THE DECOMPOSITION OF MULTIPLICATION OPERATORS ON L_p -SPACES

H. A. SEID

A multiplication operator on an L_p -space is factored as the direct sum of cyclic parts and a singular part. The equivalence of this decomposition with Rohlin's Theorem on decomposition of measure spaces is shown.

1. Introduction. Let (X, Σ, μ) be a separable measure space and suppose f is in $L_{\infty}(X, \Sigma, \mu)$. The bounded operator M_f on $L_P(X, \Sigma, \mu)$ defined by $M_f(g) = f \cdot g$, for $g \in L_P(X, \Sigma, \mu)$, is called a multiplication operator.

If p=2, then a multiplication operator is normal on $L_2(X, \Sigma, \mu)$. Thus it may be decomposed as the direct sum of cyclic normal operators. These operators need not themselves be multiplication operators. If $1 \le p < \infty$ and $p \ne 2$, then in general, it is not possible to decompose $L_p(X, \Sigma, \mu)$ into the p-direct sum of subspaces such that the restriction of a multiplication operator to each of these subspaces is cyclic. (For the definition of a p-direct summand see [7], Definition 1.1.)

With the aid of Rohlin's Theorem ([5]) in the form presented by Akcoglu ([1]), we obtain a decomposition theorem for multiplication operators on L_p -spaces. A multiplication operator on $L_p(X, \Sigma, \mu)$, $p \neq 2$, is shown to be the direct sum of a regular part and a singular part. The regular part is decomposible as a direct sum of cyclic subparts while the singular part does not possess a cyclic subpart.

We show, in turn, that this decomposition theorem implies Rohlin's theorem.

2. Preliminaries. Let (X, Σ, μ) be a separable measure space. If X is a topological space, then Σ will be the Borel σ -algebra denoted by $\mathcal{B}(X)$ (or simply \mathcal{B} if no ambiguity arises). If X is the unit interval, then we will denote X by J and the usual Borel measure space will be represented as $(J, \mathcal{B}(J), \lambda)$.

For ease of notation we will abbreviate $L_p(X, \Sigma, \mu)$ by $L_p(\mu)$, for $1 \le p \le \infty$, when no confusion will arise.

Suppose $f \in L_{\infty}(X, \Sigma, \mu)$.

DEFINITION 2.1. The measure ϕ_f on $\{C, \mathcal{B}(C)\}$ defined by $\phi_f(B) = \mu\{f^{-1}(B)\}$, for $B \in \mathcal{B}(C)$, is called the measure associated with f.

We shall consider the multiplication operator $M_f \in B\{L_p(\mu)\}$, $1 \le p < \infty$. We denote its spectrum by $\sigma(M_f)$. Then the measure associated with f may be thought of as the measure associated with the operator M_f . Since $\sigma(M_f)$ is the essential range of f, we see that the support of ϕ_f is just $\sigma(M_f)$. Thus we interchangeably think of ϕ_f as a measure on $(\mathbb{C}, \mathcal{B}(\mathbb{C}))$ or on $(\sigma(M_f), \mathcal{B}(\sigma(M_f)))$.

Associated with a multiplication operator M_f is a spectral measure $\Phi_f \colon \mathcal{B}(\mathbb{C}) \to B(L_p(\mu))$ defined by $\Phi_f(B) = M_{\chi(f^{-1}(B))}$, and $\phi_f(B) = \int_X \Phi_f(B)\chi(X)d\mu$, an extended real number, for $B \in B(\mathbb{C})$.

Let $g \in L_p(X, \Sigma, \mu)$ where $1 \le p < \infty$. The measure ω_g defined on $(\mathbb{C}, \mathcal{B}(\mathbb{C}))$ by $\omega_g(B) = \int_X |\Phi_f(B)g|^p d\mu$ is clearly absolutely continuous with respect to ϕ_f .

If $A \in \Sigma$, then $M_{f|A}$ is a multiplication operator on the space $L_p(A, \Sigma|_A, \mu|_A)$ which is identified with the subspace $M_{\chi(A)}(L_p(X, \Sigma, \mu))$ of $L_p(X, \Sigma, \mu)$. We see that $\phi_{f|A} \ll \phi_{f}$.

DEFINITION 2.2. Let ϕ be any σ -finite measure on $(\mathbb{C}, \mathcal{B}(\mathbb{C}))$. Then $\mathcal{L}_{\phi} \equiv \{g \in L_p(X, \Sigma, \mu) | \omega_g \leqslant \phi\}$ is the subspace of $L_p(\mu)$ generated by ϕ .

DEFINITION 2.3. Let g be a measurable function on (X, Σ, μ) . Then the support of g (written supp(g)) is $\{x \in X \mid |g(x)| > 0\}$.

Let $f \in L_{\infty}(X, \Sigma, \mu)$.

LEMMA 2.1. If ϕ is any σ -finite measure on $\{C, \mathcal{B}(C)\}$ such that $\phi \ll \phi_f$, then there exists $g \in L_p(\mu)$ such that $\omega_g \approx \phi$. Moreover, there exists $A_{\phi} \in \Sigma$ such that $\mathcal{L}_{\phi} = M_{\chi(A_{\phi})}(L_p(\mu))$ and $\omega_g \approx \phi_{f|_{A_{\phi}}}$.

