THE DECOMPOSITION OF MULTIPLICATION OPERATORS ON L_{p}-SPACES

H. A. Seid

Abstract

A multiplication operator on an L_{p}-space is factored as the direct sum of cyclic parts and a singular part. The equivalence of this decomposition with Rohlin's Theorem on decomposition of measure spaces is shown.

1. Introduction. Let (X, Σ, μ) be a separable measure space and suppose f is in $L_{\infty}(X, \Sigma, \mu)$. The bounded operator M_{f} on $L_{P}(X, \Sigma, \mu)$ defined by $M_{f}(g)=f \cdot g$, for $g \in L_{p}(X, \Sigma, \mu)$, is called a multiplication operator.

If $p=2$, then a multiplication operator is normal on $L_{2}(X, \Sigma, \mu)$. Thus it may be decomposed as the direct sum of cyclic normal operators. These operators need not themselves be multiplication operators. If $1 \leqq p<\infty$ and $p \neq 2$, then in general, it is not possible to decompose $L_{p}(X, \Sigma, \mu)$ into the p-direct sum of subspaces such that the restriction of a multiplication operator to each of these subspaces is cyclic. (For the definition of a p-direct summand see [7], Definition 1.1.)

With the aid of Rohlin's Theorem ([5]) in the form presented by Akcoglu ([1]), we obtain a decomposition theorem for multiplication operators on L_{p}-spaces. A multiplication operator on $L_{p}(X, \Sigma, \mu)$, $p \neq 2$, is shown to be the direct sum of a regular part and a singular part. The regular part is decomposible as a direct sum of cyclic subparts while the singular part does not possess a cyclic subpart.

We show, in turn, that this decomposition theorem implies Rohlin's theorem.
2. Preliminaries. Let (X, Σ, μ) be a separable measure space. If X is a topological space, then Σ will be the Borel σ-algebra denoted by $\mathscr{B}(X)$ (or simply \mathscr{B} if no ambiguity arises). If X is the unit interval, then we will denote X by J and the usual Borel measure space will be represented as $(J, \mathscr{B}(J), \lambda)$.

For ease of notation we will abbreviate $L_{p}(X, \Sigma, \mu)$ by $L_{p}(\mu)$, for $1 \leqq p \leqq \infty$, when no confusion will arise.

Suppose $f \in L_{\infty}(X, \Sigma, \mu)$.
Definition 2.1. The measure ϕ_{f} on $\{\mathbf{C}, \mathscr{B}(\mathbf{C})\}$ defined by $\phi_{f}(B)=$ $\mu\left\{f^{-1}(B)\right\}$, for $B \in \mathscr{B}(\mathbf{C})$, is called the measure associated with f.

We shall consider the multiplication operator $M_{f} \in B\left\{L_{p}(\mu)\right\}, 1 \leqq$ $p<\infty$. We denote its spectrum by $\sigma\left(M_{f}\right)$. Then the measure associated with f may be thought of as the measure associated with the operator M_{f}. Since $\sigma\left(M_{f}\right)$ is the essential range of f, we see that the support of ϕ_{f} is just $\sigma\left(M_{f}\right)$. Thus we interchangeably think of ϕ_{f} as a measure on (C, $\mathscr{B}(\mathbf{C})$) or on ($\sigma\left(M_{f}\right), \mathscr{B}\left(\sigma\left(M_{f}\right)\right)$).

Associated with a multiplication operator M_{f} is a spectral measure $\Phi_{f}: \mathscr{B}(\mathbf{C}) \rightarrow B\left(L_{p}(\mu)\right) \quad$ defined \quad by $\quad \Phi_{f}(B)=M_{\chi\left(f f^{-1}(B)\right\}}$, and $\quad \phi_{f}(B)=$ $\int_{X} \Phi_{f}(B) \chi(X) d \mu$, an extended real number, for $B \in B(\mathbf{C})$.

Let $g \in L_{p}(X, \Sigma, \mu)$ where $1 \leqq p<\infty$. The measure ω_{g} defined on $(\mathbf{C}, \mathscr{B}(\mathbf{C}))$ by $\omega_{g}(B)=\int_{X}\left|\Phi_{f}(B) g\right|^{p} d \mu$ is clearly absolutely continuous with respect to ϕ_{f}.

If $A \in \Sigma$, then $M_{f \mid A}$ is a multiplication operator on the space $L_{p}\left(A,\left.\Sigma\right|_{A},\left.\mu\right|_{A}\right)$ which is identified with the subspace $M_{\chi(A)}\left(L_{p}(X, \Sigma, \mu)\right)$ of $L_{p}(X, \Sigma, \mu)$. We see that $\phi_{f \mid A} \ll \phi_{f}$.

Definition 2.2. Let ϕ be any σ-finite measure on $(\mathbf{C}, \mathscr{B}(\mathbf{C}))$. Then $\mathscr{L}_{\phi} \equiv\left\{g \in L_{p}(X, \Sigma, \mu) \mid \omega_{g} \ll \phi\right\}$ is the subspace of $L_{p}(\mu)$ generated by ϕ.

Definition 2.3. Let g be a measurable function on (X, Σ, μ). Then the support of $g($ written $\operatorname{supp}(g))$ is $\{x \in X \| g(x) \mid>$ $0\}$.

Let $f \in L_{\infty}(X, \Sigma, \mu)$.
Lemma 2.1. If ϕ is any σ-finite measure on $\{\mathbf{C}, \mathscr{B}(\mathbf{C})\}$ such that $\phi \ll \phi_{f}$, then there exists $g \in L_{p}(\mu)$ such that $\omega_{g} \approx \phi$. Moreover, there exists $A_{\phi} \in \Sigma$ such that $\mathscr{L}_{\phi}=M_{\chi\left(A_{\phi}\right)}\left(L_{p}(\mu)\right)$ and $\omega_{g} \approx \phi_{f \mid A_{\phi}}$.

