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FILTERED SPACES ADMITTING
SPECTRAL SEQUENCE OPERATIONS

LEWIS SHILANE

Introduction. Throughout this paper we will work in the cate-
gory of compactly generated Hausdorff spaces. All cohomology will be
singular cohomology with Z2 coefficients, although similar results may be
derived when 2 is replaced by an odd prime.

We will call a filtration X0QXλQX2Q-- QX of a space X
convergent if X = U Xn and every compact subset of X is contained in
some Xn. In this case the cohomology spectral sequence of X converges. A
subspace A of X has the induced filtration Ak = A Π Xk. A map
f:X^Y will be called filtered if for each n, f(Xn)C Yn. The product of
two filtered spaces X and Y is given the "tensor product" filtration
(XxY)B = U ) + j = nX,xy i . S00 will represent the infinite sphere with
regular CW reticulation consisting of two cells in each dimension, with the
skeletal filtration, and with the antipodal Z2 action.

We will define a category of convergent filtered spaces and prove that
each object Q has the following properties. First, the diagonal map

O -* Q x Q is homotopic to an essentially unique filtered diagonal

approximation. Secondly, consider the map SxxQ^Q-^QxQ, where
ΊTQ represents projection, and Z2 acts only on the first component of
Sxx Q and by transposition on Q x Q. Then do ° πo is equivariantly
homotopic to an essentially unique filtered equivariant diagonal
approximation.

A diagonal approximation can be used in the obvious way to define a
product in the spectral sequence of Q. An equivariant diagonal
approximation can be used to define operations in the spectral
sequence. The latter construction proceeds in direct analogy with the
construction of Steenrod squares for regular CW-complexes, replacing
the cellular cochain complex of the CW-complex with the Eλ level of the
spectral sequence of Q.

The category of convergent filtered spaces to be defined includes (up
to filtered homotopy type) the Serre filtration of the total space of a
fibration over a regular CW-complex, the Milgram-Dold-Lashof filtration
of the classifying space of a topological monoid, and a special case of the
filtered spaces used in deriving the fiber-square (Eilenberg-Moore)
spectral sequence.

The content of this paper comprises part of the author's doctoral
dissertation at Princeton University.
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1. Cellularly filtered spaces

DEFINITION 1.1. Suppose we are given a convergent filtration of X
and a collection of subspaces, called cells, such that

(a) Each cell e is contained in some minimal filtration Xn, and is
accordingly called an n-cell. (e will denote en — en-u and this will be called
the interior of e.)

(b) Each Xn is a union of cells.
(c) X has the topology coherent with the cells, and each Xn has the

topology coherent with its cells.
(d) The intersection of two n-cells is a subset of Xn-λ.
(e) For each n-cell e, there is a deformation Re: e x /-> e relative

to en-ι which represents en-{ as a neighborhood deformation retract (NDR)
in e as in definition 6.2 of [6], and with the property that for any cell /,
Re((e Πf)xI)Cf. (rf:e-*e will denote Re \exl.)

(f) Each cell e is acyclic as a filtered space. There is a contraction
Ee: e x I —> e in the filtered sense (i.e. Ee (en x /) C en+λ) such that for any
cell / with / Π e V 0 , £e((β Π/)x I)Qf.
Then we will say that the filtration of X is cellular (with respect to the given
collection of cells), or, loosely, that X is a cellularly filtered (CF) space.

DEFINITION 1.2. Any union of cells of X will be called a
subcomplex.

DEFINITION 1.3. A subcomplex K is complete if for any cell e,
KDe^0 implies that e CK.

Notice that if for any cell e, each ek is a subcomplex of X, then the
second parts of (e) and (f) are automatic. This condition is the first
"redundant restriction" imposed on regular CW-complexes in Chapter II
of [1].

Notice also that for any CF space X, Xo is just a union of contractible
components, each being a 0-cell. X has the topology coherent with {Xn},
and each Xn is an NDR in Xn+].

EXAMPLE 1.4. Any regular CW-complex with the skeletal filtration
and the closed CW cells is a CF space.