Proof. Without loss of generality we may assume that ϕ is a finite measure. The Radon-Nikodym derivative $d\phi/d\phi_f \equiv h$ is in $L_1\{\mathbb{C}, \mathcal{B}(\mathbb{C}), \phi_f\}$. Clearly if B and D are in $\mathcal{B}(\mathbb{C})$, then $\int_B \chi(D)d\phi_f = \int_{f^{-1}(B)} \chi(D) \circ f d\mu$. By the Monotone Convergence Theorem it follows that $\phi(B) = \int_B h d\phi_f = \int_{f^{-1}(B)} h \circ f d\mu$. Let g be $(h \circ f)^{1/p}$. Then we see that $g \in L_p(\mu)$ and $\omega_g(B) = \phi(B)$, for $B \in \mathcal{B}(\mathbb{C})$.

There is a Lebesgue decomposition of ϕ_f such that $\phi_f = \rho + \eta$ where $\rho \approx \phi$ and $\eta \perp \phi$. There exists $B_0 \in \mathcal{B}(\mathbb{C})$ such that $\eta(B_0) = \rho(\mathbb{C} \backslash B_0) = 0$. Let A_{ϕ} be $f^{-1}(B_0)$. Then $M_{\chi(A_0)}\{L_p(\mu)\} \subset \mathcal{L}_{\phi}$ and $\phi_{f|A_{\phi}} = \rho$.

Suppose there exists $g_0 \in \mathcal{L}_{\phi}$ such that $F \equiv \operatorname{supp}(g_0) \cap (X \setminus A_{\phi})$ is not equal to the empty set a.e. μ . Then there exists $G \in \mathcal{B}(\mathbb{C})$ such that $G \cap B_0 = \emptyset$ a.e. ϕ_f and $f^{-1}(G) \supset F$. Hence $\omega_{g_0}(G) > 0$ while $\phi(G) = 0$ which is a contradiction. Thus $\mathcal{L}_{\phi} \subset M_{\chi(A_{\phi})}(L_p(\mu))$.

DEFINITION 2.4. The set A_{ϕ} associated with the measure $\phi \ll \phi_f$ (as in Lemma 2.1) is called the pre-support of ϕ .

In the sequel we adopt the notation $\{a_n\}_{n=1}^{L\leq\infty}$ to mean the finite sequence $\{a_n\}_{n=1}^L$, if $L<\infty$, or the countably infinite sequence $\{a_n\}_{n\in\mathbb{N}}$ if $L=\infty$. We shall use similar notation in sums, unions, etc. In addition, if $L=\infty$, then the expression " $1\leq n\leq L$ " will mean "all $n\in\mathbb{N}$ ".

3. A decomposition theorem. Let f be an element of $L_{\infty}(X, \Sigma, \mu)$.

DEFINITION 3.1. If A is in Σ , then the multiplication operator $M_{f|A}$ on $L_p(A, \Sigma|_A, \mu|_A)$ is called a part of M_f (on $L_p(\mu|_A)$).

DEFINITION 3.2. The operator M_f is cyclic if there exists a function $g \in L_p(\mu)$ such that the set $\{p(M_f)(g)|p(z)$ is a polynomial in $z\}$ is a norm-dense subset of $L_p(\mu)$. We say that M_f is singular if it has no cyclic parts and that M_f is regular if it has no nonzero singular parts.

DEFINITION 3.3. Let Y and Z be Banach spaces. A bounded operator T on Y is isometrically equivalent to a bounded operator U on Z if there exists a surjective isometry $K: Y \rightarrow Z$ such that KT = UK.

REMARK 3.1. Let (X, Σ, μ) be a separable measure space and let $\{A_i\}_{i=1}^{L \le \infty}$ be a sequence of pairwise disjoint sets of Σ with $\bigcup_{i=1}^{L} A_i = X$ a.e. μ and $A_i \ne \emptyset$ a.e. μ for $1 \le i \le L$. Then $L_p(X, \Sigma, \mu)$ is isometrically isomorphic to $\bigoplus_{i=1}^{L} L_p(A_i, \Sigma|_{A_i}, \mu|_{A_i})$ via the mapping $g \to \Sigma_{i=1}^{L} g|_{A_i}$ for g in $L_p(X, \Sigma, \mu)$. Under this mapping, a multiplication operator M_f on $L_p(X, \Sigma, \mu)$ is isometrically equivalent to $\bigoplus_{i=1}^{L} M_{f|_{A_i}}$. Thus we will say that $M_f = \bigoplus_{i=1}^{L} M_{f|_{A_i}}$.

DEFINITION 3.4. A multiplication operator M_f on $L_p(X, \Sigma, \mu)$, with associated measure ϕ_f , has a cyclic decomposition if

$$M_f = \bigoplus_{i=1}^{L \leq \infty} M_{f|_{A_i}}$$
 on $\bigoplus_{i=1}^{L} L_p(A_i, \Sigma|_{A_i}, \mu|_{A_i}),$

where $\{A_i\}_{i=1}^L$ is a pairwise disjoint sequence of sets of Σ with $\bigcup_{i=1}^L A_i = X$ a.e. μ , such that $M_{f|A_i}$ is cyclic on $L_p(\mu|_{A_i})$ and its associated measure $\phi_{f|A_i}$ is equivalent to ϕ_f for $1 \le i \le L$.