Proof. Without loss of generality we may assume that ϕ is a finite measure. The Radon-Nikodym derivative $d \phi / d \phi_{f} \equiv h$ is in $L_{1}\left\{\mathbf{C}, \mathscr{B}(\mathbf{C}), \phi_{f}\right\} . \quad$ Clearly if B and D are in $\mathscr{B}(\mathbf{C})$, then $\int_{B} \chi(D) d \phi_{f}=$ $\int_{f^{-1}(B)} \chi(D) \circ f d \mu$. By the Monotone Convergence Theorem it follows that $\phi(B)=\int_{B} h d \phi_{f}=\int_{f^{-1}(B)} h \circ f d \mu$. Let g be $(h \circ f)^{1 / p}$. Then we see that $g \in L_{p}(\mu)$ and $\omega_{g}(B)=\phi(B)$, for $B \in \mathscr{B}(\mathbf{C})$.

There is a Lebesgue decomposition of ϕ_{f} such that $\phi_{f}=\rho+\eta$ where $\rho \approx \phi$ and $\eta \perp \phi$. There exists $B_{0} \in \mathscr{B}(\mathbf{C})$ such that $\eta\left(B_{0}\right)=\rho\left(\mathbf{C} \backslash B_{0}\right)=$ 0 . Let A_{ϕ} be $f^{-1}\left(B_{0}\right)$. Then $M_{\chi\left(A_{\phi}\right)}\left\{L_{p}(\mu)\right\} \subset \mathscr{L}_{\phi}$ and $\phi_{f \mid A_{\phi}}=\rho$.

Suppose there exists $g_{0} \in \mathscr{L}_{\phi}$ such that $F \equiv \operatorname{supp}\left(g_{0}\right) \cap\left(X \backslash A_{\phi}\right)$ is not equal to the empty set a.e. μ. Then there exists $G \in \mathscr{B}(\mathbf{C})$ such that $G \cap B_{0}=\varnothing$ a.e. ϕ_{f} and $f^{-1}(G) \supset F$. Hence $\omega_{g 0}(G)>0$ while $\phi(G)=0$ which is a contradiction. Thus $\mathscr{L}_{\phi} \subset M_{\chi\left(A_{\phi}\right)}\left(L_{p}(\mu)\right)$.

Definition 2.4. The set A_{ϕ} associated with the measure $\phi \ll \phi_{f}$ (as in Lemma 2.1) is called the pre-support of ϕ.

In the sequel , we adopt the notation $\left\{a_{n}\right\}_{n=1}^{L \leq \infty}$ to mean the finite sequence $\left\{a_{n}\right\}_{n=1}^{L}$, if $L<\infty$, or the countably infinite sequence $\left\{a_{n}\right\}_{n \in \mathrm{~N}}$ if $L=\infty$. We shall use similar notation in sums, unions, etc. In addition, if $L=\infty$, then the expression " $1 \leqq n \leqq L$ " will mean "all $n \in \mathbf{N}$ ".
3. A decomposition theorem. Let f be an element of $L_{\infty}(X, \Sigma, \mu)$.

Definition 3.1. If A is in Σ, then the multiplication operator $M_{\left.f\right|_{A}}$ on $L_{p}\left(A,\left.\Sigma\right|_{A},\left.\mu\right|_{A}\right)$ is called a part of $M_{f}\left(\right.$ on $L_{p}\left(\left.\mu\right|_{A}\right)$).

Definition 3.2. The operator M_{f} is cyclic if there exists a function $g \in L_{p}(\mu)$ such that the set $\left\{p\left(M_{f}\right)(g) \mid p(z)\right.$ is a polynomial in $\left.z\right\}$ is a norm-dense subset of $L_{p}(\mu)$. We say that M_{f} is singular if it has no cyclic parts and that M_{f} is regular if it has no nonzero singular parts.

Definition 3.3. Let Y and Z be Banach spaces. A bounded operator T on Y is isometrically equivalent to a bounded operator U on Z if there exists a surjective isometry $K: Y \rightarrow Z$ such that $K T=U K$.

Remark 3.1. Let (X, Σ, μ) be a separable measure space and let $\left\{A_{i}\right\}_{i=1}^{L \leq \infty}$ be a sequence of pairwise disjoint sets of Σ with $\bigcup_{i=1}^{L} A_{i}=X$ a.e. μ and $A_{i} \neq \varnothing$ a.e. μ for $1 \leqq i \leqq L$. Then $L_{p}(X, \Sigma, \mu)$ is isometrically isomorphic to $\bigoplus_{i=1}^{L} L_{p}\left(A_{i},\left.\Sigma\right|_{A_{i}},\left.\mu\right|_{A_{i}}\right)$ via the mapping $\left.g \rightarrow \Sigma_{i=1}^{L} g\right|_{A_{i}}$ for g in $L_{p}(X, \Sigma, \mu)$. Under this mapping, a multiplication operator M_{f} on $L_{p}(X, \Sigma, \mu)$ is isometrically equivalent to $\bigoplus_{i=1}^{L} M_{f \mid A i}$. Thus we will say that $M_{f}=\bigoplus_{i=1}^{L} M_{f \mid A_{i}}$.

Definition 3.4. A multiplication operator M_{f} on $L_{p}(X, \Sigma, \mu)$, with associated measure ϕ_{f}, has a cyclic decomposition if

$$
M_{f}=\bigoplus_{i=1}^{L \leq \infty} M_{f \mid A_{i}} \quad \text { on } \quad \bigoplus_{i=1}^{L} L_{p}\left(A_{i},\left.\Sigma\right|_{A_{i}},\left.\mu\right|_{A_{i}}\right),
$$

where $\left\{A_{i}\right\}_{i=1}^{L}$ is a pairwise disjoint sequence of sets of Σ with $\bigcup_{i=1}^{L} A_{i}=X$ a.e. μ, such that $M_{f \mid A_{i}}$ is cyclic on $L_{p}\left(\left.\mu\right|_{A_{i}}\right)$ and its associated measure $\phi_{f \mid A_{i}}$ is equivalent to ϕ_{f} for $1 \leqq i \leqq L$.

Remark 3.2. Suppose M_{f} on $L_{p}(\mu)$ has a cyclic decomposition; then the cardinality of this decomposition is unique, i.e., any two cyclic decompositions for M_{f} have the same cardinality (see [4] Theorem 10.4.7, [7] Theorem 2.5).

