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ULTRAFILTERS AND THE BASIS PROPERTY

RICHARD A. SANERIB, JR.

Three notions of a basis for an ultrafilter in a Boolean
algebra are investigated in this paper, namely having an inde-
pendent set of generators, a weakly independent set of
generators and a weakly independent set of generators over a
proper subfilter. In general these three notions are distinct, but
for a Boolean algebra with an ordered base the latter two are
equivalent. This paper shows that a large class of Boolean
algebras do not possess ultrafilters with a basis, in particular no
infinite homomorphic image of a σ -complete Boolean algebra
has a nonprincipal ultrafilter with a basis. For Boolean algebras
with an ordered base necessary and sufficient conditions on the
order type of the base are given for the Boolean algebra to have
the basis property.

Introduction. The notion of an independent family of sets was
first introduced in [1] by Fichtenholz-Kantorovitch. Their results were
generalized in [3] by Hausdorff where it was shown that, if 11 | = m, there
exists an independent family of subsets of / of power 2m. It is well
known that the free Boolean algebra on m generators is generated by an
independent family of elements of power m and that every ultrafilter in
this algebra has an independent set of generators. A weaker notion,
that of an irredundant set of generators, or a weakly independent set of
generators, has been considered by both A. Tarski [11] and I. Reznikoff
[7] in the setting of mathematical logic, and it is the algebraic version of
this notion which we call a basis for an ultrafilter. Boolean algebras in
which every ultrafilter has a basis are said to have the basis
property. The idea of an independent set modulo a filter has been used
by K. Kunen in [4]and this leads to the property considered here, that of
a basis over a filter.

The first section consists of the definitions and basic lemmas
concerning the above mentioned three notions and a theorem showing
that a large class of Boolean algebras do not have the basis property. In
§2 Boolean algebras with an ordered base are considered and for this
class of Boolean algebras necessary and sufficient conditions on the order
type of the base are given for the Boolean algebra to have the basis
property. For these Boolean algebras, the latter two notions of a basis
are shown to be equivalent and further, any such Boolean algebra with
the basis property must have cardinality less than or equal to 2*°. Finally
a summary of the relationships between these three concepts of basis is
given.
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Prel iminar ies . If SI is a Boolean algebra we assume SI =
(A, v, Λ, - ,0,1) and if & is a filter in Sϊ, and a E A, we write al& =
ά. The basic results concerning Boolean algebras may be found in [2] or
[10]. We recall that a filter in a Boolean algebra is generated by
{bv}v<a C 9 if for each a E 3* there exists vu —<fvk<a with
bvx Λ Λ bVk ^ α. A family of elements {α j v < α C A is independent if,
for all vu , vn < a which are distinct, bViA---AbVn^0 where for each i,
£>„, = #„, or — aVi.

1. DEFINITION 1.1. A filter ^ in a Boolean algebra SI is said to
have a basis {av}v<a if

(i) {av}v<a generates 3>, and
(ii) if i/0, , ^+i < α are distinct, then α^Λ Λ α , ^ α,*+1.

A Boolean algebra is said to have the basis property if each ultrafilter has
a basis. The definition of basis is weaker than that of independent set of
generators. For example, in the Boolean algebra of finite and cofinite
subsets of ω, there is only one nonprincipal ultrafilter and it has a basis
but does not have an independent set of generators:

If {An}nGω C 9 is an independent set of generators then each An is
cofinite. Let Bo = {nu - , nk} = - Ao and, for i = 1, , k, let

( Ai if Πi E At

~ Ai otherwise

Then BQ C BX U U Bk. We may assume without loss of generality
that B0C(-A{U-'U ~ A y)U(A / + 1 U U A k). Thus, since Bo =
~ Ao, we have (AλΠ Π A ;) Π ~ Ao C (A/+1 U U Ak) and hence
Ax Π Π A; C Ao U Aj+ι U U Ak which contradicts the indepen-
dence of the Af's. On the other hand, the complements of singletons
form a basis for 2F.