REMARK 3.2. Suppose M_f on $L_p(\mu)$ has a cyclic decomposition; then the cardinality of this decomposition is unique, i.e., any two cyclic decompositions for M_t have the same cardinality (see [4] Theorem 10.4.7, [7] Theorem 2.5).

Definition 3.5. Let M_f be a regular multiplication operator on $L_p(X, \Sigma, \mu)$. Suppose $\phi \ll \phi_f$ is a measure with pre-support $A_{\phi} \in$ Then ϕ is an invariant for M_f if:

- $M_{f|_{A_{\phi}}}$ on $L_{p}(A_{\phi}, \Sigma|_{A_{\phi}}, \mu|_{A_{\phi}})$ has a cyclic decomposition;
- (ii) if $\tau \ll \phi_f$ is a measure with pre-support $A_{\tau} \in \Sigma$ such that $M_{f|_{A_{\tau}}}$ on $L_p(A_\tau, \Sigma|_{A_\tau}, \mu|_{A_\tau})$ has a cyclic decomposition of the same cardinality as that for $M_{f|_{A\phi}}$, then τ is absolutely continuous with respect to ϕ .

The cardinality of the cyclic decomposition of $M_{f|_{A\phi}}$, for ϕ an invariant, is called the *multiplicity* of ϕ (written $\mathcal{M}(\phi)$).

THEOREM 3.1. If ϕ_1 and ϕ_2 are two invariants of the operator M_f on $L_p(X, \Sigma, \mu)$, then either ϕ_1 is equivalent to ϕ_2 or else ϕ_1 is singular with respect to ϕ_2 .

Proof. Let A_{ϕ_1} and A_{ϕ_2} be the pre-supports of ϕ_1 and ϕ_2 respectively. Suppose $\bigoplus_{i=1}^{\mathcal{M}(\phi_1)} M_{f|B_i}$ and $\bigoplus_{i=1}^{\mathcal{M}(\phi_2)} M_{f|C_i}$ are cyclic decompositions for $M_{f|_{A_{\phi_1}}}$ and $M_{f|_{A_{\phi_2}}}$ respectively. If $\phi_1 \not\perp \phi_2$, then there is a Lebesgue decomposition for ϕ_2 such that $\phi_2 = \phi_1^1 + \phi_2^2$ where $\phi_2^1 \ll \phi_1$ and $\phi_2^2 \perp \phi_1$ with $\phi_2^1 \neq 0$. Thus we have $\mathcal{L}_{\phi_2^1} \subset \mathcal{L}_{\phi_1}$ and $\mathcal{L}_{\phi_2^1} \neq (0)$. Let $A_{\phi_2^1}$ be the pre-support of ϕ_2^1 . Then we have $A_{\phi_2^1} \subset A_{\phi_1}$ a.e. μ and $M_{f|_{A_{\phi_2}^1}}$ has a cyclic decomposition given by $\bigoplus_{i=1}^{\mathcal{M}(\phi_1)} M_{f|_{B_i \cap A_{\phi_2}}}$. But $\phi_2^1 \ll \phi_2$ implies that $\mathcal{L}_{\phi_2^1} \subset \mathcal{L}_{\phi_2}$ and thus $M_{f|_{A_{\phi_2}}}$ has a cyclic decomposition given by $\bigoplus_{i=1}^{\mathcal{M}(\phi_2)} M_{f|_{C_i \cap A_{\phi_2}}}$. Thus we conclude that $\mathcal{M}(\phi_1) = \mathcal{M}(\phi_2)$ and hence $\phi_1 \approx \phi_2$.

LEMMA 3.1. Let M_i be a regular multiplication operator on $L_n(X, \Sigma, \mu)$ with associated measure ϕ_t . Suppose there exists a sequence of measures $\{\phi_i\}_{i=1}^{L\leq\infty}$ such that for $1\leq i\leq L$:

- $\phi_i \ll \phi_f$ with pre-support $A_{\phi_i} \in \Sigma$;
- (ii) $\phi_f = \sum_{i=1}^L \phi_i$;
- (iii) $M_{f|_{A_{\phi_i}}}$ has a cyclic decomposition of cardinality C_i ; (iv) $C_i \neq C_j$ if $i \neq j$.

Then $\{\phi_i\}_{i=1}^L$ is a sequence of invariants for M_t .