EXAMPLE 1.5. X = CrA (the iterated cone on any given space A)

or C°°A, where Xn = Cn+ίA.

EXAMPLE 1.6. Given any cellularly filtered space X we can define a
CF space Xik) by giving X a "shifted upward" filtration, i.e. XV^Xn~k

(n ^ k), = Xo otherwise. Of course shifting the filtration downward by k
does not work, unless the components of Xk are contractible.
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The "regularity" Condition i.l(f) will be central in the derivation of
an acyclic carrier theorem for CF spaces, and so in the construction of
filtered approximations to such nice maps as diagonal maps. Curiously,
nonregular CW-complexes have filtered diagonal approximations, even
when the skeletal filtrations are shifted downward, but not always when
the filtration is shifted upward. As an example, let X = X3 = the torus,
X, = a basepoint, X2 = Sι v S\ Then (X x X) 3 = X v X, but it is known
that the diagonal map of a space is homotopic to a map into the wedge iff
the space is of Lusternik-Schnirelmann reduced category S I .

EXAMPLE 1.7. In §4 of [7] Steenrod gives an iterative construction
of the universal bundle EG and the classifying space BG of 3 topological
monoid G with base point. D o = a point, Eo = Do x G, and, for n ^ 1,
Dn = the reduced cone on En-U and En = Dnx G with identification of
points of £„_! x G and points of En-X corresponding to the natural action of
G on J5V.-1- When G is discrete, EG becomes a cellularly filtered space if
we regard each cone Dn x{g} as an n-cell. This does not induce a
reticulation (with acyclic cells) of BG, although in this case both EG and BG

can be given the structure of simplicial complexes with skeletal filtration.
When G is not discrete the reticulation we have given of EG does not
satisfy l.l(c). Cf. 2.4.

The following theorem and its proof are just rewordings of Lemma 4.4
of [1].

THEOREM 1.8. Let X be a cellularly filtered space. Then each compact
subset C of X is contained in a subcomplex which is the union of a finite
number of cells. Thus X is convergently filtered.

Proof. We will show that C meets the interiors of only finitely many
cells e\ -,en. Thus C C e ' U Ue". First we show that C Csome
Xm. Suppose this is not true, and {c,} is a sequence of points of C of
strictly increasing filtration. Then {cj and any subset of it meets each Xm in
a finite, thus closed, subset, so it is closed in X. {ct} has a limit point c in C,
which must belong to it, but this contradicts the fact that {c,-} — {c} is also
closed.

Next we show that for each m, C meets the interiors of only finitely
many m-cells. If this were not true, there would be a sequence {c, } of
points of C in the interiors of distinct m-cells. Any subset of the form
{c,} - {c} of {c, } would meet each cell of Xm in 0 or in one point, thus it
would be closed in Xm. As above, this leads to a contradiction.

THEOREM 1.9. If X and Xr are cellularly filtered then so is X x X',
using the product cells and the "tensor product" filtration.
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Proof. Of course X x X ' is meant to denote the product in the
category of compactly generated Hausdorff spaces. To prove 1.1 (c),
suppose 5 C X x X ' intersects each e X e ' i n a closed subset. Let C be a
compact subset of X x X ' . The projection of C on X, ττx(C), is a
compact subset of X, thus it is contained in a finite union eι U - - U en.
Similarly, ττx-(C)C en U U e/m. Then

SΓ)C = SΓ) (ττχ(C) x ττx{C)) n C = S Π ( e 1 X e ' 1 U U e n x etm) Π C,

which is a closed subset of C. Since S intersects each C in a closed subset,
5 is closed in X x X'. Similarly, each (X x X')n has the topology coherent
with the product cells of filtration ^ n. To prove part (e), let e be an n -cell
of X, and e ' a n m -cell of X'. Since (e, en_,) and (e', e™_j) are NDR pairs, it is
a standard result that the product ( e X e ' ^ X e V π ) is an NDR
pair. (Cf. for instance Theorem 6.3 of [6].) In fact, ReXe can be chosen
so that for any (x, x') G e x e', we have /?eXe.((jc, x') x /) C
Re(x xI)xRe (x'xI). Then for any cells / of X and /' of X',