Condition (ii) is an irredundancy condition and is the algebraic
translation of the logical notion of an independent set of formulas,
apparently first introduced by Tarski [11]. This algebraic version will be
referred to as weak independence. In this connection, it is interesting to
note that Reznikoff in [7] showed that every filter in a free Boolean
algebra has a basis. The following notion of a basis for one filter over
another filter is a modification of the definition of being independent
modulo a filter (See [4]):

DEFINITION 1.2. Let ^ and 9 be filters in the Boolean algebra SI
with ^ c β . {av}v<a C& is a basis for 9 over <§ if
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(i) ^SU{av}v<a generates 9 and
(ii) if vθ9 * , vn+1 < a are distinct, then - a VQ V v —

a Vn v aVn+ι £ %

In particular, condition (ii) allows one to extend <& to a proper filter
containing a VQ A Λ aVn A - αVn+1.

If 9 is a filter in a Boolean algebra 91, and # = {- JC : x E ^} then ^
is an ideal and, by %\3F we mean the quotient algebra Sl/Λ

LEMMA_ 1.3. Lei % be a Boolean algebra, & an ultrafilter in % <S a
filter in Si, Si = »/# and f = {ά:_aG ^} . Then & has a basis over ^0%
if and only if 9 has a basis in St.

Proof. It is straightforward to verify that {av}v<ajs a basis for 9
over 9 Π ̂  if and only if {£„}„<« is a basis for ^ in Sϊ.

LEMMA 1.4. Lβί Si be an infinite Boolean algebra and {xn}nEω an
infinite set of distinct ultrafilters in Si. Then there exists an infinite
subsequence {xnk}keω C{xn}nGω and {ak}keω CA of pairwise disjoint ele-
ments with ak E xnk.

Proof Let b0GxQ with -bo€Ξx\ and let Bo = {xn: b0Exn} Bό =
{xn: -b0Exn}. If |J3o| = No, s e t Bo = Bo, ao= - b0, co='bo and no =
1. If I Bo 17̂  No, set B0 = BQ, ao=bQ, co= - b0 and no = O. Suppose
{ak}kzm, {ck}k^m {Xnk}k^m and {Bk}kSm have been defined with Bk infinite
for k ^ m and / < / g m implies Bi^Bj and for all fe ^ m we have

(i) ak E xnk, Cjt E x for all x E Bk, ak A at =0 iί k^ / and αfe Λ c, = 0
for all fe ^ i.
Let xj1 and xΓ be distinct elements of Bm of the form xm where n > nm,
and let fem E xj1 with - ftm E JC™. Then cm Λ bm E xj1 and cm Λ - bm E
xΓ. Let B^+ 1 = {y EBm: cm Λbm Ey} , β ; + 1 = {y E Bn: cm A - bm Ey}.
If I jBi+il = No, let Bm+ι = β~+i, αm+i = cm A - bm, cm+ι = cm Λ fem and xnm+1 =
x?. If |B«+i | ^ No? let Bm + 1 = B; + 1 , αm + 1 = cm Λ bm9 cm+ι = cm A - bm and
x ^ . ^ ^ o 1 - Clearly {xnk}kEω and {αk}k e ω so defined have the desired
properties.

THEOREM 1.5. Let % be a σ-complete Boolean algebra, <& a filter in
SI and 9 an ultrafilter in Si with &^% Then & has a basis over <0 if and
only if there exists a b E A such that & is generated by <@ U {b}.

Proof Obviously if 9 is generated by <& U{b} then 9 has a basis
over <&. Now suppose 9 has a basis {av}v<a over % and that a is infinite
(if a is finite, then clearly $U{fc} generates 9 where b-
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iΛ Λ αα_i). Let 2FV be an ultrafilter in 21 such that 9V D $ U
{#μ }μ<«, μ̂ v U {- av). This is possible by the definition of a basis over cβ.

(1) If aE& then {*> < α : a£ &v) is finite. Since a E ^ there
exists ft E $ and *>0, * , ̂ n < « such that b Λ α VQ Λ Λ aVn ^ a and
α G f , for all ι>^ Ϊ>O,

 # * , vn.Λ

By Lemma 1.4 there exists a subsequence {&Vk} of {^v}v<a and
fcfc E $vk such that 6fe Λ b] = 0 for fc ̂  /. Since Si is σ-complete there exist
b = Vkeu>b2k and c = Vk e ω62 k +i. Since & G f m for all fc we have
-b<£& by (1) and therefore ftef. Similarly c G f . But ft Λ C = 0
which contradicts 0 £ 2F. Thus if 9 has a basis in 21, the basis is finite.