Definition 3.5. Let M_{f} be a regular multiplication operator on $L_{p}(X, \Sigma, \mu)$. Suppose $\phi<\phi_{f}$ is a measure with pre-support $A_{\phi} \in$ Σ. Then ϕ is an invariant for M_{f} if:
(i) $M_{\left.f\right|_{A \phi}}$ on $L_{p}\left(A_{\phi},\left.\Sigma\right|_{A_{\phi}},\left.\mu\right|_{A_{\phi}}\right)$ has a cyclic decomposition;
(ii) if $\tau \ll \phi_{f}$ is a measure with pre-support $A_{\tau} \in \Sigma$ such that $M_{f \mid A_{T}}$ on $L_{p}\left(A_{\tau},\left.\Sigma\right|_{A_{\tau}},\left.\mu\right|_{A_{\tau}}\right)$ has a cyclic decomposition of the same cardinality as that for $M_{\left.f\right|_{A}}$, then τ is absolutely continuous with respect to ϕ.

The cardinality of the cyclic decomposition of $M_{\left.f\right|_{A \phi}}$, for ϕ an invariant, is called the multiplicity of ϕ (written $\mathcal{M}(\phi))$.

THEOREM 3.1. If ϕ_{1} and ϕ_{2} are two invariants of the operator M_{f} on $L_{p}(X, \Sigma, \mu)$, then either ϕ_{1} is equivalent to ϕ_{2} or else ϕ_{1} is singular with respect to ϕ_{2}.

Proof. Let $A_{\phi_{1}}$ and $A_{\phi_{2}}$ be the pre-supports of ϕ_{1} and ϕ_{2} respectively. Suppose $\bigoplus_{i=1}^{\mu\left(\phi_{1}\right)} \boldsymbol{M}_{f| |_{1}}$ and $\bigoplus_{i=1}^{\mu\left(\phi_{2}\right)} \boldsymbol{M}_{f \mid c_{i}}$ are cyclic decompositions for $M_{f \mid A_{\phi_{1}}}$ and $M_{f \mid A_{\phi_{2}}}$ respectively. If $\phi_{1} \npreceq \phi_{2}$, then there is a Lebesgue decomposition for ϕ_{2} such that $\phi_{2}=\phi_{2}^{1}+\phi_{2}^{2}$ where $\phi_{2}^{1}<\phi_{1}$ and $\phi_{2}^{2} \perp \phi_{1}$ with $\phi_{2}^{1} \neq 0$. Thus we have $\mathscr{L}_{\phi^{\frac{1}{2}}} \subset \mathscr{L}_{\phi_{1}}$ and $\mathscr{L}_{\phi_{\frac{1}{2}}} \neq(0)$. Let $A_{\phi^{\frac{1}{2}}}$ be the pre-support of ϕ_{2}^{1}. Then we have $A_{\phi_{2}^{1}} \subset A_{\phi_{1}}$ a.e. μ and $M_{\left.f\right|_{\mid \phi_{2}^{\prime}}}$ has a cyclic decomposition given by $\bigoplus_{i=1}^{\mu\left(\phi_{i}\right)} M_{f \mid B_{i} \cap \wedge_{\phi_{2}} .}$ But $\phi_{2}^{1}<\phi_{2}$ implies that $\mathscr{L}_{\phi_{1}^{2}} \subset \mathscr{L}_{\phi_{2}}$ and thus $M_{\left.f\right|_{A_{\phi 2}^{2}}}$ has a cyclic decomposition given by $\bigoplus_{i=1}^{M\left(\phi_{2}\right)} M_{f \mid c_{i} \cap A_{\phi_{2}^{\prime}}}$. Thus we ${ }^{\phi_{2}}$ conclude that $\mathcal{M}\left(\phi_{1}\right)=\mathcal{M}\left(\phi_{2}\right)$ and hence $\phi_{1} \approx \phi_{2}$.

Lemma 3.1. Let M_{f} be a regular multiplication operator on $L_{p}(X, \Sigma, \mu)$ with associated measure ϕ_{f}. Suppose there exists a sequence of measures $\left\{\phi_{i}\right\}_{i=1}^{L \leqslant \infty}$ such that for $1 \leqq i \leqq L$:
(i) $\quad \phi_{i} \ll \phi_{f}$ with pre-support $A_{\phi_{i}} \in \Sigma$;
(ii) $\phi_{f}=\sum_{i=1}^{L} \phi_{i}$;
(iii) $M_{\left.f\right|_{A_{\phi}}}$ has a cyclic decomposition of cardinality C_{i};
(iv) $C_{i} \neq C_{,}$if $i \neq j$.

Then $\left\{\phi_{i}\right\}_{l=1}^{L}$ is a sequence of invariants for M_{f}.
Proof. Consider $\phi_{i_{0}}$ where i_{0} is a fixed index such that $1 \leqq i_{0} \leqq$ L. Suppose $\tau \ll \phi_{f}$ is a measure with pre-support $A_{\tau} \neq \varnothing$ a.e. μ and such that $M_{f \mid A_{\tau}}$ has a cyclic decomposition $\bigoplus_{i=1}^{i_{i}} M_{f \mid A_{,}}$of cardinality $C_{i 0}$. Suppose $\tau \ll \phi_{i 0}$. Then $\tau=\tau_{1}+\tau_{2}$ where $\tau_{1} \ll \phi_{i 0}$ and $\tau_{2} \perp \phi_{i 0}$ with $\tau_{2} \neq 0$. There exists an index $j_{0}, 1 \leqq j_{0} \leqq L$, with $j_{0} \neq i_{0}$, such that
$\tau_{2} \not \subset \phi_{j 0}$. Without loss of generality we may assume that $\tau_{2} \ll$ $\phi_{j_{0}}$. Suppose $A_{\tau_{2}}$ is the pre-support of τ_{2}. Then $\bigoplus_{i=1}^{J_{i}} M_{f \mid A_{i} \cap A_{\tau_{2}}}$ is a cyclic decomposition for $M_{f \mid A_{\tau_{2}}}$. But if $\bigoplus_{i=1}^{J_{i}} M_{f \mid B_{1}}$ is a cyclic decomposition for $M_{f \mid A_{\phi_{1}}}$, where $A_{\phi_{j_{0}}}$ is the pre-support of $\phi_{j_{0}}$, then $\bigoplus_{i=1}^{J_{i}} M_{f| |_{B_{i} \cap A_{\tau_{2}}}}$ is a cyclic decomposition for $M_{f \mid A_{\tau}}$ of cardinality $C_{j 0}$. But then we have $C_{i 0}=$ C_{p}. This is a contradiction. Thus $\phi_{t 0}$ is an invariant.