Re»ei(e * e')Γ\(f x f')x I) = Rexe,((e n f)x(ef Γ) f')x I)

CRe(eΠfxI)x Re{e' Π /' x /)

To prove part (f), recall the well-known result that the product of acyclic
filtered spaces is acyclic, using Ee x 1 followed by 1 x Ee for EeXe . Now,
suppose (fxff)n(exe') = (fxf')n(exe')ϊ0. Then / Π eV 0 and
f n e β 7 0. Thus

C E,(e Π / x /) x Ee{e' D f x /) C / x f.

Notice that if X and X ; have the property that each stage in the
filtration of any cell is a subcomplex, then this is true for X x X ' also.

DEFINITION 1.10. If X and Y are cellularly filtered spaces then a
carrier C from X to Y is an assignment to each cell e of X of a cell Ce of Y,
such that if e Π / ^ 0 then C Π C ^ 0 . C is filtered if for each n-cell
e, Ce CYn. If /: X—> Y we say / is carried by C if for each
e,f(e)CCe. f is called a cellular map if it has a filtered carrier.

DEFINITION 1.11. Let Z 2 = {1, T} have the discrete topology, each
point being a 0-cell. A Z2-action on the cells of X is a representation of
Z 2 by permutations of the set of cells such that T of an n-cell is an
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n-cell. The action is free if for each e, Tey^ e. We call a choice of
exactly one cell from each such pair a free basis of cells for X.

DEFINITION 1.12. A Z2-action on X is cellular if it has a carrier from
Z 2 x X to X which is a Z2-action on the cells of X. We will call it free if
this action on the cells is free. The trivial action is defined by Tx — x for
all x.

If W has a free Z2-action and X the trivial action, then W x X has a
free Z2-action, Z 2 acting componentwise.

The following will serve as our basic "acyclic carrier" theorem. The
reference to property (P) may be deleted if V has the property that each
filtration of any cell is a subcomplex.

THEOREM 1.13. Let U and V be cellularly filtered spaces, K a
subcomplex of U, C a carrier from U to V, F : K —> V a function carried by
C. Suppose also that F has the property

(?) If e is a cell of U, and f a cell of K, then F(e Π /) C C
Let g be an n-cell of U whose (n — 1)-filtration is contained in K. Then F
can be extended to g, in such a way that F(g) C Cg and (?) holds when K is
replaced by K U g.

Proof Recall the notations re and Ee from 1.1. F(g n _ 1 )CC g by
(P). Since this is contractible to some point * in Cg we see we can extend F
to g. This can be done in such a way that F[#] = * if rg[^]g:gn_b

otherwise F[?]E ECg(F[rg[p]]x I). Now suppose e is a cell of U and
?EeΓ)g. Necessarily, CeΠCg^0. If F[^] = *, then it is in Ce

according to l.l(f). If F[^] ^ *, then according to l.l(e), rg[^] E e; by
(P), F[rg|jp]] E C Π Cg and by l.l(f) it follows that F [ ^ ] , being a point of

n, ^ in Q.

THEOREM 1.13'. // in 1.13 F : K-> V is filtered, then F can be
extended so as to be filtered on g.

Proof Repeat the argument above, using the fact that F(gn-ί)C
(Cg)n-i, and the fact that (Cg)π_i is contractible to * in (C g)n.

THEOREM 1.13r/. If in 1.13 we have a free cellular action of Z 2 on U
and a cellular Z2-action on V, // C is equiυariant, and if F is equiυariant
(and possibly filtered), then F can be extended to g U Tg so as to be
equiυariant (and filtered).

Proof Repeat the proof of 1.13 (or 1.13') for g, then define F on Tg
by
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Of course such theorems can be applied in the usual way to yield the
following results.

