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FILTERED SPACES ADMITTING
SPECTRAL SEQUENCE OPERATIONS

LEwWIS SHILANE

Introduction. Throughout this paper we will work in the cate-
gory of compactly generated Hausdorff spaces. All cohomology will be
singular cohomology with Z, coefficients, although similar results may be
derived when 2 is replaced by an odd prime.

We will call a filtration X, CX,CX,C---CX of a space X
convergent if X = U X, and every compact subset of X is contained in
some X,. In this case the cohomology spectral sequence of X converges. A
subspace A of X has the induced filtration A, =A N X,. A map
f: X— Y will be called filtered if for each n, f(X,)C Y,. The product of
two filtered spaces X and Y is given the “tensor product” filtration
(XxY),=U,,., X, xY. S will represent the infinite sphere with
regular CW reticulation consisting of two cells in each dimension, with the
skeletal filtration, and with the antipodal Z, action.

We will define a category of convergent filtered spaces and prove that
each object Q has the following properties. First, the diagonal map

030x0 is homotopic to an essentially unique filtered diagonal

approximation. Secondly, consider the map $” x Q 30 - Q X Q, where
7o represents projection, and Z, acts only on the first component of
S*X Q and by transposition on Q X Q. Then d, ° 7, is equivariantly
homotopic to an essentially unique filtered equivariant diagonal
approximation.

A diagonal approximation can be used in the obvious way to define a
product in the spectral sequence of Q. An equivariant diagonal
approximation can be used to define operations in the spectral
sequence. The latter construction proceeds in direct analogy with the
construction of Steenrod squares for regular CW-complexes, replacing
the cellular cochain complex of the CW-complex with the E, level of the
spectral sequence of Q.

The category of convergent filtered spaces to be defined includes (up
to filtered homotopy type) the Serre filtration of the total space of a
fibration over a regular CW-complex, the Milgram-Dold-Lashof filtration
of the classifying space of a topological monoid, and a special case of the
filtered spaces used in deriving the fiber-square (Eilenberg-Moore)
spectral sequence.

The content of this paper comprises part of the author’s doctoral
dissertation at Princeton University.
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1. Cellularly filtered spaces

DEerINITION 1.1. Suppose we are given a convergent filtration of X
and a collection of subspaces, called cells, such that

(a) Each cell e is contained in some minimal filtration X,, and is
accordingly called an n-cell. (é will denote e, — e,-,, and this will be called
the interior of e.)

(b) Each X, is a union of cells.

(c) X has the topology coherent with the cells, and each X, has the
topology coherent with its cells.

(d) The intersection of two n-cells is a subset of X,_,.

(e) Foreach n-cell e, there is a deformation R,: e X I — e relative
to e,_, which represents e,_, as a neighborhood deformation retract (NDR)
in e as in definition 6.2 of [6], and with the property that for any cell f,
R.((eNfYXI)Cf. (r,: e —e will denote R,|e X 1.)

(f) Each cell e is acyclic as a filtered space. There is a contraction
E.: e X I — e in the filtered sense (i.e. E, (e, X I) C e,.,) such that for any
cell f with fNé#AT, E.(eNf)XI)Cf.

Then we will say that the filtration of X is cellular (with respect to the given
collection of cells), or, loosely, that X is a cellularly filtered (CF) space.

DEerFiNITION 1.2, Any union of cells of X will be called a
subcomplex.

DEerINITION 1.3. A subcomplex K is complete if for any cell e,
K N é# & implies that e C K.

Notice that if for any cell e, each ¢, is a subcomplex of X, then the
second parts of (e) and (f) are automatic. This condition is the first
“redundant restriction” imposed on regular CW-complexes in Chapter 11
of [1].

Notice also that for any CF space X, X, is just a union of contractible
components, each being a 0-cell. X has the topology coherent with { X },
and each X, is an NDR in X,.,.

ExamMpLE 1.4. Anyregular CW-complex with the skeletal filtration
and the closed CW cells is a CF space.

ExampLE 1.5. X = C'A (the iterated cone on any given space A)
or C*A, where X, = C"A.

ExampLE 1.6. Given any cellularly filtered space X we can define a
CF space X by giving X a ‘‘shifted upward” filtration, i.e. XV = X,_,
(n = k), = X,otherwise. Of course shifting the filtration downward by k
does not work, unless the components of X, are contractible.
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The “regularity” Condition 1.1(f) will be central in the derivation of
an acyclic carrier theorem for CF spaces, and so in the construction of
filtered approximations to such nice maps as diagonal maps. Curiously,
nonregular CW-complexes have filtered diagonal approximations, even
when the skeletal filtrations are shifted downward, but not always when
the filtration is shifted upward. As an example, let X = X; = the torus,
X, =a basepoint, X,=S'v S". Then (X X X); = X v X, but it is known
that the diagonal map of a space is homotopic to a map into the wedge iff
the space is of Lusternik-Schnirelmann reduced category =1.