COROLLARY 1.6. Let % be a σ-complete Boolean algebra and 33 a
homomorphic image of 21. Then no nonprincipal ultrafilter in 23 has a
basis.

Proof. Immediate by the previous theorem and Lemma 1.3.

One easily sees that if 21 has the basis property, this does not imply
that, given an ultrafilter 9 extending a filter % 3* has a basis over
cβ. For example let 2ίm be the free Boolean algebra on m generators
and let 93 be an atomless σ-complete Boolean algebra with |93|<m.
Then there exists a filter ^ in 2ίm such that %J<S = 93, but if 9 is an
ultrafilter extending % then 9 has no basis over $ by Lemma 1.3 and
Corollary 1.6. It is interesting to note that for Boolean algebras with an
ordered base, if an ultrafilter has a basis then it has a basis over every
filter which it extends (see 2.5 and the remark preceding it). If an
ultrafilter has a basis over every proper filter which it extends then it does
have a basis since it has a basis over {1}. In fact if $ C &> such that 9
has a basis over $ and there exists a E & with a ^ b for all b E % then 3*
has a basis in 21.

COROLLARY 1.7. Let 21 be Boolean algebra and 9 an ultrafilter in
21. If& has a basis over every proper subfilter, then 3* has a basis in 21.

In addition to free Boolean algebras, it is well known that every
countable Boolean algebra has the property that all nonprinciple ultrafil-
ters have a basis.

The following lemma, probably first proved by Tarski [9] establishes
this result:

LEMMA 1.8. Let 3 be an ultrafilter in a Boolean algebra 21 such that
3< has a countable set {αn}nEω of generators. Then 9 has a basis.
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Proof. Assume without loss of generality that a0 ^ 1 and for n < ra,
an > am. Let bn = anv (Vk < n - ak).

(1) an ^ ftn for all n E ω,
(2) -an^bm for all n < m,
(3) fen v 6m = 1 for all n ̂  m.

Now
(4) {bn}neω is weakly independent if {bkι Λ Λ bkn}^ bkn+ι then

-(6k lΛ Λ bkn)Λ bkn+1 = 1.
But, since fck, v 6fen+1 = 1 for 1 g i g ίc by (3), we have

(bkί Λ Λ bkn) v 6kn+1 = 1. Since fe^+1 ̂  1, this is a contradiction.
(5) {bn}nEω generates &.

A simple inductive proof shows an = Λίgnfci.

COROLLARY 1.9. Let 51 be a σ-complete Boolean algebra and 93 a
homomorphic image of SI. Then no nonprincipal ultrafilter in 93 has a
countable set of generators.

Proof By 1.6 and 1.8.

From 1.9, the well-known result that no infinite homomorphic image
of a σ-complete Boolean algebra is countable is immediate.

The question of whether every projective Boolean algebra has the
basis property is open. Since little is known about projective Boolean
algebras a positive answer to this question would be most interesting. A
characterization of those Boolean algebras with the basis property, or
one for those ultrafilters with a basis — perhaps in terms of chains in the
filter — are additional areas of investigation. These latter two problems
are answered completely in the case of Boolean algebras with an ordered
base in the next section.

2. In this section we restrict the discussion to Boolean algebras
with an ordered base. These Boolean algebras were first introduced by
Mostowski and Tarski in [6] and have been studied more recently by
Mayer and Pierce [5] and Rotman [8] where additional references may be
found. Rotman shows that in a Boolean algebra with an ordered'base
there are at most countably many independent elements. The question
for weakly independent elements appears to be open.

DEFINITION 2.1. A Boolean algebra SI has an ordered base X if X
is linearly ordered by < (the order in SI), X generates SI, OEX and

If (A, ^ ) is a linearly ordered set, then the cofinality of A (cf(A)) is
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in f { | J3 | : for all aEA there exists bEBCA with a^b}. The
coinitiality of A (ci(A)) is the i n f { | B | : for all aEA there exists a
bEBCA with b ^ a}. An initial segment of A is a set B C A such
that iί b E B and α < b then a E B. A tail of A is the complement of
an initial segment.

L E M M A 2.2. Let 91 be a Boolean algebra with ordered base X, Y an
initial segment of X and &? an ultrafilter in 91 containing { - y y E Y J U
(X ~ Y). If j c G f , then there exists y E Y and z EX- Y such that
x ^ - y Λ z.