COROLLARY 1.14. Let U and V be cellularly filtered spaces (with Z2

acting on the cells of V and freely on the cells of U). Let C: U -^ V be an
(equiυariant) carrier, F: U—> V an (equivariant) function carried by C,
and K a complete subcomplex of U. Then F is (equiυariantly) homotopic
to a filtered function by a homotopy carried by C. If F is filtered on K, this
homotopy may be chosen to be constant on K. If F' is another
{equiυariant) function carried by C, then F and F' are (equiυariantly)
homotopic by a homotopy carried by C. If F and F' are both filtered on K,
this homotopy may be chosen to be filtered onK x /. If F and F' agree on K,
this homotopy may be chosen to be constant on K x I.

This corollary in turn may be applied in the usual way to yield the
following two.

COROLLARY 1.15. Let X be a cellularly filtered space. Then the
diagonal map ofXis homotopic to a filtered map dx by a homotopy carried by
the diagonal carrier. Any two such maps are homotopic by a filtered
homotopy carried by this carrier. Iff: X —» Visa cellular map carried by C
then dγ°f is homotopic to (fxf)°dx by a filtered homotopy carried by
CxC.

COROLLARY 1.16. Let W be a regular CW-complex with free cellular

action (e.g. Sx). Then the map WxX^X-^XxXis equiυariantly
homotopic to a filtered map dx by a homotopy carried by the carrier
Dwxe = e x e. Any other such map is homotopic to dx by an equiυariant
filtered homotopy carried by this carrier. ///: X—> Y is a cellular map

carried by C then W x X - ^ W x Y - ^ y x Y is homotopic to
(fxf)°dχ by an equiυariant filtered homotopy carried by DQ where

2. Quasi-product spaces. The following generalizes the
notion of a fiber bundle over a cellularly filtered space.

DEFINITION 2.1. Suppose X is CF, and to each cell e of X there is
assigned a space Ye. Suppose also that for each pair e, f with e Π / ^ 0
there is given a function aef: (e Π f)x Ye-> Yf, such that the following
hold:

(a) If αe,/,x represents the map from Ye to Yf determined by
α*,/,x[y] = <*e,f[x, y],then a Ux° a e>/ϊX= a€tgtX, i.e., these maps are coherent.

(b) Each α e / x has a continuous right inverse α~}x? and this
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assignment of right inverses can be done continuously (using the
compact-open topology for function spaces) and coherently, so that
al{f,x°ajχx= α" ι

g,x.

Let Qf - Σ e x Ye, where Σ denotes topological sum. Let ~ denote
the equivalence relation on Q' determined by the relations (x,y)*~
(jc,αe./,χ[y]) Let Q = Q 7 ~ , with the quotient topology, and let
q: Q' --» Q be the quotient map. Then Q is called the quasi-product of X
and the V/s determined by the a"s.

When e and / are understood, we will abbreviate ae^x to ax.

p

Note that there is a well-defined map Q —» X. We give Q the
filtration Qn = p~ι(Xn). This is a convergent filtration by NDR's.

We could have given an alternate description of a quasi-product by
starting with such a p which has a trivialixation e x Ye ~» p~}(e) over each
cell. This leads to coherent maps aej as in (a). We would also then
require the "uniformity" condition (b) on the α?'s.

It may be convenient to think of Q as being decomposed into
"quasί-cells", each being of the form q(e x Ye). Q has the topology
coherent with the quasi-ceHs.

EXAMPLE 2.2. Let F->E-^>B be a fibration over the regular
CW-complex B. Up to fiber homotopy equivalence, we may assume that
p is a fiber bundle with a trivialization over each cell of B and structure
group G. Let X = B and for any eel) e of B let Ye = F. If cell / is on the
boundary of cell e, let α^f: f x F-* F be the coordinate transformation
determined by the trivializations over / and e. Each αe,/f x will correspond
to an element of G, and α~\x will correspond to its inverse. The
quasi-product so constructed will be precisely the fiber bundle employed.