ExampLE 1.7. In 84 of [7] Steenrod gives an iterative construction
of the universal bundle E; and the classifying space B of a topological
monoid G with base point. D, =a point, E,= D, X G, and, for n =1,
D, = the reduced cone on E,_,, and E, = D, X G with identification of
points of E,_, X G and points of E,_, corresponding to the natural action of
G onE,_,. When G is discrete, E; becomes a cellularly filtered space if
we regard each cone D, X{g} as an n-cell. This does not induce a
reticulation (with acyclic cells) of Bg, although in this case both E; and B,
can be given the structure of simplicial complexes with skeletal filtration.
When G is not discrete the reticulation we have given of E; does not
satisfy 1.1(c). Cf. 2.4.

The following theorem and its proof are just rewordings of Lemma 4.4
of [1].

THEOREM 1.8. Let X be a cellularly filtered space. Then each compact
subset C of X is contained in a subcomplex which is the union of a finite
number of cells. Thus X is convergently filtered.

Proof. We will show that C meets the interiors of only finitely many
cells e',---,e". Thus CCe'U---Ue" First we show that C Csome
X,.. Suppose this is not true, and {¢,} is a sequence of points of C of
strictly increasing filtration. Then {¢;} and any subset of it meets each X,, in
afinite, thus closed, subset, soitisclosedin X. {c,} hasalimit point ¢ in C,
which must belong to it, but this contradicts the fact that {c;} — {c} is also
closed.

Next we show that for each m, C meets the interiors of only finitely
many m-cells. If this were not true, there would be a sequence {c} of
points of C in the interiors of distinct m-cells. Any subset of the form
{c.} —{c} of {¢;} would meet each cell of X,, in J or in one point, thus it
would be closed in X,. As above, this leads to a contradiction.

THEOREM 1.9. If X and X' are cellularly filtered then so is X X X',
using the product cells and the ‘“tensor product” filtration.
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Proof. Of course X X X' is meant to denote the product in the
category of compactly generated Hausdorff spaces. To prove 1.1(c),
suppose S C X X X' intersects each e X e’ in a closed subset. Let C be a
compact subset of X x X'. The projection of C on X, mx(C), is a
compact subset of X, thus it is contained in a finite union e'U---Ue".
Similarly, 7« (C)Ce" U---Ue'™ Then

SNC=SN(mx(C)xm(CHNC=SN(e'Xe"U---Ue"Xxe™)NC,

which is a closed subset of C.  Since S intersects each C in a closed subset,
S isclosed in X x X'. Similarly, each (X X X'), has the topology coherent
with the product cells of filtration = n. To prove part (e), let e be an n-cell
of X, and e’ an m-cell of X'. Since (e, e,-,) and (e’ e ,,-,) are NDR pairs, it is
a standard result that the product (e Xe',(e Xe'),.,—1) is an NDR
pair. (Cf. for instance Theorem 6.3 of [6].) In fact, R...  can be chosen
so that for any (x,x')Eexe’, we have R,.((x,x)XI)C
R.(x X I)X R,(x'x I). Then for any cells f of X and f' of X',

Ro((exe)N(fxf)xI)= R ((eNf)x(eNf)xI)
CR(eNfXI)XR.(e'Nf xI)
Cfxf.

To prove part (f), recall the well-known result that the product of acyclic
filtered spaces is acyclic, using E, X 1 followed by 1 X E, for E,.,. Now,
suppose (f X f)N(exe'y=(fxf)N(éxé)#D. Then fNE#J and
f'Nné #J. Thus

E.o((exe)N(fXf)XI)=Eoel(e Nf)x(e'Nf)xI)
CE(eNfxI)XE. (e NfxXI)CfxFf.

Notice that if X and X' have the property that each stage in the
filtration of any cell is a subcomplex, then this is true for X X X" also.

DerFiniTioN 1.10. If X and Y are cellularly filtered spaces then a
carrier C from X to Y is an assignment to each cell e of X of acell C, of Y,
such that if e N f# @ then C, N C;#B.  C is filtered if for each n-cell
e, C,CY,. If f: X—Y we say f is carried by C if for each
e,f(e)C C. f is called a cellular map if it has a filtered carrier.

DermNiTiON 1.11. Let Z, = {1, T} have the discrete topology, each
point being a 0-cell. A Z,-action on the cells of X is a representation of
Z, by permutations of the set of cells such that T of an n-cell is an
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n-cell. The action is free if for each e, Te# e. We call a choice of
exactly one cell from each such pair a free basis of cells for X.