Proof. Consider ϕ_{i_0} where i_0 is a fixed index such that $1 \le i_0 \le$ L. Suppose $\tau \ll \phi_f$ is a measure with pre-support $A_{\tau} \neq \emptyset$ a.e. μ and such that $M_{f|A}$ has a cyclic decomposition $\bigoplus_{i=1}^{J_i} M_{f|A}$ of cardinality C_{i_0} . Suppose $\tau \not\ll \phi_{i_0}$. Then $\tau = \tau_1 + \tau_2$ where $\tau_1 \ll \phi_{i_0}$ and $\tau_2 \perp \phi_{i_0}$ with $\tau_2 \neq 0$. There exists an index j_0 , $1 \leq j_0 \leq L$, with $j_0 \neq i_0$, such that $au_2 \not\perp \phi_{j_0}$. Without loss of generality we may assume that $au_2 \ll \phi_{j_0}$. Suppose A_{τ_2} is the pre-support of au_2 . Then $\bigoplus_{i=1}^{J_{i_0}} M_{f|_{A_i \cap A_{\tau_2}}}$ is a cyclic decomposition for $M_{f|_{A_{\tau_2}}}$. But if $\bigoplus_{i=1}^{J_{i_0}} M_{f|_{B_i}}$ is a cyclic decomposition for $M_{f|_{A_{\tau_2}}}$, where $A_{\phi_{i_0}}$ is the pre-support of ϕ_{j_0} , then $\bigoplus_{i=1}^{J_{i_0}} M_{f|_{B_i \cap A_{\tau_2}}}$ is a cyclic decomposition for $M_{f|_{A_{\tau_2}}}$ of cardinality C_{j_0} . But then we have $C_{j_0} = C_{j_0}$. This is a contradiction. Thus ϕ_{j_0} is an invariant.

DEFINITION 3.6. A sequence of measures $\{\phi_i\}_{i=1}^L$ satisfying the conditions (i) to (iv) of Lemma 3.1 is called a complete set of invariants for M_f .

REMARK 3.3. It follows directly from Theorem 3.1 that two complete sets of invariants, for the same regular multiplication operator M_f , are merely permutations of each other.

LEMMA 3.2. Let (X, Σ, μ) and (Y, Φ, ν) be measure spaces. If $M_f \in B(L_p(\mu))$ and $M_g \in B(L_p(\nu))$ are isometrically equivalent multiplication operators, then ϕ_f is equivalent to ϕ_g .

Proof. If p = 2, this result follows from the uniqueness of the resolution of the identity for a normal operator (see, e.g., [2] Theorem 1, p. 65).

Suppose we have $p \neq 2$. There exists a surjective isometry $K: L_p(\mu) \to L_p(\nu)$ such that $KM_f = M_gK$ and K induces a setisomorphism $\Gamma: (X, \Sigma, \mu) \to (Y, \Phi, \nu)$ as follows. Let $A \in \Sigma$. If h is in $L_p(\mu)$ and supp(h) = A a.e. μ , then $\Gamma(A) = \text{supp}\{K(h)\}$ a.e. ν independent of the choice of the function h (see [7] Theorem 1.2 and [3] Theorem 3.1).

For $A \in \Sigma$, define K_A equal to $K_{|L_p(\mu|_A)}$. Then K_A is a surjective isometry from $L_p(\mu|_A)$ to $L_p(\nu|_{\Gamma(A)})$ and $K_AM_{f|_A} = M_{g|_{\Gamma(A)}}K_A$.

Now suppose that there exists G a Borel subset of C such that $\phi_f(G) > 0$. Then there exists $A_G \in \Sigma$, with $\mu(A_G) > 0$, such that $\sigma(M_{g|_{\Gamma(A_G)}}) \subset G$. Thus we see that $\sigma(M_{g|_{\Gamma(A_G)}}) \subset G$ since under K_{A_G} , the spectrum is preserved. Clearly $M_{g|_{\Gamma(A_G)}} \neq 0$. It follows that $\nu\{\Gamma(A_G)\} > 0$ and that $\phi_g(G) > 0$. Thus $\phi_g \gg \phi_f$. The converse is proved similarly using Γ^{-1} .

REMARK 3.4. Let ν be a measure on $\{J, \mathcal{B}(J)\}$. Suppose M_f is a multiplication operator on $L_p(J, \mathcal{B}(J), \nu)$. Let $\{\delta_i\}_{i=1}^{\infty}$ be the measures on $(J, \mathcal{B}(J))$ defined by

$$\delta_i(B) = \begin{cases} 1, & 1 - 1/i \in B \\ 0, & 1 - 1/i \notin B \end{cases}$$

for $B \in \mathcal{B}(J)$ and $i \in \mathbb{N}$. There exists a sequence of Borel measures $\{\mu_i\}_{i=0}^{L \leq \infty}$ on $(\sigma(M_f), \mathcal{B}(\sigma(M_f)))$ such that $\mu_i \geqslant \mu_{i+1}$, for $1 \leq i \leq L$, and a point isomorphism γ from $(J, \mathcal{B}(J), \nu)$ to the Borel measure space $(E, \mathcal{B}(E), \tau)$, where E is the set $\sigma(M_f) \times J$ and τ is $\mu_0 \times \lambda + \sum_{i=1}^L \mu_i \times \delta_i$, such that $f = \pi_1 \circ \gamma$ a.e. ν (the map π_1 is the projection of E onto $\sigma(M_f)$). This is just the formulation of Rohlin's Theorem ([5] § IV) presented by Akcoglu ([1] Theorem 5.2).