Observation 2.3, Let G be an //-space with homotopy identity e
which is nondegenerate (contained in G by a cofibration). Let
Gn ^GxGX'XG, G°-{β}. Let ΔΛ be the standard n-simplex-
{(ί,, , ί n ) e R Λ ; O g ί ^ f c g ^ g l } , Δ°^{0}. The Milgram-Dold-
Lashof classifying space for G is

BMG s 0 (BMG)n - ( 2 Δ" x GΛ

n=0 \n=0

where the identifications are

if ί = ίi+i
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( ί , , ' , tn-u 1, g,, , gn) ~ ( ί , , * * , tn-U gu ' , gn-l)

( 0 , t2, ' ' ' ,*„, g i , * , g π ) ~ ( ί 2 , * ",ίn, g2, " * , g π ) .

We will now reconstruct BMG (up to filtered homotopy type) as a

quasi-product.

Construction 2.4. Let ϋo = (0,0,0,•••), ϋi = (0,1,0,•••),•••, be the
ordered vertices of Δ30 = UΔ", where Δπ has vertices vo, — ,vn. Let
Δ'x = the first barycentric subdivision of Δ00. In | Δ001, define s ~ t it there
is an order-preserving simplicial map /: Δn —>Δαo such that \f\[s] = t, and
extend ~ so that it is an equivalence relation. Let BM* = |Δ°°|/ ~ . Let
X = |Δ / 3 0 |/~', where —' denotes the equivalence relation on |Δ;cD| corre-
sponding to ~ on \ΔX\. Give X the skeletal filtration. Notice that X is
homotopically equivalent to BM* as a filtered space by means of the
obvious deformation, for each n, of | Δ ' n | to |Δ" | in |ΔΠ + 1 | relative to
I Δn I. Notice also that X is contractible as a filtered space. In fact, BM*
can be viewed as the classifying space of the trivial group using the
construction given above.

Let h denote the composition | Δ001 —> | Δ'001 —> Â . If β is an n -cell of X
whose inverse image under h is contained in |(Δ°°)Π|, let Ye = G",
otherwise let Ye — G Λ + 1 . Let α's as in 2.1 be determined by the following
system of identifications, using identity maps where these do not apply.

For a face / of Δn containing υ0, but not υn let oί^Mn)\h(\f\)Gn

^ G " " 1 be the map

a[t,gU ' ,gn] = (g,, '9gi-ugi,gt + ί,gi+2,'-,gn),

and

a7l[g\,' ' ,g.-l,g,g,+2, * ',gn] = (gl, ,g, -l,β, g,gI+2, * * Ίgn).

If / does not contain vθ9 let α[ί, g,, ,gn] = (g2, , gn) and
αΓ![g2, * , gn] - (e, g2, * , gn) Notice that the α's and αΓl9s are indepen-
dent of t.

The quasi-product so determined will be denoted by BG. It is
homotopically equivalent to the Milgram-Dold-Lashof BMG as a filtered
space, by means of the deformations mentioned above (using the identity
on G"). Notice that the projection BG->X transforms via these
homotopy equivalences to the map BMG—>BM* induced by the trivial
monoid homomorphism G —> *. Indeed, a homomorphism G —> H will
induce a map BG —> BH, (which will be a cellular fiber map, c.f. 2.7) which in
the case H = * is the quasi-product projection q: BG->B* = X.

We now return to our discussion of quasi-products in general.

THEOREM 2.5. _ If Q is a quasi-product over X and Q a quasi-product
over X then Q x Q is a quasi-product over X x X.
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Proof. Straightforward.

In particular, allowing Q to be merely a cellularly filtered space
(X x a point) we obtain

COROLLARY 2.6. For each cellularly filtered space M and quasi-

luct O -» X there is a quasi-produ
has the "tensor product" filtration.
product O -» X there is a quasi-product M x Q > M x X, where M x Q

P
DEFINITION 2.7. If Q —»X and Q —»X are quasi-products then a

fiber map F:Q-*Q is a map such that if p[qβ~p[q2] then
Pt^tfli]] = Pί-fΊφ]]. Thus F induces a map α:X—>X. F is called
cellular if a is cellular.