Definition 3.6. A sequence of measures $\left\{\phi_{i}\right\}_{i=1}^{L}$ satisfying the conditions (i) to (iv) of Lemma 3.1 is called a complete set of invariants for M_{f}.

Remark 3.3. It follows directly from Theorem 3.1 that two complete sets of invariants, for the same regular multiplication operator M_{f}, are merely permutations of each other.

Lemma 3.2. Let (X, Σ, μ) and (Y, Φ, ν) be measure spaces. If $M_{f} \in B\left(L_{p}(\mu)\right)$ and $M_{g} \in B\left(L_{p}(\nu)\right)$ are isometrically equivalent multiplication operators, then ϕ_{f} is equivalent to ϕ_{g}.

Proof. If $p=2$, this result follows from the uniqueness of the resolution of the identity for a normal operator (see, e.g., [2] Theorem 1, p. 65).

Suppose we have $p \neq 2$. There exists a surjective isometry $K: L_{p}(\mu) \rightarrow L_{p}(\nu)$ such that $K M_{f}=M_{g} K$ and K induces a setisomorphism $\Gamma:(X, \Sigma, \mu) \rightarrow(Y, \Phi, \nu)$ as follows. Let $A \in \Sigma$. If h is in $L_{p}(\mu)$ and $\operatorname{supp}(h)=A$ a.e. μ, then $\Gamma(A)=\operatorname{supp}\{K(h)\}$ a.e. ν independent of the choice of the function h (see [7] Theorem 1.2 and [3] Theorem 3.1).

For $A \in \Sigma$, define K_{A} equal to $K_{\mid L_{p}\left(\left.\mu\right|_{A}\right)}$. Then K_{A} is a surjective isometry from $L_{p}\left(\left.\mu\right|_{A}\right)$ to $L_{p}\left(\left.\nu\right|_{\Gamma(A)}\right)$ and $K_{A} M_{f \mid A}=M_{\left.g \mid \mathrm{r}_{A}\right)} K_{A}$.

Now suppose that there exists G a Borel subset of \mathbf{C} such that $\phi_{f}(G)>0$. Then there exists $A_{G} \in \Sigma$, with $\mu\left(A_{G}\right)>0$, such that $\sigma\left(M_{f \mid A_{G}}\right) \subset G$. Thus we see that $\sigma\left(M_{g \mid \Gamma\left(A_{G}\right)}\right) \subset G$ since under $K_{A_{G}}$, the spectrum is preserved. Clearly $M_{g \mid r\left(A_{G}\right)} \neq 0$. It follows that $\nu\left\{\Gamma\left(A_{G}\right)\right\}>0$ and that $\phi_{g}(G)>0$. Thus $\phi_{g} \gg \phi_{f}$. The converse is proved similarly using Γ^{-1}.

Remark 3.4. Let ν be a measure on $\{J, \mathscr{B}(J)\}$. Suppose M_{f} is a multiplication operator on $L_{p}(J, \mathscr{B}(J), \nu)$. Let $\left\{\delta_{i}\right\}_{i=1}^{\infty}$ be the measures on ($J, \mathscr{B}(J)$) defined by

$$
\delta_{i}(B)= \begin{cases}1, & 1-1 / i \in B \\ 0, & 1-1 / i \notin B\end{cases}
$$

for $B \in \mathscr{B}(J)$ and $i \in \mathbf{N}$. There exists a sequence of Borel measures $\left\{\mu_{i}\right\}_{i=0}^{L \leq \infty}$ on $\left(\sigma\left(M_{f}\right), \mathscr{B}\left(\sigma\left(M_{f}\right)\right)\right)$ such that $\mu_{i} \gg \mu_{i+1}$, for $1 \leqq i \leqq L$, and a point isomorphism γ from ($J, \mathscr{B}(J), v$) to the Borel measure space $(E, \mathscr{B}(E), \tau)$, where E is the set $\sigma\left(M_{f}\right) \times J$ and τ is $\mu_{0} \times \lambda+\sum_{i=1}^{L} \mu_{i} \times \delta_{i}$, such that $f=\pi_{1} \circ \gamma$ a.e. ν (the map π_{1} is the projection of E onto $\sigma\left(M_{f}\right)$). This is just the formulation of Rohlin's Theorem ([5] § IV) presented by Akcoglu ([1] Theorem 5.2).

Theorem 3.2. Let (X, Σ, μ) be a separable σ-finite measure space. Suppose M_{f} is a multiplication operator on $L_{p}(\mu)$. Then it follows that:
(i) there exists $A_{r} \in \Sigma$, depending only on f, such that $M_{f}=$ $M_{f \mid A_{r},} \oplus M_{f \mid A_{s}}$, where $A_{s}=X \backslash A_{r}, M_{f \mid A_{r}} \equiv M_{f r}$ is regular, and $M_{f \mid A_{s}} \equiv M_{f_{s}}$ is singular;
(ii) if $A \neq \varnothing$ a.e., then $\left(A_{s},\left.\Sigma\right|_{A_{s}},\left.\mu\right|_{A_{s}}\right)$ is nonatomic, and if ϕ_{s} is the measure associated with $M_{f_{s}}$, there exists a surjective isometry $K: L_{p}\left(\left.\mu\right|_{A_{s}}\right) \rightarrow L_{p}\left(E, \mathscr{B}(E), \phi_{s} \times \lambda\right)$, where $E=\sigma\left(M_{f}\right) \times J$, such that $M_{\pi_{1}} K=K M_{f_{s}}$ for π_{1} the projection of E onto $\sigma\left(M_{f_{s}}\right)$.
(iii) if $A_{r} \neq \varnothing$ a.e. μ then $M_{f_{r}}$ has a complete set of invariants.