THEOREM 3.2. Let (X, Σ, μ) be a separable σ -finite measure space. Suppose M_f is a multiplication operator on $L_p(\mu)$. Then it follows that:

- (i) there exists $A_r \in \Sigma$, depending only on f, such that $M_f = M_{f|A_r} \bigoplus M_{f|A_s}$, where $A_s = X \setminus A_r$, $M_{f|A_r} \equiv M_{f_r}$ is regular, and $M_{f|A_s} \equiv M_{f_s}$ is singular;
- (ii) if $A \neq \emptyset$ a.e., then $(A_s, \Sigma|_{A_s}, \mu|_{A_s})$ is nonatomic, and if ϕ_s is the measure associated with M_{f_s} , there exists a surjective isometry $K: L_p(\mu|_{A_s}) \rightarrow L_p(E, \mathcal{B}(E), \phi_s \times \lambda)$, where $E = \sigma(M_f) \times J$, such that $M_{\pi_1}K = KM_{f_s}$ for π_1 the projection of E onto $\sigma(M_{f_s})$.
 - (iii) if $A_r \neq \emptyset$ a.e. μ then M_f has a complete set of invariants.

Proof. There exists a set isomorphism Γ between (X, Σ, μ) and $(J, \mathcal{B}(J), \nu)$ for some Borel measure ν (see [6] Theorem 2, p. 264). Thus there exists a surjective isometry $I: L_p(\mu) \to L_p(\nu)$ such that I is induced by Γ and $M_f = I^{-1}M_fI$ for some multiplication operator on M_f on $L_p(\nu)$ (see [7] Theorem 1.3). Since the singularity and regularity are preserved and the associated measures of the operators M_f and M_f are equivalent under I, we shall assume that (X, Σ, μ) is $(J, \mathcal{B}(J), \nu)$ and that M_f is a multiplication operator on $L_p(\nu)$.

Consider the measure space $(E, \mathcal{B}(E), \tau)$ as in Remark 3.4. Let γ be the point isomorphism $(J, \mathcal{B}(J), \nu) \rightarrow \{E, \mathcal{B}(E), \tau\}$ such that $f = \pi_1 \circ \gamma$. We partition the set E into disjoint sets C and D such that $C = \bigcup_{i=1}^L C_i$, where $C_i = \{(x, 1-1/i) | x \in \sigma(M_f)\}$ and $D = E \setminus C$. We have $\tau|_D = \mu_0 \times \lambda$ and $\tau|_{C_i} = \mu_i \times \delta_i$, $1 \le i \le L$.

Clearly the measure space $(D, \mathcal{B}(E)|_D, \tau|_D)$ is point isomorphic to $(E, \mathcal{B}(E), \mu_0 \times \lambda)$ under the identity mapping $\tau: D \to E$.

Let A_r be $\gamma^{-1}(C)$. Then A_s is $\gamma^{-1}(D)$. Since $(E, \mathcal{B}(E), \mu_0 \times \lambda)$ is nonatomic, it follows that $(A_s, \mathcal{B}(J)|_{A_s}, \nu|_{A_s})$ is nonatomic. If A is a Borel subset of A_s with $A \neq \emptyset$ a.e. ν , then we see that $f|_A = \pi_1 \circ \gamma|_A$ is not univalent on the compliment of any subset of A of measure zero and thus $M_{f|_A}$ is not cyclic on $L_p(\nu|_A)$. Suppose $A_r \neq \emptyset$ a.e. ν and $B \neq \emptyset$ a.e. ν is a Borel subset of A_r . If B is an atom, then the operator $M_{f|_B}$ on $L_p(\nu|_B)$ is cyclic since $L_p(\nu|_B)$ is one dimensional. If B is nonatomic, then $\gamma(B) = \bigcup_{i=1}^L \gamma(B) \cap C_i$. If for some index i_0 we have $\gamma(B) \cap C_{i_0} \neq \emptyset$ a.e. ν and $f|_{B_{i_0}}$ is

univalent. Thus $M_{f|B_{t_0}}$ is cyclic on $L_p(\nu|_{B_{t_0}})$ and $M_{f|B}$ is thus seen be be the direct sum of cyclic parts. It follows immediately that $M_{f|A_r} \equiv M_{f_r}$ is regular and that $M_{f|A_r} \equiv M_{f_s}$ is singular and that $M_f = M_{f_r} \oplus M_{f_s}$ (see [7] Theorem 3.3).

Suppose $A_s \neq \emptyset$ a.e. ν . Since $\phi_s(B) = \nu\{f|_{A_s}^{-1}(B)\}$ for B a Borel subset of $\sigma(M_f)$, we see that $f|_{A_s}^{-1}(B) = \gamma^{-1}\{D \cap \pi_1^{-1}(B)\}$ implies $\phi_s(B) = \mu_0(B)$. It follows that $\gamma|_{A_s}$ is a point isomorphism between $(A_s, \mathcal{B}(J)|_{A_s}, \nu|_{A_s})$ and $(E, \mathcal{B}(E), \phi_s \times \lambda)$.

By standard methods it follows that there exists a surjective isometry $K: L_p(\nu|_{A_s}) \to L_p(E, \mathcal{B}(E), \phi_s \times \lambda)$ defined for $g \in L_p(\nu|_{A_s})$ by $K(g) = h \cdot (g \circ \gamma|_D^{-1})$ for some h measurable on $(E, \mathcal{B}(E), \phi_s \times \lambda)$ such that $KM_{f|_{A_s}} = M_{\pi_l}K$ (see, e.g., [7] Remark 1.1).