Now we can define carriers and Z2-actions for quasi-product
spaces. We repeat definitions 1.10-1.12, replacing the notion of a cell e
by a quasi-cell q(e x Ye), of β by g(e x Ye), and of a cellular map by a
cellular fiber map.

q — q —

THEOREM 2.8. Suppose Q->X and Q->X are quasi-products,
a: X x / -» Xis carried by C, and Fo: Q -> Qisa fiber map which projects to
a0. Suppose also that Fo factors through q on each quasi-cell. That is, we
have continuous functions be: e x Ye —> YCe such that for each pair e, f with
e ΓΊ / ^ 0 , a ao[x]be [JC, y ] = bf [x, axy ], and /or eadi β the following diagram
commutes.

e x Y, ^HJ^L c, x YC.

o

Fo can be extended to a fiber map F: Q x /-> O w/ι/c/ι projects to a,
and vv/πc/i factors through q x 1 on eac/i quasi-cell as follows, with
aa[Xtt]Be[x, y, t] = J5r[x, a(JC,oy, ί] /or appropriately defined aa[Xtt]: YCe -> yCe

and JBe: e x ye x/-> Ya.

x ye x /

F
Ox/ >Q
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Proof. Let HCe be the space of maps from YCe to YCe, with the
compact-open topology. We will construct, for each e, Ά map
Ge: e x I->HCe, and define Be[x, y, t] = (GJJC, t])[be[x, y]]. For some
n ^ 0 , assume inductively that the G's have been defined for e's of
filtration < n, so that F is defined on Qn-X x /. Let e be an rc-cell of
X. Of course Ge must have the constant value l Y c on e x 0. We define
Ge on en_i x / as follows. For each cell / of filtration < n with e Γ) f/0
define Ge on (e Π /) x / by GJJC, ί] = a~\x,t]Gf [JC, ί ] ^ * ] . We must show
that this leads to a definition of F on q x l((e Π /) x Ye x /) compatible
with the way it is already defined on qXl(fxYfxI). Let (JC, y ) E
( e f l / ) x Ye. Then

x 1[JC, y, ί]] = q(a o π e X /, Be)[x, y, ί]

= q[α[x, ί], α fx.̂ G/ [JC, t]aaQ[x]be[x, y]]

= q[a[x9t]9aa[x,t]a~[X,t]Gf[xyt]aaόίx]be[x,y]]

= q[a[x, t], Gf [JC, ί]αβ o [ j t ]fcβ[jc, y]]

= q [ a [ x , t], Gf [JC, ί]fe/ [JC, α x y ] ] = F[q[x, a x y , t]].

Thus we have Ge defined on e x 0 U en_! x /. Since this is contractible,
we can extend Ge to e x /. Thus we can define Be for each n-cell e, and so
we can extend F to Qn x I.

Now consider Q x / as a quasi-product. We have F : Q x I^> Q
carried by the carrier C ^ = Ce. α ( x > 0 above should be interpreted as a
coordinate transformation when cells of Q x / intersect. In general,
define α e X e ' , / x Λ ( x , 0 = αβ,/,x= α*. Now, for (JC, y, t)E (e Π /) x Ye x /, we
have

α:α[*,r]Be[jc, y, ί] = αfl[x>ί]Ge[jc, ί]fee[*,y]

= G/[JC, t]aao[x]be[x, y]

= Gf[x,t]bf[x,axy]

= Bf[x,aiXtt)y9t].

Observation 2.9. In the situations with which we are primarily
concerned, simpler versions of 2.8 may be used. When the a's of Q are
independent of JC, each Ge is the constant assignment of l Y c , and the
condition that F o factors through q is unnecessary to demonstrate the
existence of F, although F may then not factor through q x 1 either.