Proof. There exists a set isomorphism Γ between (X, Σ, μ) and $(J, \mathscr{B}(J), \nu)$ for some Borel measure ν (see [6] Theorem 2, p. 264). Thus there exists a surjective isometry $I: L_{p}(\mu) \rightarrow L_{p}(\nu)$ such that I is induced by Γ and $M_{f}=I^{-1} M_{f^{\prime}} I$ for some multiplication operator on $M_{f^{\prime}}$ on $L_{p}(\nu)$ (see [7] Theorem 1.3). Since the singularity and regularity are preserved and the associated measures of the operators M_{f} and $M_{f^{\prime}}$ are equivalent under I, we shall assume that (X, Σ, μ) is $(J, \mathscr{B}(J), \nu)$ and that M_{f} is a multiplication operator on $L_{p}(\nu)$.

Consider the measure space $(E, \mathscr{B}(E), \tau)$ as in Remark 3.4. Let γ be the point isomorphism $(J, \mathscr{B}(J), \nu) \rightarrow\{E, \mathscr{B}(E), \tau\}$ such that $f=$ $\pi_{1}{ }^{\circ} \gamma$. We partition the set E into disjoint sets C and D such that $C=\bigcup_{i=1}^{L} C_{i}$, where $C_{i}=\left\{(x, 1-1 / i) \mid x \in \sigma\left(M_{f}\right)\right\}$ and $D=E \backslash C$. We have $\left.\tau\right|_{D}=\mu_{0} \times \lambda$ and $\left.\tau\right|_{C_{i}}=\mu_{i} \times \delta_{i}, 1 \leqq i \leqq L$.

Clearly the measure space $\left(D,\left.\mathscr{B}(E)\right|_{D},\left.\tau\right|_{D}\right)$ is point isomorphic to $\left(E, \mathscr{B}(E), \mu_{0} \times \lambda\right)$ under the identity mapping $\tau: D \rightarrow E$.

Let A_{r} be $\gamma^{-1}(C)$. Then A_{s} is $\gamma^{-1}(D)$. Since $\left(E, \mathscr{B}(E), \mu_{0} \times \lambda\right)$ is nonatomic, it follows that $\left(A_{s},\left.\mathscr{B}(J)\right|_{A_{s}},\left.\nu\right|_{A_{s}}\right)$ is nonatomic. If A is a Borel subset of A_{s} with $A \neq \varnothing$ a.e. ν, then we see that $\left.f\right|_{A}=\left.\pi_{1} \circ \gamma\right|_{A}$ is not univalent on the compliment of any subset of A of measure zero and thus $M_{f \mid A}$ is not cyclic on $L_{p}\left(\left.\nu\right|_{A}\right) . \quad$ Suppose $A_{r} \neq \varnothing$ a.e. ν and $B \neq \varnothing$ a.e. ν is a Borel subset of A_{r}. If B is an atom, then the operator $M_{\left.f\right|_{B}}$ on $L_{p}\left(\left.\nu\right|_{B}\right)$ is cyclic since $L_{p}\left(\left.\nu\right|_{B}\right)$ is one dimensional. If B is nonatomic, then $\gamma(B)=\bigcup_{i=1}^{L} \gamma(B) \cap C_{i}$. If for some index i_{0} we have $\gamma(B) \cap$ $C_{i 0} \neq \varnothing$ a.e. τ, then $B_{i_{0}} \equiv \gamma^{-1}\left\{\gamma(B) \cap C_{i 0}\right\} \neq \varnothing$ a.e. ν and $\left.f\right|_{B_{i_{0}}}$ is
univalent. Thus $M_{f \mid \mathbb{B}_{i_{0}}}$ is cyclic on $L_{p}\left(\left.\nu\right|_{B_{i_{0}}}\right)$ and $M_{f \mid \mathrm{B}}$ is thus seen be be the direct sum of cyclic parts. It follows immediately that $M_{f \mid A_{r}} \equiv M_{f r}$ is regular and that $M_{f \mid A_{s}} \equiv M_{f_{s}}$ is singular and that $M_{f}=M_{f r} \oplus M_{f_{s}}$ (see [7] Theorem 3.3).

Suppose $A_{s} \neq \varnothing$ a.e. ν. Since $\phi_{s}(B)=\nu\left\{\left.f\right|_{A_{s}} ^{-1}(B)\right\}$ for B a Borel subset of $\sigma\left(M_{f}\right)$, we see that $\left.f\right|_{A_{s}} ^{-1}(B)=\gamma^{-1}\left\{D \cap \pi_{1}^{-1}(B)\right\}$ implies $\phi_{s}(B)=$ $\mu_{0}(B)$. It follows that $\left.\gamma\right|_{A_{s}}$ is a point isomorphism between $\left(A_{s},\left.\mathscr{B}(J)\right|_{A_{s}},\left.\nu\right|_{A_{s}}\right)$ and $\left(E, \mathscr{B}(E), \phi_{s} \times \lambda\right)$.

By standard methods it follows that there exists a surjective isometry $K: L_{p}\left(\left.\nu\right|_{A_{s}}\right) \rightarrow L_{p}\left(E, \mathscr{B}(E), \phi_{s} \times \lambda\right)$ defined for $g \in L_{p}\left(\left.\nu\right|_{A_{s}}\right)$ by $K(g)=$ $h \cdot\left(\left.g \circ \gamma\right|_{D} ^{-1}\right)$ for some h measurable on $\left(E, \mathscr{B}(E), \phi_{s} \times \lambda\right)$ such that $K M_{f \mid A s}=M_{\pi 1} K$ (see, e.g., [7] Remark 1.1).

The sequence of measures $\left\{\mu_{t}\right\}_{i=1}^{L}$ has one of the following two properties:
(1) given i_{0} with $1 \leqq i_{0}<L$, there exists $j_{0}>i_{0}$ with $j_{0}<L$ such that $\mu_{r o} \ll \mu_{t 0}$ but $\mu_{\mathrm{fo}} \ngtr \mu_{i o}$;
(2) there exists some index i_{0} such that $\mu_{t} \approx \mu_{j}$ for $1 \leqq i_{0} \leqq i, j \leqq L$.