DEerINITION 1.12. A Z,-action on X is cellular if it has a carrier from
Z,x X to X which is a Z»,-action on the cells of X. We will call it free if
this action on the cells is free. The trivial action is defined by Tx = x for
all x.

If W has a free Z,-action and X the trivial action, then W X X has a
free Z,-action, Z, acting componentwise.

The following will serve as our basic ““acyclic carrier”” theorem. The
reference to property (P) may be deleted if V' has the property that each
filtration of any cell is a subcomplex.

THEOREM 1.13. Let U and V be cellularly filtered spaces, K a
subcomplex of U, C a carrier from Uto V, F: K — V a function carried by
C. Suppose also that F has the property

(P) Ifeisa cell of U, and f a cell of K, then F(e N f)C C..

Let g be an n-cell of U whose (n — 1)-filtration is contained in K. Then F
can be extended to g, in such a way that F(g) C C, and (P) holds when K is
replaced by K U g.

Proof. Recall the notations r, and E, from 1.1. F(g,-,)C C, by
(P). Since this is contractible to some point *in C, we see we can extend F
to g. This can be done in such a way that Flg]=x* if r,[¢] & g.-1,
otherwise F[¢]€ E. (F[r,[¢]] X I). Now suppose e is a cell of U and
g EeNg Necessarily, C.NC,#P. 1f F[g]=+ then it is in C
according to 1.1(f). If F[g]# *, then according to 1.1(e), r,[¢] E e; by
(P), F[r,[¢]] € C. N C,; and by 1.1(f) it follows that F[g¢ ], being a point of
Ec ([r,[¢]]X I), is in C.

THeorReM 1.13'. If in 1.13 F: K— V is filtered, then F can be
extended so as to be filtered on g.

Proof. Repeat the argument above, using the fact that F(g,-,)C
(C)n-1, and the fact that (C,),.-, is contractible to * in (C,).,.

THeoreMm 1.13". Ifin 1.13 we have a free cellular action of Z, on U
and a cellular Z,-action on V, if C is equivariant, and if F is equivariant
(and possibly filtered), then F can be extended to g U Tg so as to be
equivariant (and filtered).

Proof. Repeat the proof of 1.13 (or 1.13’) for g, then define F on Tg
by F[Ty]= TF[g].
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Of course such theorems can be applied in the usual way to yield the
following results.

CoroLLARY 1.14. Let U and V be cellularly filtered spaces ¢with Z,
acting on the cells of V and freely on the cells of U). Let C: U — V be an
(equivariant) carrier, F: U — V an (equivariant) function carried by C,
and K a complete subcomplex of U. Then F is (equivariantly ) homotopic
to a filtered function by a homotopy carried by C. If Fis filtered on K, this
homotopy may be chosen to be constant on K. If F' is another
(equivariant) function carried by C, then F and F' are (equivariantly)
homotopic by a homotopy carried by C. If F and F’ are both filtered on K,
this homotopy may be chosen to be filteredon K X I.  IfFand F' agree on K,
this homotopy may be chosen to be constant on K X L.

This corollary in turn may be applied in the usual way to yield the
following two.

CoroLLARY 1.15. Let X be a cellularly filtered space. Then the
diagonal map of X is homotopic to a filtered map dx by a homotopy carried by
the diagonal carrier. Any two such maps are homotopic by a filtered
homotopy carried by this carrier. Iff: X — Yisa cellular map carried by C
then dy o f is homotopic to (f X f)odx by a filtered homotopy carried by
CxC.

CoroLLARY 1.16. Let W be a regular CW-complex with free cellular

action (e.g. S”). Then the map W X XB3X5XXXis equivariantly
homotopic to a filtered map dy by a homotopy carried by the carrier
D,.. = e X e. Any other such map is homotopic to dx by an equivariant
filtered homotopy carried by this carrier. If f: X — Y is a cellular map

carried by C then W X XL wxy-25YXY is homotopic to
(f X f)edx by an equivariant filtered homotopy carried by DC, where
DC,..=C xC.

2. Quasi-product spaces. The following generalizes the
notion of a fiber bundle over a cellularly filtered space.

DEerINITION 2.1, Suppose X is CF, and to each cell e of X there is
assigned a space Y,. Suppose also that for each pair e, f with e N f#2
there is given a function «.;: (e N f) X Y, — Y}, such that the following
hold:

(a) If a.;. represents the map from Y, to Y; determined by
;. |y]= @ lx, y],thena;, ,ca.;.= a.,,i.e., these maps are coherent.

(b) Each a.;, has a continuous right inverse «.}, and this
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assignment of right inverses can be done continuously (using the
compact-open topology for function spaces) and coherently, so that
aiboarh,=ail.