The condition that aao[x]be[x, y] = bf [JC, axy] is automatically satisfied
under certain conditions. Since q[x, y] = q[x, αxy],
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= q[aQ[x],aao[x]be[x,y]]

must be equal to

F0[q[x, axy]] = q[(ao° πh bf)[x, axy]] = q[ao[x] bf [x, α,y]].

If α0 has the property that whenever x E /, aQ[x] E Q, then since q is 1-1
on Q x YCp aao[x]be[x, y] = bf [x, axy] for x E /, which suffices in the proof
of 2.8. If the ax 's for Q are all 1-1, then q is 1-1 and the equality is again
demonstrated. In fact, in this case the condition that F factors through
q x 1 is also automatic.

COROLLARY 2.10. For a quasi-product Q —> X, the diagonal map is
homotopic to a filtered fiber map by a fiber homotopy carried by the diagonal
carrier.

Proof. Let a0: X-*XxX be the diagonal map, F o : Q->Qx Q
the diagonal map. Fo factors through q as the diagonal map for each
e x Ye. The condition aao[x]be[x, y] = bf [x, axy] reduces to (axy, axy) =
(αxy, axy). Since aQ extends to a homotopy a: X x J — > X x X t o a filtered
map carried by the diagonal carrier, the result follows.

COROLLARY 2.11. Let Q —> Xbe a quasi -product. Then the composi-

tion W x Q —̂ > O —H> Q x Q is equiυariantly homotopic to a filtered fiber

map by a fiber homotopy carried by the carrier DωXe = e x e-.

Proof. This follows as above, using 1.16. When GωXe is extended
from ω X e x 0 U ( ω X e)n-x x / to ω x e x /, GT ω X e should be extended
identically.

THEOREM 2.12. Suppose the hypotheses of 2.8 hold for a: X x /—> X
anda': X x J—»X, w/iereα, a' are both carried by Q ao = a'Oy andax anda\
are filtered. Then Fλ is homotopic to F[ by a filtered fiber homotopy H
carried by C.

Proof. F and F ' pieced together give a homotopy //0: Qx I-* Q
between Fi and FJ, carried by C, which projects to Λo: X x / —> X, which is
α and α' pieced together. Thus AOQ= ax and Aox = a\. Notice that Ho

satisfies the hypotheses of 2.8 since it satisfies the conclusions. We can find
a homotopy A: Xxlxl-^X carried by C between Λo and a filtered
map Au A being_constant on X x {0, 1} x /. By 2.8̂  there is a fiber map
H: O x / x /—> O which projects to A. Then H is gotten by using
H\QxQxIy H\QxIxl, a n d H\Qx\xI.
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COROLLARY 2.13. Any two maps constructed using 2.10 are
homotopic by a filtered fiber homotopy carried by the diagonal carrier. The
same holds for any two maps constructed using 2.11, the homotopy being
equivariant.

Proof. For the second statement, use the variation of 2.12 in which
X x / is replaced by W x X x I and A and H are constructed
equivariantly.

3. The fiber-square spectral sequence. In [5] Smith
discusses the fiber-square (Eilenberg-Moore) spectral sequence. Let the
space B be fixed as the base of all projections considered. For notational
simplicity we will write projections in the form F -^ B, using F for the total
space as well as the map. One notion which Smith uses extensively is the
suspension of a fibration F, which we will denote by SfF. The total space
is the union of the ordinary suspensions of the fibers, and is iot to be
confused with the suspension of the total space, SF. Similarly, for a fiber
map between fibrations M —> iV, the mapping cone N U $(M) has as total
space the union of the mapping cones of the map's restrictions to each fiber
of M. This is distinct from the mapping cone of the map between the total
spaces, N U C(M). The fiber map sequence M -> N -» N U <€ (M) will
be called a cofibration sequence. Finally, one may construct the mapping
cylinder of a fiber map, with total space the union of the mapping
cylinders of the maps between individual fibers.

In what follows we will place a bar over expressions for suspensions to
denote spaces or fibrations homotopically equivalent or fiber homotopi-
cally equivalent to the spaces or fibrations represented by the unbarred
expressions. For our purpose it will not be necessary to work in the
category which Smith uses, (Top/jB)*.