In order to establish (iii), we shall assume (1) is true since (2) is handled in a similar manner.

First note that we must conclude that $L=\infty$. Now let ψ_{0} be the zero measure on the Borel sets of $\sigma\left(M_{f}\right) \equiv S$. Define $G_{0}=\varnothing$ and choose the nonnegative integer $n_{0}=0$. Suppose that the measure ψ_{j} on $\{S, \mathscr{B}(S)\}$, the set $G_{j} \in \mathscr{B}(S)$, and the nonnegative integer n_{j} have been chosen for $0 \leqq j \leqq i<\infty$. We define ψ_{i+1}, G_{i+1}, and n_{i+1} as follows: let $S_{t}=S \backslash \bigcup_{j=0}^{i} G_{j}$ and compare the measure $\mu_{1} \mid S_{i}$ with each of the measures $\mu_{k} \mid S_{i}$. There exists a smallest integer $k_{t}>n_{i}$ such that $\mu_{k} \mid S_{i}$ is equivalent to $\mu_{1} \mid S_{\imath}$ for $1 \leqq k \leqq k_{i}$ while $\mu_{k}\left|S_{i} \neq \mu_{1}\right| S_{t}$ for $k>k_{t}$. Set $n_{i+1}=k_{i}$. Then there exists Borel measures ω_{1} and ω_{2} such that $\mu_{1} \mid S_{i}=$ $\omega_{1}+\omega_{2}$ where $\omega_{1} \approx \mu_{k_{1}+1 \mid s_{i}}$ and $\omega_{2} \perp \mu_{k_{i+1} \mid} \mid S_{1}$. There exists G_{i+1}, a Borel subset of S, such that $\omega_{1}\left(G_{i+1}\right)=\omega_{2}\left(S \backslash G_{i+1}\right)=0$. Set $\psi_{i+1}=\sum_{j=1}^{n_{i+1}} \mu_{l} \mid G_{i+1}$. If we define $G_{\infty}=S \backslash \bigcup_{j=0}^{\infty} G_{i}$ then one of the following possibilities can occur:
(a) for all $k \in \mathbf{N}, \mu_{k}\left|G_{\infty} \approx \mu_{1}\right| G_{\infty} \neq 0$, or
(b) $\mu_{1} \mid G_{\infty}=0$.

If (a) is true, we define $\psi_{\infty}=\sum_{i=1}^{\infty} \mu_{i} \mid G_{\infty}$. If (b) is true ψ_{∞} is not defined. Without loss of generality, we shall assume (a) holds. The collection of measures $\left\{\psi_{t}\right\}_{i=1}^{\infty} \cup\left\{\psi_{\infty}\right\}$ has the following properties:
(1) $\psi_{l} \perp \psi_{l}$ for $j \neq i$
(2) $\sum_{i=1}^{\infty} \mu_{t}=\sum_{i=1}^{\infty} \psi_{t}+\psi_{\infty}=\varphi_{r}$, the measure associated with M_{f},
(3) for each $i \in \overline{\mathbf{N}}$, where $\overline{\mathbf{N}}=\mathbf{N} \cup\{\infty\}$ we have $\bigoplus_{\mathrm{j} \in \mathrm{F}} \mathrm{M}_{\mathrm{fl} / \gamma^{-1}\left\{\pi_{1}^{-1}(\mathrm{G}) \cap \mathrm{C}, j, j\right.}$, where $F=\left\{j \in \mathbf{N} \mid \mu_{j}\left(\pi_{i}^{-1}\left(G_{i}\right) \cap C_{j}\right)>0\right\}$ is a cylic decomposition for $M_{f \mid \gamma^{-1}\left\{\pi i^{-1}\left(G_{i}\right) \cap C_{c}\right\}}$ which has associated measure ψ_{i}.
Thus by Lemma 3.1, $\left\{\psi_{t}\right\}_{i \in \overline{\mathbf{N}}}$ is a complete set of invariants for $M_{f_{r}}$ and $\mathcal{M}\left(\psi_{l}\right)=n_{l}$ for $i \in \mathbf{N}$, while $\mathcal{M}\left(\psi_{x}\right)=\boldsymbol{N}_{0}$.

We have thus shown that Rohlin's Theorem (Remark 3.4) implies Theorem 3.2

Theorem 3.3. Theorem 3.2 implies Remark 3.4.

Proof. Let $f \in L_{\infty}(J, \mathscr{B}(J), \nu)$. Then M_{f} on $L_{p}(\nu)$ has a regular part $M_{f r}$ and a singular part $M_{f s}$ with $M_{f}=M_{f r} \oplus M_{f_{s}}$. In order to consider the most general situation, we assume that neither $M_{f_{r}}$ nor $M_{f_{s}}$ is zero. We let ϕ_{r} and ϕ_{s} be the measures associated with $M_{f r}$ and $M_{f_{s}}$ respectively.

There exists a complete set of invariants $\left\{\phi_{i}\right\}_{t=1}^{L \leq \infty}$ for $M_{f_{r}}$, and we let $\left\{A_{i}\right\}_{t=1}^{L \leq \infty}$ be the corresponding sequence of pre-supports. Thus $M_{f_{r}}=$ $\bigoplus_{i=1}^{L} M_{f \mid A}$ and for $1 \leqq i \leqq L$, we see that $M_{f \mid A i}$ has a cyclic decomposition of multiplicity $\mathcal{M}\left(\phi_{t}\right)$ given by $M_{f \mid A_{1}}=\bigoplus_{j=1}^{\mu\left(\phi_{i}\right)} M_{f \mid A_{i j}}$ (where, if $\mathcal{M}\left(\phi_{i_{0}}\right)=\boldsymbol{N}_{0}$ for some i_{0}, then $\left.M_{f \mid A_{t_{0}}}=\bigoplus_{j=1}^{\infty} M_{f \mid A_{t_{0}}}\right)$.

