NORMAL HYPERSURFACES

JOSEPH BECKER

The purpose of this note is to give a simple analytic proof of a theorem of Oka: If V is a complex analytic hypersurface whose singular locus has codimension at least two, then V is normal. In other words, every weakly holomorphic function is holomorphic.

This result has since been generalized by Abhankar and Thimm to the case when V is an algebraic complete intersection (which is to say that the ideal of functions holomorphic in the ambient space vanishing on V is generated by k functions, where k is the codimension of V in the ambient space).

Actually we prove a slightly stronger result than Oka's.

THEOREM. Let V be a complex analytic hypersurface, A a complex analytic subset of V with codimension at least 2. Then there is a bounded linear operator $\phi: \mathscr{O}(V-A) \to \mathscr{O}(V)$ such that $\phi(f) \mid V - A = f$.

Proof. Suppose $V \subset C^n$ and the projection $\pi: C^n \to C^{n-1}$ to the first n-1 co-ordinates gives an *r*-sheeted branched cover of *V* in some neighborhood of the origin with branch set *B*, $B' = \pi(B)$, $A' = \pi(A)$ and $z' = \pi(z)$. Now π induces a homomorphism $_{n-1}\mathcal{O} \to _{n}\mathcal{O}/I(V) = \mathcal{O}(V)$ making $\mathcal{O}(V)$ into a finitely generated \mathcal{O}_{n-1} module with generators 1, z_n, \dots, z_n^{r-1} . Let $P(z', z_n)$ be the minimal degree polynomial for z_n over $_{n-1}\mathcal{O}$; for any $f \in \mathcal{O}(V)$ by the Weierstrass division theorem we have f = QP + R where $R \in _{n-1}\mathcal{O}[z_n]$ is a holomorphic polynomial of 'degree $\leq r-1$. Hence f can be written as $\sum_{i=0}^{r-1} b_i(z') z_n^{r-i-1} \mod I(V)$. However the $b_i(z')$'s are unique.

For every $z' \notin B'$, let $\alpha_1(z'), \dots, \alpha_r(z')$ be the values of z_n on the fiber $\pi^{-1}(z)$ and $f_j = f(z', \alpha_j(z'))$ for $j = 1, \dots, r$. Then

$$f_j = \sum_{i=0}^{r-1} b_i(z') \alpha_j(z')^{r-i-1}$$
 .

These equations can be viewed as a system of r linear equations in the r unknowns $b_i(z')$ and solved by Cramer's rule:

$$b_i(z') = \frac{\det\left[1, \alpha_j, \alpha_j^2, \cdots, \alpha_j^{r-i-2}, f_j, \alpha_{ij}^{r-i}, \cdots, \alpha_j^{r-1}\right]}{\det\left[1, \alpha_j, \cdots, \alpha_j^{r-1}\right]}$$

where in both determinants the entries in the *j*th row are indicated. The denominator is the Vandermonde determinant $\Delta(\alpha_1, \dots, \alpha_r)$ and equals $\prod_{l \neq k} (\alpha_l(z') - \alpha_k(z'))$. It is an easy exercise in linear algebra to verify that the numerator equals

$$\sum_{j=1}^{r} \sigma_{i}(\alpha_{1}, \cdots, \hat{\alpha}_{j}, \cdots, \alpha_{r}) \varDelta(\alpha_{1}, \cdots, \hat{\alpha}_{j}, \cdots, \alpha_{r}) f_{j}$$

where σ_i is the elementary symmetric polynomial of degree *i*, and $\hat{\alpha}_j$ means that α_j is to be deleted. Therefore

$$b_i(z') = \sum\limits_{j=1}^r rac{\sigma_i(lpha_1(z'),\ \cdots,\ \widehat{lpha}_j(z'),\ \cdots,\ lpha_r(z'))}{\prod\limits_{k
eq i} (lpha_j(z') - lpha_k(z'))} \, f(z', \, lpha_j(z')) \; .$$

Since f is holomorphic so is

$$b_i(z') = rac{1}{(r-i-1)!} rac{\partial^{r-i-1}f}{\partial z_n} \left(z', \, lpha_j(z')
ight)$$

and hence the $b_i(z')$ extend holomorphically across B'. (Since f and f - QP = R have the same values on V, it makes no difference which is used in these formulas.)

Now suppose $h \in \mathcal{O}(V - A)$, and for $z' \notin B'$ define

$$\phi(h) = \sum_{j=1}^{r} \left(\prod_{k \neq j} \frac{z_n - \alpha_k(z')}{\alpha_j(z') - \alpha_k(z')} \right) h(z', \alpha_j(z')) = \sum_{i=0}^{r-1} b_i(z') z_n^{r-i-1}$$

where b_i is defined above. Then the functions are holomorphic in a neighborhood of z' provided h is holomorphic near each point in $\pi^{-1}(z')$. Thus $b_i(z')$ extend to holomorphic functions near any point of B' - A' and then by Hartogs' theorem, b_i extends across A', because codim $A \ge 2$.

The operator ϕ whose existence has been demonstrated is obviously linear and clearly bounded with norm one because both $\mathcal{O}(V-A)$ and $\mathcal{O}(V)$ are Fréchet spaces [3] with seminorms being sup on compact subsets; V-A is dense in V so $\sup_{x \in V} |\phi(f) = \sup_{Y \in x-A} |f(x)|$.

Incidentally notice that we did not use the result [4] that a function holomorphic in the complement of an analytic set of codim two is bounded in a neighborhood of that set, e.g. $\mathcal{O}(V-A) = \mathcal{O}(V)$.

REMARK. The same proof works when $\mathcal{O}(V)$ is a Cohen Macauley ring, that is the direct image sheaf of $\mathcal{O}(V)$ by a local parametrization is a free sheaf.

References

1. S. Abhyankar, Concepts of order and rank on a complex space, and a condition for normality, Math. Ann., 141, (1960), 171-192.

2. R. C. Gunning, Lectures on Complex Analytic Varieties, Mathematical Notes, Princeton, N.J., Princeton University Press 1970.

3. R. C. Gunning and H. Rossi, Analytic Functions of Several Complex Variables, Englewood Cliffs, N.J., Prentice-Hall 1965.

4. R. Narasimhan, Introduction to the Theory of Analytic Spaces, Lecture Notes in Mathematics 25, Berlin-Heidelberg-New York, Spring 1966.

5. K. Oka, Sur les fonctions analytique de plusieurs variables VIII, J. Math. Soc. Japan, 3 (1951).

6. W. Thimm, Untersuchungen über das Spurproblem von holomorphen Funktionen auf analytischen Mengen, 139 (1959), 95-114.

Received February 5, 1974.

PURDUE UNIVERSITY