Let Q' =X e X Y,, where 2 denotes topological sum. Let ~ denote
the equivalence relation on Q' determined by the relations (x,y)~
(X, a.p{y])- Let Q=0Q'/~, with the quotient topology, and let
q: Q'— Q bethe quotient map. Then O is called the quasi-product of X
and the Y,’s determined by the a’s.

When e and f are understood, we will abbreviate a.;, to a..

Note that there is a well-defined map Q->X. We give Q the
filtration Q, = p~'(X,). This is a convergent filtration by NDR'’s.

We could have given an alternate description of a quasi-product by
starting with such a p which has a trivialization e X Y, — p~'(e) over each
cell. This leads to coherent maps a., as in (a). We would also then
require the “uniformity” condition (b) on the a’s.

It may be convenient to think of Q as being decomposed into
“quasi-cells’’, each being of the form g(e X Y.). O has the topology
coherent with the quasi-cells.

ExamrLE 2.2. Let F— E -5 B be a fibration over the regular
CW-complex B. Up to fiber homotopy equivalence, we may assume that
p is a fiber bundl¢ with a trivialization over each cell of B and structure
group G. Let X = B andforanycelle of Blet Y, = F. Ifcell fisonthe
boundary of cell e, let o, ;: f X F— F be the coordinate transformation
determined by the trivializations over f ande. Each «, ;. will correspond
to an element of G, and «.}, will correspond to its inverse. The
quasi-product so constructed will be precisely the fiber bundle employed.

Observation 2.3. Let G be an H-space with homotopy identity e
which is nondegenerate (contained in G by a cofibration). Let
G"=GXGx--XG, G"={e}. Let A" be the standard n-simplex =
{(t,- - t)ER"; 0= =1,=--- =1, =1}, A’={0}. The Milgram-Dold-
Lashof classifying space for G is

BM, = U (BM), = <Z A”xG“>/~,
n= n=0
where the identifications are

AN
(tla Y tm gla DY gn)~ (tl, tTy t1+19 T tm gla T, gi-h gigi-ﬂ, g1+29 Y gn)
if =1t
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(tl’ T, tn~l7 17 gl’ T gn)N (th Y tn—h gls Y gn—l)
(Oa t2’ T tn; gl, T gn)~ (tz, T tna gZa T gn)~

We will now reconstruct BM; (up to filtered homotopy type) as a
quasi-product.

Construction 2.4. Let v, = (0,0,0,---),v,=(0,1,0,---),---, be the
ordered vertices of A*= UA", where A" has vertices v,,---,v,. Let
A" = the first barycentric subdivision of A*. In|A~|, define s ~ ¢ if there
is an order-preserving simplicial map f: A" — A” such that |f|[s] = ¢, and
extend ~ so that it is an equivalence relation. Let BM, = [A*|/ ~ . Let
X =|A""|/~', where ~’ denotes the equivalence relation on |A™| corre-
sponding to ~ on |A*|. Give X the skeletal filtration. Notice that X is
homotopically equivalent to BM, as a filtered space by means of the
obvious deformation, for each n, of [A™| to |A"| in |A™""| relative to
[A"|. Notice also that X is contractible as a filtered space. Infact, BM,
can be viewed as the classifying space of the trivial group using the
construction given above.

Let h denote the composition |A*|—|A™|— X. If e is an n-cell of X
whose inverse image under h is contained in [(A%),[, let Y, =G",
otherwise let Y, = G""'. Let a’s as in 2.1 be determined by the following
system of identifications, using identity maps where these do not apply.

For a face f of A" containing v,, but not v, let au gy h(|f|)G"
— G"' be the map

a [t’ gla Y gn] = (gla T giﬂ, gi, gH—l’ gi+2y Tt gn)’

and
a!‘l[gl’...’ghlag’gl%-h.'.’gn]:(gls..'vgi—lse,g’gwb"'agn)'
If f does not contain v, let «aft, g, ", g]=(g» ", g) and

a;'[gs " 8])=1(e g, g) Notice that the a’s and a;"s are indepen-
dent of .

The quasi-product so determined will be denoted by B;. It is
homotopically equivalent to the Milgram-Dold-Lashof BM; as a filtered
space, by means of the deformations mentioned above (using the identity
on G"). Notice that the projection B;— X transforms via these
homotopy equivalences to the map BM; — BM ,. induced by the trivial
monoid homomorphism G — *. Indeed, a homomorphism G — H will
induce a map B — By, (which will be a cellular fiber map, c.f. 2.7) which in
the case H = * is the quasi-product projection q: B — B, = X.

We now return to our discussion of quasi-products in general.

THeEOREM 2.5.  If Qis a quasi-product over X and Q a quasi-product
over X then Q X Q is a quasi-product over X X X.
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Proof. Straightforward.

