GENERATING LARGE INDECOMPOSABLE CONTINUA

Michel Smith

Abstract

It has been shown by D. P. Bellamy that every metric continuum is homeomorphic to a retract of some metric indecomposable continuum. This result was later extended by G. R. Gordh who proved a similar theorem in the non-metric case. In the present paper a different technique is used to generate such continua.

It is shown that if α is an infinite cardinal number then there is an indecomposable continuum with 2^{α} composants and if I a (non-metric) continuum then I is homeomorphic to a retract of such a continuum. An indecomposable continuum is constructed such that if C is a composant of it and H is an infinite subset of C then C contains a limit point of H. Finally a non-metric continuum is found so that each proper subcontinuum of it is metric.

Definitions and notations. A continuum is a compact connected Hausdorff space. Suppose A is a well ordered set, for each $a \in A M_{a}$ is a topological space, and if $a<b$ in $A \theta_{a}^{b}$ is a continuous function from M_{b} onto M_{a} so that if $a<b<c$ in A then $\theta_{a}^{b} \circ \theta_{b}^{c}=\theta_{a}^{c}$. The space M is the inverse limit $M=\lim _{\leftarrow}\left\{M_{a}, \theta\right\}_{a \in A}$ means that M is the topological space to which the point P belongs if and only if P is a function from A into $\bigcup_{a \in A}\left\{M_{a}\right\}$ so that $P_{a} \in M_{a}$ and if $a<b$ in A then $\theta_{a}^{b}\left(P_{b}\right)=P_{a} . \quad R$ is a region in M means that there is an element $a \in A$ and an open set $S \subseteq M_{a}$ so that $R=\left\{P \mid P_{a} \in S\right\} . P_{a}$ denotes the function from M into M_{a} so that $\mathbf{P}_{a}(P)=P_{a}$. If $S=\Pi_{a \in A} S_{a}$ is a product space then $x=\left\{x_{a}\right\}_{a \in A}$ denotes the point of S so that $x_{a} \in S_{a}$, and π_{a} denotes the function from S into S_{a} so that $\pi_{a}(x)=x_{a}$. If α is an ordinal number $\Pi_{i<\alpha}[0,1]_{i}$ denotes the cartesian product of α copies of the interval $[0,1]$. If $M=\lim \left\{M_{a}, \theta\right\}_{a \in A}$ and for each $a \in A M_{a}$ is a continuum then M is a continuum. Also if for each $a \in A, M_{a}$ is an indecomposable continuum then so is M. For theorems concerning inverse limits the reader should consult [2].

Theorem 1. Suppose M is a compact continuum, α is a well ordered set with no last element, M is the inverse limit $M=\lim \left\{M_{a}, \theta\right\}_{a \in \alpha}$ of a collection of Hausdorff continua, and for each $a \in \alpha$ there is a subcontinuum I_{a} of M_{a} so that:
(1) $\theta_{a}^{b}\left(I_{b}\right)=M_{a}$ for $a<b$ in α, and

(2) if I is a subcontinuum of M_{a} intersecting I_{a} and $M_{a}-I_{a}$ then I contains I_{a}.
Then M is indecomposable.
Proof. Suppose $a \in \alpha$ and P is a point of $M_{a}-I_{a}$. Then there is a subcontinuum V of M_{a} which is irreducible from the point P to I_{a}. The set $V-I_{a} \cap V$ is connected and $V-I_{a} \cap V=V$. From condition (2) it follows that $I_{a} \subseteq V$, so $I_{a} \subset V=\overline{V-I_{a} \cap V} \subset \overline{M-I_{a}}$.