The sequence of measures $\{\mu_i\}_{i=1}^L$ has one of the following two properties:

- (1) given i_0 with $1 \le i_0 < L$, there exists $j_0 > i_0$ with $j_0 < L$ such that $\mu_n \le \mu_n$ but $\mu_n \ge \mu_n$;
 - (2) there exists some index i_0 such that $\mu_i \approx \mu_j$ for $1 \le i_0 \le i, j \le L$.

In order to establish (iii), we shall assume (1) is true since (2) is handled in a similar manner.

First note that we must conclude that $L=\infty$. Now let ψ_0 be the zero measure on the Borel sets of $\sigma(M_f)\equiv S$. Define $G_0=\emptyset$ and choose the nonnegative integer $n_0=0$. Suppose that the measure ψ_j on $\{S,\mathcal{B}(S)\}$, the set $G_j\in\mathcal{B}(S)$, and the nonnegative integer n_j have been chosen for $0\leq j\leq i<\infty$. We define ψ_{i+1} , G_{i+1} , and n_{i+1} as follows: let $S_i=S\setminus\bigcup_{j=0}^i G_j$ and compare the measure $\mu_1|S_i$ with each of the measures $\mu_k|S_i$. There exists a smallest integer $k_i>n_i$ such that $\mu_k|S_i$ is equivalent to $\mu_1|S_i$ for $1\leq k\leq k_i$ while $\mu_k|S_i\not\approx \mu_1|S_i$ for $k>k_i$. Set $n_{i+1}=k_i$. Then there exists Borel measures ω_1 and ω_2 such that $\mu_1|S_i=\omega_1+\omega_2$ where $\omega_1\approx \mu_{k_i+1}|S_i$ and $\omega_2\perp \mu_{k_i+1}|S_i$. There exists G_{i+1} , a Borel subset of S_i such that $\omega_1(G_{i+1})=\omega_2(S\setminus G_{i+1})=0$. Set $\psi_{i+1}=\sum_{j=1}^{n_{i+1}}\mu_j|G_{i+1}$. If we define $G_\infty=S\setminus\bigcup_{j=0}^\infty G_i$ then one of the following possibilities can occur:

- (a) for all $k \in \mathbb{N}$, $\mu_k | G_{\infty} \approx \mu_1 | G_{\infty} \neq 0$, or
- (b) $\mu_1 | G_{\infty} = 0$.

If (a) is true, we define $\psi_{\infty} = \sum_{i=1}^{\infty} \mu_i | G_{\infty}$. If (b) is true ψ_{∞} is not defined. Without loss of generality, we shall assume (a) holds. The collection of measures $\{\psi_i\}_{i=1}^{\infty} \cup \{\psi_{\infty}\}$ has the following properties:

- (1) $\psi_i \perp \psi_j$ for $j \neq i$
- (2) $\sum_{i=1}^{\infty} \mu_i = \sum_{i=1}^{\infty} \psi_i + \psi_{\infty} = \varphi_r$, the measure associated with M_f
- (3) for each $i \in \overline{\mathbf{N}}$, where $\overline{\mathbf{N}} = \mathbf{N} \cup \{\infty\}$ we have $\bigoplus_{j \in F} M_{f|\gamma^{-1}\{\pi_i^{-1}(G_i) \cap C_j\}}$, where $F = \{j \in \mathbf{N} \mid \mu_j(\pi_i^{-1}(G_i) \cap C_j) > 0\}$ is a cylic decomposition for $M_{f|\gamma^{-1}\{\pi_i^{-1}(G_i) \cap C_j\}}$ which has associated measure ψ_i .

Thus by Lemma 3.1, $\{\psi_i\}_{i\in\bar{\mathbb{N}}}$ is a complete set of invariants for M_f , and $\mathcal{M}(\psi_i) = n_i$ for $i \in \mathbb{N}$, while $\mathcal{M}(\psi_{\infty}) = \aleph_0$.

We have thus shown that Rohlin's Theorem (Remark 3.4) implies Theorem 3.2

THEOREM 3.3. Theorem 3.2 implies Remark 3.4.

Proof. Let $f \in L_{\infty}(J, \mathcal{B}(J), \nu)$. Then M_f on $L_p(\nu)$ has a regular part M_f , and a singular part M_f , with $M_f = M_f$, $\bigoplus M_f$. In order to consider the most general situation, we assume that neither M_f , nor M_f is zero. We let ϕ_r and ϕ_s be the measures associated with M_f , and M_f respectively.

There exists a complete set of invariants $\{\phi_i\}_{i=1}^{L \leq \infty}$ for M_{f_i} and we let $\{A_i\}_{i=1}^{L \leq \infty}$ be the corresponding sequence of pre-supports. Thus $M_{f_i} = \bigoplus_{i=1}^{L} M_{f|A_i}$ and for $1 \leq i \leq L$, we see that $M_{f|A_i}$ has a cyclic decomposition of multiplicity $\mathcal{M}(\phi_i)$ given by $M_{f|A_i} = \bigoplus_{j=1}^{\mathcal{M}(\phi_i)} M_{f|A_{i_0}}$ (where, if $\mathcal{M}(\phi_{i_0}) = \aleph_0$ for some i_0 , then $M_{f|A_{i_0}} = \bigoplus_{j=1}^{\infty} M_{f|A_{i_{0,j}}}$).