_In particular, allowing Q to be merely a cellularly filtered space
(X X a point) we obtain

COROLLARY 2.6. For each cellularly filtered space M and quasi-

product Q = X there is a quasi-product M X Q 5 M x X, where M X Q
has the ‘‘tensor product™ filtration.

DeriNTioN 2.7. If Q> X and @ = X are quasi-products then a
fiber map F: Q—Q is a map such that if p[q,]=p[q.] then
p(Flq.]] = p[Flq.]]. Thus F induces a map a: X—X. F is called
cellular if a is cellular.

Now we can define carriers and Z,-actions for quasi-product
spaces. We repeat definitions 1.10-1.12, replacing the notion of a cell e
by a quasi-cell g(e X Y,), of é by q(é X Y,), and of a cellular map by a
cellular fiber map.

THEOREM 2.8. Suppose Q=X and Q 5 X are quasi-products,
a: X x I— Xiscarried by C, and Fy: Q — Q is a fiber map which projects to
a,. Suppose also that F, factors through q on each quasi-cell. That is, we
have continuous functions b,: e X Y, = Y¢, such that for each pair e, f with
e Nf#D, aumb.[%, y] = b [x, a.y], and for each e the following diagram
commutes.

(ao" ey be)
—>

e XY, C XY
g )
F, -
Q Q

Then F, can be extended to a fiber map F: Q x I — Q which projects to a,
and which factors through q X1 on each quasi-cell as follows, with
a0 Be[X, y, t] = By[x, ainy, t] for appropriately defined a,, .: Ye.— Yo,
and B,:eX Y, XI— Y.

(aoﬂ.eXhBe)
eX Y, X] —— C, XY,

ol

QxI Q
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Proof. Let H. be the space of maps from Y. to Y, with the
compact-open topology. We will construct, for each e, a map
G.: e xI— H, and define B.[x,y,t]=(G.[x,t])[b.[x,y]]. For some
n = (0, assume inductively that the G’s have been defined for e’s of
filtration < n, so that F is defined on Q,_; X I. Let e be an n-cell of
X. Of course G, must have the constant value 1y, one X0. We define
G, on e, X I asfollows. For each cell f of filtration < n with e N f;é %)
define G, on (e N f)X I by G.[x,t] = a,l. G [x, t]au,. We must show
that this leads to a definition of F on g X 1((e N f) X Y, X I) compatible
with the way it is already defined on ¢ X 1(f X Y; X I). Let (x,y)€E
(e Nf)x Y, Then

Flg x1[x, y,t]] = 4(a > mexr, B ) [x, y, 1]
=qlalx 1], acin Gy [x, t]aagabe[x, y]]
glalx, t], @apnafen Gy [x, t] b [x, y]]
glalx, t], G [x, t]at apabe[x, y]]
qlalx 1], Gy [x, t]b; [x, axy]] = Flq[x, ey, t]].

Il

I

Il

Thus we have G, defined on e X 0 U e,_; X I Since this is contractible,
we can extend G, toe X I. Thus we can define B, for each n-cell ¢, and so
we can extend F to Q, X I.

Now consider Q X I as a quasi-product. We have F: Q X I— Q
carried by the carrier C., = C.. a(, above should be interpreted as a
coordinate transformation when cells of Q X I intersect. In general,
define a.xe jxjnn)= Qo= .. Now, for (x,y,1)E(eNf)XY, X I we
have

W apenBe[X, Y, t] = aape g Ge[x, t]be[x, y]
= @ s ) afx ) Gr [ %, t] g be[X, ¥ ]
= Gy [x, t]aagabe[x, y]
= Gy [x, t]b; [x, auy]
= By [x, a oy, t].

Observation 2.9. In the situations with which we are primarily
concerned, simpler versions of 2.8 may be used. When the a’s of Q are
independent of x, each G, is the constant assignment of 1y., and the
condition that F, factors through ¢ is unnecessary to demonstrate the
existence of F, although F may then not factor through q X 1 either.

The condition that a . b.[x, y] = b;[x, a,y] is automatically satisfied
under certain conditions. Since q[x,y]= q[x, a.y],
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Filq[x, y]] = ql(ave 7., b)[x, y]] = qlaolx], b.[x, y]]
= glaolx], @b [x, y]]

must be equal to

Folq[x, ay]l = ql(ave m, b)) [x, ay]] = glao[x] - b [x, ey ]].

If a, has the property that whenever x € f, ao}x] € C,, then since qis1-1
on G X Y¢, @ b [, y] = bs[x, a,y] for x € f, which suffices in the proof
of 2.8. Ifthe a,’s for Q are all 1-1, then q is 1-1 and the equality is again
demonstrated. In fact, in this case the condition that F factors through
g X1 is also automatic.