Now suppose M is the union of two proper subcontinua H and K. Let P be a point of H not in K and let Q be a point of K not in H. There exists an element $a \in \alpha$ and mutually exclusive regions R_{a} and S_{a} of M_{a} containing P_{a} and Q_{a} respectively so that $R=\left\{x \mid x_{a} \in R_{a}\right\}$
does not intersect K and $S=\left\{x \mid x_{a} \in S_{a}\right\}$ does not intersect H. Thus R and S are mutually exclusive open sets in M containing P and Q respectively. It follows from the above and condition (1) that $\theta_{a}^{(a+1)^{-1}}\left(R_{a}\right)$ and $\theta_{a}^{(a+1)^{-1}}\left(S_{a}\right)$ are mutually exclusive open sets in \boldsymbol{M}_{a+1} and each intersects both I_{a+1} and $M_{a+1}-I_{a+1}$. So $\mathbf{P}_{a+1}(H)$ and $\mathbf{P}_{a+1}(K)$ both intersect I_{a+1} and $M_{a+1}-I_{a+1}$. So by condition (2) I_{a+1} is a subset of both $\mathbf{P}_{a+1}(H)$ and $\mathbf{P}_{a+1}(K)$. But then $\mathbf{P}_{a}(K)=M_{a}=\mathbf{P}_{a}(H)$, since $\mathbf{P}_{a}=\theta_{a}^{a+1} \circ \mathbf{P}_{a+1}$, which is a contradiction. Thus M is indecomposable.

THEOREM 2. If q is an infinite cardinal number, there is an indecomposable continuum M with 2^{q} composants.

Proof. Let α be the first ordinal number so that $|\alpha|=q$. The continuum M will be constructed as an inverse limit of α irreducible continua. Let $M_{0}=[0,1]$. Let M_{1} be the subcontinuum of $[0,1] \times[0,1]$ so that

$$
\begin{aligned}
M_{1}= & \left(M_{0} \times\{0\}\right) \cup\left(\bigcup_{i=0}^{\infty}\left[\left(M_{0} \times\left\{\frac{1}{2 i+1)}\right\}\right) \cup\left(\{0\} \times\left[\frac{1}{2 i+2}, \frac{1}{2 i+1}\right]\right)\right]\right) \\
& \cup\left(\bigcup_{i=1}^{\infty}\left[\left(M_{0} \times\left\{\frac{1}{2 i}\right\}\right) \cup\left(\{1\} \times\left[\frac{1}{2 i+1}, \frac{1}{2 i}\right]\right)\right]\right) .
\end{aligned}
$$

The continuum M_{1} is the union of countably many copies of M_{0} and countably many arcs. If $A_{1}=(0,0)$ and $B_{1}=(1,1)$ then M_{1} is irreducible from A_{1} to B_{1}. Let θ_{0}^{1} be the function from M_{1} onto M_{0} so that $\theta_{0}^{1}\left(P_{1}, P_{2}\right)=P_{1}$.

Suppose that $b<\alpha$ and that M_{a} and θ_{c}^{a} have been defined for $c<a<b$ so that M_{a} is a subcontinuum of $\Pi_{l \leqq a}[0,1]_{i}$ which is irreducible from the point $A_{a}=\{0\}_{l \leqq a}$ to the point $B_{a}=\{1\}_{l \leqq a}$, and θ_{c}^{a} is a function from M_{a} onto M_{c} so that $\theta_{c}^{a}\left(\left\{x_{i}\right\}_{i \leqq a}\right)=\left\{x_{i}\right\}_{i \leqq c}$. Suppose that b is not a limit ordinal, $b=a+1$ for some $a<\alpha$. Let M_{b} be the subcontinuum of $\Pi_{i \leqq b}[0,1]$, so that
[*]

$$
\begin{aligned}
M_{b}= & \left(M_{a} \times\{0\}\right) \cup\left(\bigcup _ { i = 0 } ^ { \infty } \left[\left(M_{a} \times\left\{\frac{1}{2 i+1}\right\}\right)\right.\right. \\
& \left.\left.\cup\left(\{A\} \times\left[\frac{1}{2 i+2}, \frac{1}{2 i+1}\right]\right)\right]\right) \\
& \cup\left(\bigcup_{i=1}^{\infty}\left[\left(M_{a} \times\left\{\frac{1}{2 i}\right\}\right) \cup\left(\left\{B_{a}\right\} \times\left[\frac{1}{2 i+1}, \frac{1}{2 i}\right]\right)\right]\right) .
\end{aligned}
$$

The continuum M_{b} is the union of countably many copies of M_{a} and countably many arcs. $\quad M_{b}$ is irreducible from any point of $\left(M_{a} \times\{0\}\right)$ to
the point $\left(B_{a} \times\{1\}\right)$. Let $A_{b}=A_{a} \times\{0\}$ and $B_{b}=B_{a} \times\{1\}$. Let θ_{a}^{b} be the function from M_{b} onto M_{a} so that if $\left\{x_{i}\right\}_{i \leqq b} \in M_{b}$ then $\theta_{a}^{b}\left(\left\{x_{i}\right\}_{1 \leq b}\right)=\left\{x_{i}\right\}_{i \leq a}$. If $c<a$ define θ_{c}^{b} to be the function $\theta_{a}^{b} \circ \theta_{c}^{a}$.