Without loss of generality, assume that $\{\phi_i\}_{i=1}^L$ is countably infinite and that $\mathcal{M}(\phi_1) < \mathcal{M}(\phi_2) < \mathcal{M}(\phi_3) < \cdots$. For $j \in \mathbb{N}$, we define $B_j = \bigcup_{i \in \mathbb{N}_i} A_{ij}$, where $\mathbb{N}_j = \{i \in \mathbb{N} \mid j \leq \mathcal{M}(\phi_i)\}$, and let f_j be $f|_{B_j}$. Then $M_{f_i} = \bigoplus_{j \in \mathbb{N}} M_{f_i}$ and each M_{f_i} is cyclic on $L_p(A_j, \mathcal{B}(J)|_{A_j}, \nu|_{A_j})$. Also for $j \in \mathbb{N}$, we have $\sigma(M_{f_i}) \geq \sigma(M_{f_{j+1}})$ and $\mu_j \gg \mu_{j+1}$, where μ_j is the measure associated with f_j .

Consider the set $E = \sigma(M_f) \times J$ and the measure space $(E, \mathcal{B}(E), \tau_d)$ defined as follows: for $G \in \mathcal{B}(E)$, we set $\tau_d(G) = \sum_{j \in \mathbb{N}} \mu_j \{ \pi_1(G \cap C_j) \}$ where $C_j = \{(x, t) \in E \mid x \in \sigma(M_f); t = 1 - 1/j \}$. Then $\tau_d(G) = \sum_{j \in \mathbb{N}} \mu_j \times \delta_j(G \cap C_j)$. Define $\gamma_j : B_j \to E$ by $\gamma_j(t) = (f_j(t), 1 - 1/j)$ for $j \in \mathbb{N}$. Then we define $\gamma_d : A_r \to E$, where A_r is as in Theorem 3.2, by $\gamma_d(t) = (f_j(t), 1 - 1/j)$ for $t \in A_r \cap B_j \equiv B_j$. From the definition of τ_d , it follows that γ_d is a measure preserving point isomorphism from $(A_r, \mathcal{B}(J)|_{A_r}, \nu|_{A_r})$ to $(E, \mathcal{B}(E), \tau_d)$. Furthermore, we have $f|_{A_r} = \pi_1 \circ \gamma_d$ a.e. ν .

Let $A_s = J \setminus A_r$. If p = 2, M_{f_s} singular on $L_2(A_s, \mathcal{B}(J)|_{A_s}, \mu|_{A_s})$ implies M_{f_s} is singular on $(L_p(A_s, \mathcal{B}(J)|_{A_s}, \nu|_{A_s})$ for $p \neq 2$. We therefore assume that $p \neq 2$. There exists a surjective isometry

$$K: L_p\{A, \mathcal{B}(J)|_{A, \nu}|_{A, s}\} \rightarrow L_p\{E, \mathcal{B}(E), \phi_s \times \lambda\}$$

such that $K \circ M_{f_s} = M_{\pi_1} \circ K$. In addition K induces a natural measure preserving point isomorphism γ_c from $(A_s, \mathcal{B}(J)|_{A_s}, \gamma|_{A_s})$ to $(E, \mathcal{B}(E), \phi, \times \lambda)$ such that $f|_{A_s} = \pi_1 \circ \gamma_c$ (see, e.g., [6] Corollary 12, p. 272). Define μ_0 to be the measure ϕ_s on $\sigma(M_f)$.

The map

$$\gamma = \begin{cases} \gamma_c & \text{on} & E \setminus \bigcup_{i=1}^{\infty} C_i \\ \gamma_d & \text{on} & \bigcup_{i=1}^{\infty} C_i \end{cases}$$

is the required point isomorphism such that $f = \pi_1 \circ \gamma$ and the result now follows.

EXAMPLE 3.1. Let $\gamma: J \to J \times J$ be a point isomorphism from the usual Borel measure space on [0, 1] the usual Borel measure space on the unit square. Then $f = \pi_1 \circ \gamma$ is in $L_{\infty}(J, B(J), \lambda)$. There does not exist a set $B \in \mathcal{B}(J)$ of measure zero, such that $f|_{J\setminus B}$ is univalent. It follows that M_t is singular on $L_n(J, B(J), \lambda)$ for $1 \le p < \infty$ (see [7] Theorem 3.3).

4. A characterization theorem.

THEOREM 4.1. Suppose (X, Σ, μ) and (Y, Φ, ν) are separable measure spaces. Then $M_f \in B(L_p(\mu))$ is isometrically equivalent to $M_g \in B(L_p(\nu))$, $p \neq 2$, if and only if the regular parts of M_f and M_g have equivalent complete sets of invariants with the same multiplicities and the singular parts of M_f and M_g have equivalent associated measures.