Without loss of generality, assume that $\left\{\phi_{i}\right\}_{i=1}^{L}$ is countably infinite and that $\mathcal{M}\left(\phi_{1}\right)<\mathcal{M}\left(\phi_{2}\right)<\mathcal{M}\left(\phi_{3}\right)<\cdots$. For $j \in \mathbf{N}$, we define $B_{j}=$ $\cup_{i \in \mathbf{N},} A_{i j}$, where $\mathbf{N}_{t}=\left\{i \in \mathbf{N} \mid j \leqq \mathcal{M}\left(\phi_{i}\right)\right\}$, and let f_{l} be $\left.f\right|_{B_{i}}$. Then $M_{f_{r}}=$ $\bigoplus_{l \in N} M_{f_{i}}$ and each $M_{f_{j}}$ is cyclic on $L_{p}\left(A_{j},\left.\mathscr{B}(J)\right|_{A_{i},},\left.\nu\right|_{A_{1}}\right)$. Also for $j \in \mathbf{N}$, we have $\sigma\left(M_{f_{j}}\right) \geqq \sigma\left(M_{f_{j}+1}\right)$ and $\mu_{\jmath} \gg \mu_{\jmath+1}$, where $\mu_{\text {, }}$ is the measure associated with f_{j}.

Consider the set $E=\sigma\left(M_{f}\right) \times J$ and the measure space $\left(E, \mathscr{B}(E), \tau_{d}\right)$ defined as follows: for $G \in \mathscr{B}(E)$, we set $\tau_{d}(G)=$ $\Sigma_{J \in \mathrm{~N}} \mu_{j}\left\{\pi_{1}\left(G \cap C_{j}\right)\right\}$ where $C_{j}=\left\{(x, t) \in E \mid x \in \sigma\left(M_{f}\right) ; t=1-1 / j\right\}$. Then $\tau_{d}(G)=\Sigma_{l \in \mathrm{~N}} \mu_{l} \times \delta_{l}\left(G \cap C_{l}\right)$. Define $\quad \gamma_{j}: B_{j} \rightarrow E \quad$ by $\quad \gamma_{j}(t)=$ $\left(f_{,}(t), 1-1 / j\right)$ for $j \in \mathbf{N}$. Then we define $\gamma_{d}: A_{r} \rightarrow E$, where A_{r} is as in Theorem 3.2, by $\gamma_{d}(t)=\left(f_{l}(t), 1-1 / j\right)$ for $t \in A_{r} \cap B_{l} \equiv B_{j}$. From the definition of τ_{d}, it follows that γ_{d} is a measure preserving point isomorphism from $\left(A_{r},\left.\left.\mathscr{B}(J)\right|_{A_{r},} \nu\right|_{A_{r}}\right)$ to $\left(E, \mathscr{B}(E), \tau_{d}\right)$. Furthermore, we have $\left.f\right|_{A_{r}}=\pi_{1}{ }^{\circ} \gamma_{d}$ a.e. ν.

Let $A_{s}=J \backslash A_{r}$. If $p=2, M_{f_{s}}$ singular on $L_{2}\left(A_{s},\left.\mathscr{B}(J)\right|_{A_{s}},\left.\mu\right|_{A_{s}}\right)$ implies $M_{f_{s}}$ is singular on $\left(L_{p}\left(A_{s},\left.\mathscr{B}(J)\right|_{A_{s}},\left.\nu\right|_{A_{s}}\right)\right.$ for $p \neq 2$. We therefore assume that $p \neq 2$. There exists a surjective isometry

$$
K: L_{p}\left\{A_{\varsigma},\left.\mathscr{B}(J)\right|_{A s},\left.\nu\right|_{A_{s}}\right\} \rightarrow L_{p}\left\{E, \mathscr{B}(E), \phi_{s} \times \lambda\right\}
$$

such that $K \circ M_{f_{5}}=M_{\pi_{1}} \circ K$. In addition K induces a natural measure preserving point isomorphism γ_{c} from $\left(A_{s},\left.\left.\mathscr{B}(J)\right|_{A_{s}, \gamma}\right|_{A_{s}}\right)$ to ($E, \mathscr{B}(E), \phi_{,} \times \lambda$) such that $\left.f\right|_{A_{s}}=\pi_{1} \circ \gamma_{c}$ (see, e.g., [6] Corollary 12, p. 272). Define μ_{0} to be the measure ϕ_{s} on $\sigma\left(M_{f}\right)$.

The map

$$
\gamma=\left\{\begin{array}{llr}
\gamma_{c} & \text { on } & E \backslash \bigcup_{i=1}^{\infty} C_{i} \\
\gamma_{d} & \text { on } & \bigcup_{i=1}^{\infty} C_{i}
\end{array}\right.
$$

is the required point isomorphism such that $f=\pi_{1} \circ \gamma$ and the result now follows.

EXAmple 3.1. Let $\gamma: J \rightarrow J \times J$ be a point isomorphism from the usual Borel measure space on $[0,1]$ the usual Borel measure space on the unit square. Then $f \equiv \pi_{1}{ }^{\circ} \gamma$ is in $L_{\infty}(J, B(J), \lambda)$. There does not exist a set $B \in \mathscr{B}(J)$ of measure zero, such that $\left.f\right|_{J \backslash B}$ is univalent. It follows that M_{f} is singular on $L_{p}(J, B(J), \lambda)$ for $1 \leqq p<\infty$ (see [7] Theorem 3.3).

4. A characterization theorem.

Theorem 4.1. Suppose (X, Σ, μ) and (Y, Φ, ν) are separable measure spaces. Then $M_{f} \in B\left(L_{p}(\mu)\right)$ is isometrically equivalent to $M_{g} \in$ $B\left(L_{p}(\nu)\right), p \neq 2$, if and only if the regular parts of M_{f} and M_{g} have equivalent complete sets of invariants with the same multiplicities and the singular parts of M_{f} and M_{g} have equivalent associated measures.