CoroLLARY 2.10. For a quasi-product Q — X, the diagonal map is
homotopic to a filtered fiber map by a fiber homotopy carried by the diagonal
carrier.

Proof. Let a,: X — X X X be the diagonal map, F;: Q—>Q X Q
the diagonal map. F, factors through q as the diagonal map for each
e X Y, The condition a g b.[x,y]= b;[x, a.y] reduces to (a,y, a,y) =
(a.y, a,y). Since a, extends to a homotopy a: X X I - X X X to a filtered
map carried by the diagonal carrier, the result follows.

CoroLLARY 2.11. Let Q — X be a quasi-product. Then the composi-

tion WX Q-50Q0-5QxQis equivariantly homotopic to a filtered fiber
map by a fiber homotopy carried by the carrier D,.. = e Xe:

Proof. This follows as above, using 1.16. When G,,.. is extended
from w Xe X0U(w Xe),.;XI to w Xe X1, Gr, should be extended
identically.

THEOREM 2.12. Suppose the hypotheses of 2.8 hold fora: X X I— X
anda’: X x I — X, where a, a’ are both carried by C,a,= a, anda,anda;
are filtered. Then F, is homotopic to F| by a filtered fiber homotopy H
carried by C.

Proof. F and F' pieced together give a homotopy Hy: Q X [ — Q
between F; and F i, carried by C, which projectsto A,: X X I — X, whichis
a and a' pieced together. Thus Ay = a, and A, = a;. Notice that H,
satisfies the hypotheses of 2.8 since it satisfies the conclusions. We can find
a homotopy A: X X I XI— X carried by C between A, and a filtered
map A,;, A being constant on X X {0, 1} X I. By 2.8 there is a fiber map
H: QO XxIXxI— Q which projects to A. Then H is gotten by using
H|OXx0xI, HIQxIx1, and H|Q X1XL
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COROLLARY 2.13. Any two maps constructed using 2.10 are
homotopic by a filtered fiber homotopy carried by the diagonal carrier. The
same holds for any two maps constructed using 2.11, the homotopy being
equivariant.

Proof. For the second statement, use the variation of 2.12 in which
X X[ is replaced by WX XXI and A and H are constructed
equivariantly.

3. The fiber-square spectral sequence. In [5] Smith
discusses the fiber-square (Eilenberg-Moore) spectral sequence. Let the
space B be fixed as the base of all projections considered. For notational
simplicity we will write projections in the form F 5 B, using F for the total
space as well as the map. One notion which Smith uses extensively is the
suspension of a fibration F, which we will denote by ¥F. The total space
is the union of the ordinary suspensions of the fibers, and is not to be
confused with the suspension of the total space, SF. Similarly, for a fiber
map between fibrations M — N, the mapping cone N U € (M) has as total
space the union of the mapping cones of the map’s restrictions to each fiber
of M. Thisisdistinct from the mapping cone of the map between the total
spaces, N U C(M). The fiber map sequence M — N — N U €(M) will
be called a cofibration sequence. Finally, one may construct the mapping
cylinder of a fiber map, with total space the union of the mapping
cylinders of the maps between individual fibers.

In what follows we will place a bar over expressions for suspensions to
denote spaces or fibrations homotopically equivalent or fiber homotopi-
cally equivalent to the spaces or fibrations represented by the unbarred
expressions. For our purpose it will not be necessary to work in the
category which Smith uses, (Top/B)x.

Let

FxyG—F
l l

G——B

be a fiber-square, that is, F is a fibration and F X 3G is the fibered product
of F and G. Assume also that B is simply-connected and H*(F), H*(G)
are of finite type as modules over H*(B). For any n there are natural
epimorphisms

(F"F)X 3G — " (F X 3G)— S"(F X 5G).
For a subbundle A of ¥"F we will denote the image of A X 3G in

S"(FxsG)by A A G. Thisallows us to translate any filtration of "F by
subbundles to a filtration of S"(F X 3G).
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Smith defines a display of F of length n as a sequence of cofibration
sequences
F= Fn""—") K()““"—) F—l
Fvl —_—> K..] —_—> F‘Z
F—n+1 - K—n-H g F—-n
such that each H*(K_,) is projective over H*(B) and each induced map
H*(K_.,)— H*(F.,) is onto. Displays of F of any length exist. Smith
points out that for K_, we may use F_, X B B and for F_, — K_, the map

F,~F . xB.

Given any cofibration sequence M — N — N U € (M), we have the
mapping cylinder inclusion N U € (M)— ¥M. The pair (¥M, N U €(M))
thus obtained can be considered (via a fiber homotopy equivalence) as the
pair in the following picture, which applies to each fiber.