Suppose that b is a limit ordinal. Let M_{b}^{\prime} be the continuum $M_{b}^{\prime}=\lim _{\leftarrow}\left\{M_{a}, \theta\right\}_{a<b}$. Let A_{b}^{\prime} denote the point P so that $\mathbf{P}_{a}(P)=A_{a}$ and let B_{b}^{\prime} denote the point P so that $\mathbf{P}_{a}(P)=B_{a}$. Then M_{b}^{\prime} is irreducible from A_{b}^{\prime} to B_{b}^{\prime} since for each $a<b M_{a}$ is irreducible from $\mathbf{P}_{a}\left(A_{b}^{\prime}\right)$ to $\mathbf{P}_{a}\left(B_{b}^{\prime}\right)$. Let L_{b} denote the function from M_{b}^{\prime} into $\Pi_{i<b}[0,1]_{i}$ so that if $P \in M_{b}^{\prime}$ then $L_{b}(P)=\left\{\pi_{i}\left(P_{i}\right)\right\}_{i<b}$ where P_{i} is the i th coordinate of the point P, $P_{i}=\mathbf{P}_{t}(P) . \quad$ Note that $\mathbf{P}_{i}(P) \in M_{i} \subset \Pi_{k \leqq i}[0,1]_{k} . L_{b}$ is a homeomorphism because if P is a point of M_{b}^{\prime} and $i<j<b$ then $\pi_{a}\left(\mathbf{P}_{i}(P)\right)=\pi_{a}\left(\mathbf{P}_{j}(P)\right)$ for all $a \leqq i$; in other words the a th coordinate in the cartesian product $\Pi_{k \leqq l}[0,1]_{k}$ of $\mathbf{P}_{t}(P)$ is the same as the a th coordinate in $\Pi_{k \leqq l}[0,1]_{k}$ of $\mathbf{P}_{i}(P)$. Then $L_{b}\left(M_{b}^{\prime}\right) \subset \Pi_{k<b}[0,1]_{k} . M_{b}$ is defined by replacing M_{a} by $L_{b}\left(M_{b}^{\prime}\right)$ in [*] above and A_{a} by $L_{b}\left(A_{b}^{\prime}\right)$ and B_{a} by $L_{b}\left(B_{b}^{\prime}\right)$. So M_{b} is irreducible from any point of $\left(L_{b}\left(M_{b}^{\prime}\right) \times\{0\}\right)$ to the point $\left(L_{b}\left(B_{b}^{\prime}\right) \times\{1\}\right)$. Let $A_{b}=\left(L_{b}\left(A_{b}^{\prime}\right) \times\{0\}\right)$ and $B_{b}=\left(L_{b}\left(B_{b}^{\prime}\right) \times\{1\}\right)$. If $a<b$ let θ_{a}^{b} be the function from M_{b} onto M_{a} so that if $\left\{x_{i}\right\}_{i \leqq b} \in M_{b}$ then $\theta_{a}^{b}\left(\left\{x_{i}\right\}_{i \leqq b}\right)=\left\{x_{i}\right\}_{!\leqq a}$. For notational convenience, if b is a limit ordinal let M_{b-1} denote the space $L_{b}\left(M_{b}^{\prime}\right)$ and let \mathbf{P}_{b-1} denote the function $f \circ \mathbf{P}_{b}$ where f projects $L_{b}\left(M_{b}^{\prime}\right) \times[0,1]$ onto $L_{b}\left(M_{b}^{\prime}\right) \times\{0\}$.