Proof Since X is a set of generators for the Boolean algebra and 9
is an ultrafilter, the conclusion is obvious.

THEOREM 2.3. // 91 is a Boolean algebra with ordered base X, and
there exists an initial segment Y G X with cf( Y) > Ko or there exists a tail
Z C X with ci(Z) > No, then 91 does not have the basis property of
ultrafilter.

Proof We may assume there exists an initial segment Y C X with
cf(Y)>N 0, for otherwise {0}U{- x: x EX~{0}} is an ordered basis
with an initial segment Z having cofinality greater than Mo. Let Y = {ai}ieI

and let & be an ultrafilter such that & D {-at}iei and S^DX-Y.
Suppose 3* has a basis {cv}v<k.

(1) IA I > No — we first note that no finite meet d of basis elements
is less than or equal to all - αt, for otherwise by Lemma 2.2 there exists
- a} and x EX- Y with - a, ΛX ^ d ^ - ax for all i E I. Hence
- a} Λ x ^ - aι Λ x for all i E I. Choosing α, > α, we have α, < x since
Y is an initial segment of X. Thus at Λ — αy Λ JC = α, Λ - α; = 0 so α, ^ α;,
a contradiction.

By the above argument, | λ | S Mo, so assume | A | = Mo. Let dn =
Co Λ Λ cn. Again by above argument, for each n E ω there exists - ain

such that dn^= ~ain. Since cf(Y)>N 0 , we arrive at an obvious con-
tradiction — hence (1) is established.

(2) £F has no basis.

Case 1. c i (X~ Y)>N 0 .
Let {bj}j(Ξj = X ~ Y. By Lemma 2.2 there exists i0El and j0EJ

with Co ^ - ah Λ bjo ^ d0 where d0 is a finite meet of the basis elements
{cv}v<λ. By Lemma 2.2, choose ΪΊ E / and /Ί E / such that - ah Λ 67I < do-
Proceeding in this manner we construct c0 S - αfe Λ bh ^ d0 =

 # * =
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- ain Λ bin^ dn ^ where - ain Λ bin > - ain+1 Λ bin+ι and dn is a finite

meet of basis elements. Since cf(Y)>N 0 , there exists aEY with
-a^-aln for all n E ω and fcGX-Y with fo ^ £>,„ for all
n E ω. Hence - a 6 ^ dn for all n E ω. Now there exist IΊ, , P*
with cw Λ Λ c* ^ ~ α 6 S dn for all n E ω. Since the dn's are strictly
decreasing, there exists cw occurring in some dm with c^φ cVΪ, , Q .
Hence cwΛ Λc W k ^d B 0 < cw contradicting the weak independence of
the c ' s .

Case 2. ci(X ~ Y ) ^ N 0 .
We observe that for each a E Y and fc G X ~ Y, | {c: - a Λ fc ̂

c J | < N 0 — for otherwise there exist cvx, , c^ with ĉ Λ Λ ς έ
- a Ab with - a Kb less than infinitely many c/s which contradicts the
weak independence of the c ' s . Let {6n}«eω be coinitial with X ~
Y. Let JBn = {cv: - at Λ 6n ^ c for some Ϊ E /}. Since U n e ω B n =
{cv}v<χ and λ is uncountable there is an n0 with Bm infinite. This implies
there is a countable IOCI such that \{cv: - at /\bm^ cv for some / E /0}| ^
Ko. Since cf(Y)>K 0 there exists - α E Y with - α ^ - α, for all
/ E Io. Hence - a t\bm is less than or equal to infinitely many basis
elements — a contradiction.

THEOREM 2.4. Let $1 be a Boolean algebra with ordered base X. //
cf( Y) ^ No for every initial segment Y of X and ct (Z) ̂  Ho for every tail Z
of X, then % has the basis property for ultrafilters.

Proof Let & be an ultrafilter in 2ί. Let Y = { y £ X : y ^ f } .
Then Y is an initial segment of X and, by Lemma 2.2, 3* is generated by
{ - y : y E Y } v ( X ~ Y). By hypothesis there is a countable sequence {xn}
which is coinitial in X ~ Y and a countable sequence {yn} which is cofinal
in Y. Clearly 2F is generated by {- yn} U {jcn}. Therefore, by Lemma 1.8
SF has a basis.