/A}Nu eM) |
NH\/} €M) ™

A display of F thus gives rise to a filtration of $"F

F,C¥F,.CPF,,C---CP'F,CFF,

where PF_,.,=F (K .0 UCF_i))=FPK iy UE(FPF_,...),
thatis, #'F_,., is the mapping cone obtained from the r-fold *“suspension”
of the fibermap F_,,.,—> K _,,,;. This filtration of $"F results as above in
a filtration of S"(F X 3G).

F.,X3G C S(F_1 X 3G)C SHF_,.2X5G)C -+ C §"/(F-1 X 5G)
C §"(F,X 5G).

The spectral sequence of this filtered space isdenoted E(n). Larry Smith
demonstrates that this is independent, up to isomorphism, of the display of
F chosen. The stable limit of the E(n), that is, the spectral sequence
E**=E;*"(n), n>p+1, is the fiber-square spectral se-
quence, with E;?? = Torfs (H*(F), H*(G)) and E = H*(F X 3G).

THEOREM 3.1. Suppose H*(F) is of projective dimension v — 1 over
H*(B). Thendisplays of any length m may be chosen for F in which F_,,,,
and K_,.. are cones for k =m —v.
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Proof. 1In Proposition 4.2 of [5] it is demonstrated that
H*(K_,)— H*(g’K,mH)—» cee—> H*(E7”"K0)—>H*(§’"'F)—>O

is a partial projective resolution of H*($"F) over H*(B). Thus we may
assume H*(¥"K_,)— H*(¥"""'K_,.,) is 0. This map factors as

H*(gm—vKﬂ) ~ H*(g_szvFﬂ’ ?m—v—lF_v‘l) _L“’) H*(g'?m—vo)
S HX(P™ ' F_y, P"F )~ HY (P K,.).

Thus H*($"F.,)~0,andso H*(F_,)~0. Then we canreplace K_, by

onto

F_,, since H*(F_,) is projective over H*(B) and H*(F_.,) —> H*(F_,).
F_,., will then be €(F.,). Now proceed inductively.

THEOREM 3.2.  LetFbeasin 3.1, n = v, and choose a display for F as
in 3.1. Then S"(F X 3sG) has a decomposition as a CF space with cells
F.AG and (¥ 'K_,..)7G, k=1.

Proof. By 3.1 we can choose a display for F for which F_, is a
cone. Then F_, A G willalsobe acone. Now consider the 1-filtration of
SF, FF_.... It is represented in the following picture.

F.,
F—n+1

For \/

This is obtained by attaching €(K_...,). €(K_..)AG is a
cone. Obviously the O-filtration of €(K_,.;)A G, which is F_,., A G, is
contractible in this 1-cell.

r l?I:Lrﬁ*)

In general, for k > 1 the k’th filtration of #"F is obtained from the
k —1st as in the following picture.

Pk—1

Ef F—n+k+1
Dk

C y F—n+k
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Attach the cone on $*'K_,.,, that is, on a sub-k-1-fold ““suspension”” of
F*'F_ir. Such a sub-k-1-fold “suspension” has the property that it
intersects F_, = K_,., U €(F_,.,) in a subcone of €(F_,.,) and intersects
each (¥ 'K_,.,), j < k, in a subcone. Then the canonical contractions of
the cones €(F_,..))A G and €(¥'K_,.;)» G and of the base of each
€(#'K_,.,)A G in this cone restrict to contractions of each filtration of
€(F*'K_,..) A G inthe nextone. Since €(F*'K_,..) A G isfiltered by
NDR’s, these contractions give rise to a filtered contraction of
€($'K_,..)AG which, for each subbundle K CK_,., keeps
€(F'K)A G in itself.

The deformation R¢+-k .., . ¢ Of the k-cell may be derived from the
obvious deformation of a cone in itself which ends with the lower half
being retracted to the base. This deformation keeps each subcone in
itself.

We will exploit 3.2 to define a product and natural operations in the
fiber-square spectral sequence for F as in 3.1. Our approach will be to
use v as the canonical length for displays of F, so that E;??= E 7 %(v).

Observation 3.5. When F is as in 3.1, n = v, then ¥F._,., is fiber
homotopically  equivalent to ¥K_.,,. Let S=9K_, ., rG=
S(K_-,.;1XgG), and p be the top point of S. The standard homotopy
between the diagonal map of S and a map into (S X p) U (p X §) induces a
similar homotopy for #F_,.,A G, and thus a similar homotopy for
F"F A G. This homotopy is carried by the diagonal carrier. Thus it
satisfies the conclusion of 1.15.