Let $M=\lim \left\{M_{a}, \theta\right\}_{a<\alpha}$. If for each $a, I_{a}=M_{a-1} \times\{0\}$ then M and the collection $\left\{I_{a}\right\}_{a<\alpha}^{\leftarrow}$ satisfy the hypothesis of Theorem 1 because M_{a} is irreducible from the point B_{a} to each point of I_{a}. Thus M is indecomposable. If $P \in M$ let P_{γ} denote $\mathbf{P}_{\gamma}(P)$. Let L denote the projection L_{α} as defined above.

Suppose x is a point of M and w_{x} is the set to which P belongs if and only if there exists a $\beta<\alpha$ so that if $\beta<\gamma<\alpha$ then $\pi_{a}\left(P_{\gamma}\right)=\pi_{a}\left(x_{\gamma}\right)$ for all a so that $\beta<a \leqq \gamma$. Equivalently: w_{x} is the point set to which P belongs if and only if there exists a $\beta<\alpha$ so that $\pi_{a}(L(P))=\pi_{a}(L(x))$ for all $a>\beta$. The set w_{x} will be shown to be the composant of M containing x.

Suppose $P \in w_{x}$. Then there exists a $\beta<\alpha$ so that $\pi_{a}(L(P))=$ $\pi_{a}(L(x))$ for all $a>\beta$. Then $\left\{y \mid y \in M\right.$ and $\left(y_{\gamma}\right)_{a}=\left(x_{\gamma}\right)_{a}$ for all a such that $\beta<a \leqq \gamma\}$ is a proper subcontinuum of M containing x and P. The following lemma implies that w_{x} is a composant.

Lemma A. If I is a proper subcontinuum of M containing the point x then there exists $a \beta<\alpha$ so that if $\beta<\gamma<\alpha$ then $\pi_{a}\left(\mathbf{P}_{\gamma}(I)\right)=\pi_{a}\left(x_{\gamma}\right)$ for all a so that $\beta<a \leqq \gamma ;\left(\right.$ or, there exists $a \beta<\alpha$ so that $\pi_{a}(L(I))=$ $\pi_{a}(L(x))$ for all a so that $\beta<a<\alpha$.)

Proof. Suppose that I is a subcontinuum of M containing the point x. Then there exists an element $\beta<\alpha$ so that $\mathbf{P}_{\beta}(I) \neq M_{\beta}$. Suppose that
the lemma is false. Then there exists a first element $a_{1}>\beta$ so that $\pi_{a 1}(L(I))$ is non-trivial. Likewise there is a first element a_{2} after a_{1} and a first element a_{3} after a_{2} so that $\pi_{a_{2}}(L(I))$ and $\pi_{a_{3}}(L(I))$ are non-trivial, $\beta<a_{1}<a_{2}<a_{3}$.

Let $\gamma>a_{3}$. Suppose $0 \in \pi_{a_{i}}\left(\mathbf{P}_{\gamma}(I)\right)$ for some $i=1,2,3$. Then there is a number t distinct from 0 in $\pi_{a_{i}}\left(\mathbf{P}_{\gamma}(I)\right)$. But $\mathbf{P}_{\gamma}(I)$ intersects $M_{a_{i}-1} \times\{0\}$ and $M_{a_{i}}-\left(M_{a_{i}-1} \times\{0\}\right)$, so $M_{a_{i}-1} \times\{0\} \subset \mathbf{P}_{a_{i}}(I)$. Thus $M_{\beta} \subset$ $\mathbf{P}_{\beta}(I)$ which is a contradiction.

Suppose $1 \in \pi_{a_{2}}\left(\mathbf{P}_{\gamma}(I)\right)$. Then there is a number $t<1$ in $\pi_{a_{2}}\left(\mathbf{P}_{\gamma}(I)\right)$. But there is a number $r \geqq t$ so that $\left\{A_{a_{2}-1}\right\} \times[r, 1] \subseteq \mathbf{P}_{a_{2}}(I)$, this follows from the construction of $M_{a_{2}}$. Then $0 \in \pi_{a_{1}}\left(\mathbf{P}_{a_{2}}(I)\right)$ since $A_{a_{2}-1}=\{0\}_{i<a_{2}}$ and this is a contradiction. So $1 \notin \pi_{a_{2}}\left(\mathbf{P}_{\gamma}(I)\right)$. Similarly $1 \notin \pi_{a_{3}}\left(\mathbf{P}_{\gamma}(I)\right)$.

