinormal is an example.

REFERENCES

- 1. Arlen Brown, On a class of operators, 4 (1953), 723-728.
- 2. S. K. Berberian, Some conditions on an operator implying normality, Math. Ann., 184 (1970), 188-192.
- 3. S. K. Berberian, Some conditions on an operator implying normality, II, Proc. Amer. Math. Soc., 26 (1970), 277-281.
- 4. Stephen L. Campbell, Linear operators for which T*T and TT* commute, Proc. Amer. Math. Soc., 34 (1972), 177-180.
- 5. ———, Linear operators for which T*T and TT* commute, II, Pacific J. Math., 53 (1974), 355-361.
- 6. ———, Operator-valued inner functions analytic on the closed disc, II, Pacific J. Math., (to appear).
- 7. ———, Subnormal operators with non-trivial quasinormal extensions, Acta Sci. Math. Szeged. (to appear).
- 8. Mary R. Embry, Conditions implying normality in Hilbert space, Pacific J. Math., 18 (1966), 457-460.
- 9. ———, A connection between commutativity and separation of spectra of operators, Acta Sci. Math. Szeged., **32** (1971), 235-237.
- 10. Bernard B. Morrel, A decomposition for some operators, Indiana Univ. Math. J., 23 (1973), 497-511.
- 11. Bernard B. Morrel and P. S. Muhly, Centered operators, Studia Math., LI (1974), 251-263.
- 12. C. R. Putnam, Spectra of polar factors of hyponormal operators, Trans. Amer. Math. Soc., 188 (1974), 419-428.
- 13. H. Radjavi and P. Rosenthal, On roots of normal operators, J. Math. Anal. and Appl., 34 (1971), 653-664.

Received May 28, 1975 and in revised form July 28, 1975.

NORTH CAROLINA STATE UNIVERSITY-RALEIGH