In Theorem 6.1 of [5] and the central Theorem of [4] Smith mentions,
but does not go into the details of, a multiplication in E. This presumably
arises from a multiplication on Tory «(H *(F), H*(G)) and is compatible
on the E. level with the product in H*(F X 3G). This is not the product
arising from the diagonal approximation above, since products in
H*(S"(F x 5G)) are necessarily 0.

Smith demonstrates that, given a fiber map F -5 F and a display
F,— KO——> F,—»---—>F, for F there is a display F,— K,—
F,—»--—>F, for F and morphisms making

Fr—>Ky—>F - -—F,

fi 1 l
Fp>K—F,—»--->F,

commute. Thus for F, F asin 3.1 with the projective dimension of H*(F)
over H*(B) = v — 1 = the projective dimension of H*(F) over H*(B), f
gives rise to a filtered map $*F— ¥*F and a cellular map
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S"(F x 3G)— §*(F X G). Of course, a cellular map is also induced by
any morphism G — G.

4. Products and operations. It should be clear that the
diagonal approximations and equivariant diagonal approximations for
quasi-products enable us to define products and Steenrod operations in the
spectral sequences. We mention a few of the details involved in the
construction of the spectral operations, which parallels the construction of
Steenrod squares for regular CW-complexes, and also give some proper-

ties of the operations.
1. The cellular cochain complex is replaced by the E, level of the

spectral sequence: Ef?= H""(Q,, Q,-).

2. Let d be as in the conclusion of 2.11, and T: $*— S~ the
antipodal map. Then there are generators {w; € E| °(S*)= H'(S’, S'™")}
such that under the isomorphisms E(S*X Q)=E(S*)&® E(Q) and
E(QxQ)=~E(Q)® E(Q) we can write, for any u € E{%(Q), the
relation d*[u @ u]=S.-,(1+ T*)w,.,: ® S'u. This defines operations
S':E{i— EPe (i =z q).

3. The S’ pass to well-defined operations S': E, = E,,,, r > 1, with
S'd, = d,,-,S", and thus to operations: E.— E.,, which are compatible with
the action of the Steenrod algebra on H*(Q). These operations satisfy
the Cartan formula and Adem relations. They agree with the operations
defined by Singer in [3] in the Serre and classifying-space spectral
sequences.

4. If f: Q— Q is a cellular fiber map which factors through the
projection q on each quasi-cell of Q, then the §* commute with f* on E,,
(r=2).

5. For Q=X =a CF space, we can define Si: E{9— E}4*
(i = q), so as to make the following diagram commute, where X“ ™ is X
with the filtration shifted upward by q —i (cf. 1.6).

Ef(X) S Erex)
I g N
Ell7+q—" i(x(q—i)) - E,l;+q—x ZI(X(q—i)).
These pass to operations S: E, — E,, ,, r > 1, and E.— E., which are
compatible with the action of the Steenrod algebra on H*(X). On E?9,
vis Sq': HP (X, X,-))— H"" " (X,, X,-)).

We end with two points about these operations in the fiber-square
spectral sequence.

THEOREM 4.1. In the fiber-square spectral sequence (for F as in 3.1),
on E., S'is the square for p =0, i =q, and is 0 otherwise.

Proof. E"P4(n) is associated to a filtration of H"?*4(S§"(F X 3G)),
and E"?“ is associated to the corresponding filtration of H™***(F X zG).
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Since Sq’ is 0 on either of these cohomology modules for i > g, and is the
square for p =0, i = q, the theorem follows.

Thus when the fiber-square spectral sequence collapses, S’ is
described by 4.1, replacing © by any r=2.

ExampLE 4.2. The operations S in the fiber-square spectral se-
quence are the ones considered by Larry Smith in [S], p. 50, and Rector in
[2], since they behave on E, as above. They are not 0 in general. An
example of a fibration F— B with H*(F) of finite projective dimension
over H*(B) is gotten as follows. Consider the universal bundle over Bg,
where G is a Lie group whose cohomology over Z, is the algebra on a
simple system of transgressive generators, A(x; , - -, x; ). Then H*(Bs) =
Z)yis+1,-- 5y, +] and the graded algebra

ZZ[yi|+l7 ) yik-H] ® E[zi’) Y Zxk]

(E denoting an exterior algebra) is a projective resolution of Z, over
H*(Bg), each y being in filtration 0 and each z in filtration —1. Thus Z,
has projective dimension k over H*(B;). Suppose, as is often the case,
that Sq‘x,-l= x;.. The fiber-square spectral sequence for the diagram

G—E;

Lo
pt.— Bg

will collapse, with Toryxg.(Z,, Z,) = E[z,-‘, RN z,-k] = E,, z, being the
coset of X; in F'H#*'/F°H'! Thus Svz, must be Zin.
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