Theorems 2.3 and 2.4 completely characterize the order types of
ordered bases which give rise to Boolean algebras with the basis property
for ultrafilters.

Boolean algebras with an ordered base which have the basis
property for ultrafilters have in fact a stronger property — namely, every
ultrafilter has a basis over every filter which it contains (see remark
following 1.6). This is established by Lemma 1.3 and the following:

COROLLARY 2.5. Let % be a Boolean algebra with ordered base X
and suppose SI has the basis property for ultrafilters. If 33 is a homomor-
phic image of SI then 93 has the basis property for ultrafilters.
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Proof. Let h: 21 -» 93 be a homomorphism and let X' = h (X) ~ {1}.
Then one easily checks that X' is an ordered base for 93. By 2.4 it
suffices to check that if Y' is any initial segment of X' and Z' is any tail of
X', then cf( Y') g Ko and ci(Z') g No. Since Y = {y G X: Λ(y) G Y'} has
cofinality g No by 2.3, it is easy to verify that cf(Y')^ Ko. Similarly, one
sees that ci(Z') ̂  No.

By the proof of 2.3 and 2.4 it is clear that if 21 is a Boolean algebra
with an ordered basis X and 9* is an ultrafilter in 21 then 9 has a basis iff
cf(Y)^N0 and ci(Z)^N 0 where Y = {xE&: - x E X} and Z =
{xE&: xE X}. Similarly, as in 2.5, if 9 has a basis and S C ? , then Ŝ
has a basis in Sϊ/$. Combined with 1.8 this gives us

COROLLARY 2.6. // Si is a Boolean algebra with an ordered base
and 3? is an ultrafilter in 21 then the following are equivalent:

(i) 9* has a basis
(ii) 9> has a basis over every filter <§ C 9*.

THEOREM 2.7. Let % be a Boolean algebra with an ordered base
X. If 21 has the basis property for ultrafilters, then 1211 ̂  2"°.

Proof Let X* be the completion by cuts of X. Then X* is a
compact, first countable Hausdorff space under the order topology and
hence has cardinality ^ 2N° (see [9]). As a consequence 121 ^ 2N°.

We summarize results concerning our three notions of basis in the
following table where we use the notation:

(I) 9* has an independent set of generators
(II) 9> has a basis
(III) 3* has a basis over every proper subfilter.

Boolean Boolean algebras with
algebras an ordered base

i -

I I -

III-

i -

I I -

III-

* I I

^ III

^1

^ III

>I

>π

Yes

No

No

No

No

Yes

Yes

Yes

No

Yes

No

Yes



ULTRAFILTERS AND THE BASIS PROPERTY 263

R E F E R E N C E S

1. G. Fichtenholz, and L. Kantorovitch, Sur les operations linέairs dans Vespace des functions

bornees, Studia Math., 5 (1934), 69-98.

2. P. Halmos, Lectures on Boolean Algebras, van Nostrand Mathematical Studies No. 1, Princeton,

1963.

3. F. Hausdorff, Uber zwei Satze von G. Fichtenholz und L. Kantorovitch, Studia Math., 6 (1936),

18-19.

4. K. Kunen, Ultrafilters and independent sets, Trans. Amer. Math. Soc, 172 (1972), 299-306.

5. R. D. Mayer and R. S. Pierce, Boolean algebras with ordered bases, Pacific J. Math., 10 (1960),

925-942.

6. A. Mostowski and A. Tarski, Boolesche Ringe mit geordneter Basis, Fund. Math., 32 (1939),

69-86.

7. I. Reznikoff, Tout ensemble de formules de la logique classique est equivalent a un ensemble

indέpendant, C. R. Acad. Sc, Paris (1) 260 (1965), 2385-2388.

8. B. Rotman, Boolean algebras with ordered bases, Fund. Math., 75 (1972), 186-197.

9. Prabir Roy, The cardinality of first countable spaces, Bull. Amer. Math. Soc, 77 (1971),

1057-1059.

10. R. Sikorski, Boolean Algebras, Springer Verlag, New York, 1969.

11. A. Tarski, Uber einige fundamental Begriffe der Metamathematik, C. R. Soc. Sc. Lettres

Varsouie, classe III, 23 (1930), 22-29.

Received June 26, 1975, and in revised form November 3, 1975.

EMORY UNIVERSITY