Suppose $0<t_{1}<t_{2}<1$ and $\left[t_{1}, t_{2}\right] \subset \pi_{a_{3}}\left(\mathbf{P}_{\gamma}(I)\right)$. But $\mathbf{P}_{a_{3}}(I)$ does not intersect any of the sets $\left\{\left\{A_{a 3-1}\right\} \times[1 /(2 i+2), 1 /(2 i+1)]\right\}_{i=0}^{\infty}$ or any of the sets $\left\{\left\{B_{a_{3}-1}\right\} \times[1 /(2 i+1), 1 / 2 i]\right\}_{i=1}^{\infty}$, or else either 0 or 1 would belong to $\pi_{a_{2}}\left(\mathbf{P}_{a_{2}}(I)\right)$. Then $\mathbf{P}_{a_{3}}(I)$ must be a subset of $M_{a_{3}} \times\{1 / k\}$ for some integer $k>1$. But $\pi_{a}\left(\mathbf{P}_{a_{3}}(I)\right)=\pi_{a}\left(\mathbf{P}_{\gamma}(I)\right)$ for $a \leqq a_{3}$ so $\pi_{a_{3}}\left(\mathbf{P}_{\gamma}(I)\right)=1 / k$ which is a contradiction. So the lemma must be true.

Lemma B. Suppose q is a cardinal number and α is the first ordinal number so that $q=|\alpha|$. Then there exists a collection G of functions from α into the set $\{0,1\}$ of cardinality 2^{q} so that if f and g belong to G then the set $\{x \mid x \in \alpha$ and $f(x) \neq g(x)\}$ is cofinal in α.

Proof. Let T be a bijection from $\alpha \times \alpha$ onto α. If $a \in \alpha$ then the set $T(\{a\} \times \alpha)$ is cofinal in α. Suppose that S is a subset of α, let f_{s} be the function from α into $\{0,1\}$ so that $f_{s}(t)=1$ if and only if $t \in T(S \times \alpha)$. Let $G=\left\{f_{s} \mid S\right.$ is a subset of $\left.\alpha\right\}$. Suppose S_{1} and S_{2} are two distinct subsets of α and a is an element of S_{1} not in S_{2}. Then $f_{s_{1}}(T(\{a\} \times \alpha))=1$ and $f_{s_{2}}(T(\{a\} \times \alpha))=0$ so $\left\{x \mid x \in \alpha\right.$ and $\left.f_{s_{1}}(x) \neq f_{s_{2}}(x)\right\}$ contains the set $T(\{a\} \times \alpha)$ which is cofinal in α. Thus $|G|=2^{q}$ and the lemma is proven.

The continuum M was constructed so that every function from α into the set $\{0,1\}$ belongs to $L(M)$. If q is a cardinal number and α is the first ordinal number so that $q=2^{|\alpha|}$ then, by Lemma B , the number of composants of M is at least $2^{|\alpha|}$. If c denotes the cardinality of [0, 1] then M has cardinality at most $c^{|\alpha|}$. But $2^{|\alpha|}=c^{|\alpha|}$, so M has $2^{|\alpha|}$ composants.

Notation: If λ is a limit ordinal let M_{λ} denote the indecomposable continuum obtained by the construction of Theorem 2 with $\lambda=\alpha$.

Corollary 2.1. If X is a continuum then X is homeomorphic to a retract of an indecomposable continuum with an arbitrarily large number of composants.

Proof. It follows from the construction in [3] that X is homeomorphic to a retract of an irreducible continuum Y. Then if Y is irreducible from the point A to the point B merely replace M_{0} by Y and $\{0\}$ and $\{1\}$ by A and B respectively in the above construction.

Corollary 2.2. There exists a non-metric continuum each proper subcontinuum of which is metric.