Proof. (\Leftarrow) There exists a measure ω on $(J, \mathcal{B}(J))$ such that (X, Σ, μ) is set isomorphic to $(J, \mathcal{B}(J), \omega)$. There exists a measure ρ on $(J, \mathcal{B}(J))$ such that (Y, Φ, ν) is set isomorphic to $(J, \mathcal{B}(J), \rho)$. By an argument similar to that of the beginning of the proof of Theorem 3.2, we $B(L_p(J, \mathcal{B}(J), \omega))$ assume $M_{\scriptscriptstyle f}$ is in and M_{g} $B(L_p(J, \mathcal{B}(J), \rho))$. Let $(E_f, \mathcal{B}(E_f), \tau_f) \equiv \mathcal{E}_f$ and $(E_g, \mathcal{B}(E_g), \tau_g) \equiv \mathcal{E}_g$ be the measure spaces generated by f and g respectively as in Remark 3.4. Then since the invariants of the regular parts of M_f and M_g are equivalent and the singular parts have equivalent associated measures, it follows that \mathscr{E}_f and \mathscr{E}_g are point isomorphic under the identity mapping (although the isomorphism may not be measure preserving). Thus it follows that M_f on $L_p(\omega)$ and M_g on $L_p(\rho)$ are both equivalent to M_m on $L_p(\mathscr{E}_t)$ since the identity point isomorphism between \mathscr{E}_t and \mathscr{E}_g induces a surjective isometry $J: L_p(\mathscr{E}_t) \to L_p(\mathscr{E}_g)$ such that $JM_{\pi_1} = M_{\pi_1}J$.

(\Rightarrow) Suppose $K: L_p(\mu) \to L_p(\nu)$ is a surjective isometry such that $KM_f = M_gK$. Then using the notation as in the proof of Lemma 3.2, K induces a set isomorphism $\Gamma: (X, \Sigma, \mu) \to (Y, \Phi, \nu)$ such that $K_A M_{f|A} = M_{g|\Gamma(A)} K_A$ for $A \in \Sigma$, since $p \neq 2$. Let M_f , be the regular part and M_f , be the singular part of M_f . Let $A_r \in \Sigma$ be as in Theorem 3.2 (i). We see that $K_A, M_{f_r} = M_{g|\Gamma(A)} K_A$, and that $K_A, M_{f_s} = M_{g|\Gamma(A)} K_A$, where $A_s = X \setminus A_r$. Thus, since K_A , and K_A , preserve the cyclicity of a multiplication operator, we see that $M_{g|\Gamma(A)} \equiv M_g$, is the regular part and $M_{g|\Gamma(A)} \equiv M_g$, is the singular part of M_g . Let ϕ_r and ψ_r be the measures associated with M_{f_s} and M_{g_s} respectively. Let ϕ_s and ψ_s be the measures associated with M_{f_s} and M_{g_s} respectively. Then we conclude that $\phi_r \approx \psi_r$ and $\phi_s \approx \psi_s$.

There exists a complete set of invariants $\{\phi_i\}_{i=1}^{L \le \infty}$ for M_f , such that $M_{f_i} = \bigoplus_{i=1}^{L} M_{f_i}$, where ϕ_i is the measure associated with M_{f_i} , $1 \le i \le L$,

and $M_{f|A_i}$ has a cyclic decomposition of cardinality $\mathcal{M}(\phi_i)$. (Here A_i is the pre-support of ϕ_i .) There exists a sequence of disjoint measurable sets of Σ , $\{A_{ij}\}_{j=1}^{\mathcal{M}(\phi_i)}$ such that $M_{f|A_i} = \bigoplus_{j=1}^{\mathcal{M}(\phi_i)} M_{f|A_{ij}}$ is a cyclic decomposition. Let ψ_i be the measure associated with $M_{g|r(A_i)}$, $1 \le i \le L$. Then we conclude that $\{\psi_i\}_{i=1}^L$ is a complete set of invariants for M_g , with $\psi_i \approx \phi_i$ and $\mathcal{M}(\psi_i) = \mathcal{M}(\phi_i)$ for $1 \le i \le L$.

REMARK 4.1. The "if" direction of Theorem 4.1 is true for p = 2. The proof is exactly the same as was presented for $p \neq 2$. However, the "only if" direction is false if p = 2. In fact, by standard multiplicity theory for normal operators on Hilbert space ([4], Chapter 10) it is possible to construct a surjective isometry K between two L_2 -spaces such that a singular multiplication operator M_f is isometrically equivalent to a regular multiplication operator M_g under K.

REFERENCES

- 1. M. A. Akcoglu, Sub σ -algebras of Lebesgue spaces, (to appear).
- 2. P. R. Halmos, Introduction to Hilbert Space and the Theory of Spectral Multiplicity, Chelsea Publishing Company, New York (1957).
- 3. J. Lamperti, On the isometries of certain function-spaces, Pacific J. Math., 8 (1958), 459-466.
- 4. A. I. Plesner, Spectral Theory of Linear Operators, Vol. II, Frederick Ungar Publishing Company, New York (1969).
- 5. V. A. Rohlin, On the fundamental ideas of measure theory, Mat. Sborn., 25 (1949), 107-150 [= Amer. Math. Soc. Transl. 71 (1952)].
- 6. H. L. Royden, Real Analysis, The Macmillan Company, New York (1963).
- 7. H. A. Seid, Cyclic multiplication operators on L_p -spaces, (to appear) Pacific J. Math., 51 (1974), 549-562.

Received March 5, 1974.

University of Toronto