Proof. (\Leftarrow) There exists a measure ω on $(J, \mathscr{B}(J))$ such that (X, Σ, μ) is set isomorphic to $(J, \mathscr{B}(J), \omega)$. There exists a measure ρ on $(J, \mathscr{B}(J))$ such that (Y, Φ, ν) is set isomorphic to $(J, \mathscr{B}(J), \rho)$. By an argument similar to that of the beginning of the proof of Theorem 3.2, we assume that M_{f} is in $B\left(L_{p}(J, \mathscr{B}(J), \omega)\right)$ and M_{g} is in $B\left(L_{p}(J, \mathscr{B}(J), \rho)\right)$. Let $\left(E_{f}, \mathscr{B}\left(E_{f}\right), \tau_{f}\right) \equiv \mathscr{C}_{f}$ and $\left(E_{g}, \mathscr{B}\left(E_{g}\right), \tau_{g}\right) \equiv \mathscr{C}_{g}$ be the measure spaces generated by f and g respectively as in Remark 3.4. Then since the invariants of the regular parts of M_{f} and M_{g} are equivalent and the singular parts have equivalent associated measures, it follows that \mathscr{E}_{f} and \mathscr{E}_{g} are point isomorphic under the identity mapping (although the isomorphism may not be measure preserving). Thus it follows that M_{f} on $L_{p}(\omega)$ and M_{g} on $L_{p}(\rho)$ are both equivalent to $M_{\pi_{1}}$ on $L_{p}\left(\mathscr{C}_{f}\right)$ since the identity point isomorphism between \mathscr{E}_{f} and \mathscr{E}_{g} induces a surjective isometry $J: L_{p}\left(\mathscr{C}_{f}\right) \rightarrow L_{p}\left(\mathscr{E}_{g}\right)$ such that $J M_{\pi_{1}}=M_{\pi_{1}} J$.
(\Rightarrow) Suppose $K: L_{p}(\mu) \rightarrow L_{p}(\nu)$ is a surjective isometry such that $K M_{f}=M_{g} K$. Then using the notation as in the proof of Lemma 3.2, K induces a set isomorphism $\Gamma:(X, \Sigma, \mu) \rightarrow(Y, \Phi, \nu)$ such that $K_{A} M_{\left.f\right|_{A}}=$ $M_{g \mid \Gamma(A)} K_{A}$ for $A \in \Sigma$, since $p \neq 2$. Let $M_{f,}$ be the regular part and $M_{f s}$ be the singular part of M_{f}. Let $A_{r} \in \Sigma$ be as in Theorem 3.2 (i). We see that $K_{A}, M_{f r}=M_{g|r(A)|} K_{A_{r}} \quad$ and that $\quad K_{A_{s}} M_{f_{s}}=M_{g \mid r\left(A_{s}\right)} K_{A_{s}}$, where $A_{s}=$ $X \backslash A_{r}$. Thus, since $K_{A r}$ and $K_{A_{s}}$ preserve the cyclicity of a multiplication operator, we see that $M_{g \mid(\mathrm{r}(\mathrm{A})} \equiv M_{g r}$ is the regular part and $M_{g \mid \mathrm{r}(\mathrm{As})} \equiv M_{g_{s}}$ is the singular part of M_{g}. Let ϕ_{r} and ψ_{r} be the measures associated with M_{f}, and $M_{g r}$ respectively. Let ϕ_{s} and ψ_{s} be the measures associated with $M_{f s}$ and $M_{g s}$ respectively. Then we conclude that $\phi_{r} \approx \psi_{r}$ and $\phi_{s} \approx \psi_{s}$.

There exists a complete set of invariants $\left\{\phi_{i}\right\}_{i=1}^{L \leq \infty}$ for M_{f}, such that $M_{f r}=\bigoplus_{i=1}^{L} M_{f \mid A_{i}}$, where ϕ_{i} is the measure associated with $M_{f \mid A,}, 1 \leqq i \leqq L$,
and $M_{f \mid \Lambda_{i}}$ has a cyclic decomposition of cardinality $\mathcal{M}\left(\phi_{i}\right)$. (Here A_{i} is. the pre-support of ϕ_{i}.) There exists a sequence of disjoint measurable sets of $\Sigma,\left\{A_{i j}\right\}_{j=1}^{\mu\left(\phi_{i}\right)}$ such that $M_{f \mid A_{1}}=\bigoplus_{j=1}^{\mu\left(\phi_{i}\right)} M_{f \mid A_{i j}}$ is a cyclic decomposition. Let ψ_{i} be the measure associated with $M_{g \mid r_{i},}, 1 \leqq i \leqq$ L. Then we conclude that $\left\{\psi_{i}\right\}_{i=1}^{L}$ is a complete set of invariants for $M_{g r}$ with $\psi_{i} \approx \phi_{i}$ and $\mathcal{M}\left(\psi_{i}\right)=\mathcal{M}\left(\phi_{i}\right)$ for $1 \leqq i \leqq L$.

Remark 4.1. The "if" direction of Theorem 4.1 is true for $p=$ 2. The proof is exactly the same as was presented for $p \neq 2$. However, the "only if" direction is false if $p=2$. In fact, by standard multiplicity theory for normal operators on Hilbert space ([4], Chapter 10) it is possible to construct a surjective isometry K between two L_{2}-spaces such that a singular multiplication operator M_{f} is isometrically equivalent to a regular multiplication operator M_{g} under K.

References

1. M. A. Akcoglu, Sub σ-algebras of Lebesgue spaces, (to appear).
2. P. R. Halmos, Introduction to Hilbert Space and the Theory of Spectral Multiplicity, Chelsea Publishing Company, New York (1957).
3. J. Lamperti, On the isometries of certain function-spaces, Pacific J. Math., 8 (1958), 459-466.
4. A. I. Plesner, Spectral Theory of Linear Operators, Vol. II, Frederick Ungar Publishing Company, New York (1969).
5. V. A. Rohlin, On the fundamental ideas of measure theory, Mat. Sborn., 25 (1949), 107-150 [= Amer. Math. Soc. Transl. 71 (1952)].
6. H. L. Royden, Real Analysis, The Macmillan Company, New York (1963).
7. H. A. Seid, Cyclic multiplication operators on L_{p}-spaces, (to appear) Pacific J. Math., 51 (1974), 549-562.

Received March 5, 1974.
University of Toronto