Proof. Consider $M_{\omega 1}$, where ω_{1} is the first uncountable ordinal. By Lemma A, if I is a proper subcontinuum of M there is a point $x \in M$ and an element $\beta<\omega_{1}$ so that $\pi_{a}(L(I))=\pi_{a}(x)$ for all a so that $\beta<a<$ ω_{1}. Thus $L(I)$ is embedded in $\Pi_{a \leqq \beta}[0,1]_{a} \times\left(\left\{\pi_{a}(L(x))\right\}_{a<\beta}\right)$. So I is homeomorphic to a subset of the cartesian product of countably many intervals and hence is metric. For each $a<\omega_{1}$ let x_{a} be the point of $\Pi_{⿺<\omega}[0,1]$, which is 1 at the a th coordinate and is 0 elsewhere. Then the set $\left\{x \mid x=x_{a}, a<\alpha\right\}$ is an uncountable set of points in $L(M)$ which contains none of its limit points. Thus $L(M)$ is not metric.

Observation 1. If X is a non-metric continuum and every proper subcontinuum of X is metric then X is indecomposable.

Observation 2. The continum $M_{\omega_{1}}$ has $2^{\boldsymbol{N}_{1}}$ composants, and $c \leqq$ $2^{\boldsymbol{N}_{1}} \leqq 2^{c}$. Thus the continuum could have c or 2^{c} composants depending on which axioms of set theory are assumed. It is also possible that neither equality holds.

Corollary 2.3. There exists a continuum M every proper subcontinuum of which is less numerous than M.

Proof. Let α be the first ordinal number so that $2^{c}<2^{|\alpha|}$, where c is the cardinality of the interval $[0,1]$. Then if $\beta<\alpha, 2^{|\beta|}<2^{|\alpha|}$. Consider the continuum M_{α} constructed above. M_{α} contains at least $2^{|\alpha|}$ points. By Lemma A , if I is a proper subcontinuum of M there exists a point $x \in M$ and an element $\beta<\alpha$ so that $\pi_{a}(L(I))=\pi_{a}(x)$ for all a so that $\beta<a<\alpha$. Thus $L(I)$ is embedded in $\Pi_{a \cong \beta}[0,1]_{a} \times\left(\left\{\pi_{a}(L(x))\right\}_{\beta<\alpha}\right)$. So I has at most $c^{|\beta|}$ points and $c^{|\beta|} \leqq 2^{c}<2^{|\alpha|}$. Again observe that any continuum having this property must be indecomposable.

Theorem 3. Suppose q is a cardinal number, α is the first ordinal number so that $|\alpha|=q$, and C is a composant of M_{α}. If $H \subset C$ and $|H|<\alpha$ then $\bar{H} \subset C$.

Proof. Suppose $H \subset w_{x}$. It follows from the definition of w_{x} that there exists a $\beta<\alpha$ so that if $P \in H$ then $\pi_{a}(L(P))=\pi_{a}(L(x))$ for all a
so that $\beta<a<\alpha$. Suppose $Q \in M-w_{x}$. Then there exists a $\delta>\beta$ so that $\pi_{\delta}(L(Q)) \neq \pi_{\beta}(L(x))$. Let S_{δ} be a region in $[0,1]_{\delta}$ containing $\pi_{\delta}(L(\theta))$ and not $\pi_{\delta}(L(x))$. Then $R=\left\{Z \mid \pi_{\delta}(Z) \in S\right\}$ is an open set in $L(M)$ containing $L(Q)$ but no point of $L(H)$. So $Q \notin \bar{H}$. So $\bar{H} \subset w_{x}$.

Definition. The subset H of the Hausdorff space X is said to be conditionally compact if and only if it is true that every infinite subset of H has a limit point in H.

Corollary 3.1. There exists a conditionally compact indecomposable connected Hausdorff space with only one composant.

Proof. By Theorem 3 any composant of $M_{\omega_{1}}$ is such a space.

References

1. D. P. Bellamy, Mappings of indecomposable continua, Proc. Amer. Math. Soc., 30 (1971), 179-180.
2. S. Eilenberg and N. Steenrod, Foundations of Algebraic Topology, Princeton University Press, Princeton, New Jersey, 1952.
3. G. R. Gordh, Jr., Every continuum is a retract of some irreducible indecomposable continuum, Colloquia Mathematica Societaties Janos Bolyai, 8 (1972), 347-340.
4. R. L. Moore, Foundations of point set theory, Amer. Math. Soc. Colloq. Pub. XIII, Revised edition, Providence R. I., 1962.

Received June 23, 1975 and in revised form October 31, 1975.

Auburn University