Let

be a fiber-square, that is, F is a fibration and F x BG is the fibered product
of F and G. Assume also that B is simply-connected and H*(F), H*(G)
are of finite type as modules over H*(B). For any n there are natural
epimorphisms

(SenF) x BG -> ¥n(F x BG)-> Sn(F x BG).

For a subbundle A of 5^nF we will denote the image of A x BG in
Sn(Fx βG)by A Λ G. This allows us to translate any filtration of ϊfnF by
subbundles to a filtration of Sn(FxBG).
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Smith defines a display of F of length n as a sequence of cofibration
sequences

F = Fo > Ko > F_ί

F_,—»*_,—• F_2

such that each /f*(K_,) is projective over H*(B) and each induced map
H*(K^)-^>H*(F-t) is onto. Displays of F of any length exist. Smith

points out that for K-t we may use F_, x B -» JB and for F_/ —» 1C_, the map
lxF

F_, ^F-iXB.
Given any cofibration sequence M -^_N-^> N U ^ ( M ) , we have the

mapping cylinder inclusion JV U ^ ( M ) - » #M. The pair (#M, N U <# (M))
thus obtained can be considered (via a fiber homotopy equivalence) as the
pair in the following picture, which applies to each fiber.

N-

A display of F thus gives rise to a filtration of ίfn

F-n C 9F-n+x C &2F-n+2 C C 9n~xF-λ C

where _ &T-n+r= &r(K.n+r+ι U «(F_ π + r + 1 ))= ̂ r K- n + , + 1 U
that is, 5^rF_n+r is the mapping cone obtained from the r-fold "suspension"
of the fiber map F_ n + r + 1 —»• K-n+r+ι. This filtration of ^ " F results as above in
a filtration of Sn(FxBG).

F_n x β G C 5(F_n + 1 x B G ) C S2(F_n + 2 x BG) C C S ^ ^ F . , x_BG)
C 5 n ( F 0 x B G ) .

The spectral sequence of this filtered space is denoted E (n). Larry Smith
demonstrates that this is independent, up to isomorphism, of the display of
F chosen. The stable limit of the E{n), that is, the spectral sequence

E-pq s βn-Pq(n^ n > p + 1 ? j s t h e fiber-square spectral se-
quence, with £ 2-^-TorH p*?B)(ίί*(F),H*(G)) and E Φ H*(FxBG).

THEOREM 3.1. Suppose H*(F) is of projective dimension v - 1 ot er
H*(B). Then displays of any length m may be chosen for F in which F_m+k

and K-m+k are cones for ktkm - v.
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Proof. In Proposition 4.2 of [5] it is demonstrated that

is a partial projective resolution of H*(9>mF) over H*(£) . Thus we may
assume H*ψm-vK.v)^>H*(&m~v+ιK-v+{) is 0. This map factors as

Thus H*(&m-VF-V) - 0, and so H*(F.V) - 0. Then we can replace K_, by

F_w since H*(F-V) is projective over H*(B) and H * ( F - , ) - ^ H*(F_,).
F-^+I will then be ^(F_^). Now proceed inductively.

THEOREM 3.2. Let Fbe as in 3.1, n ^ v, and choose a display for Fas
in 3.1. TTien Sn(Fx BG) has a decomposition as a CF space with cells
F_n Λ G and

Proo/. By 3.1 we can choose a display for F for which F_n is a
cone. Then F_n Λ G will also be a cone. Now consider the 1-filtration of
§>nF, PF-n+i. It is represented in the following picture.

^ F _ n

K-H+1 •

This is obtained by attaching (t^(JftΓ_n+1). ^ ( X _ Π + 1 ) Λ G is a
cone. Obviously the 0-filtration of ^(K^n+λ)A G, which is F_rt+1Λ G, is
contractible in this 1-cell.

In general, for k > 1 the /c 'th filtration of 9>nF is obtained from the
fc —1st as in the following picture.

. a>k-\τp
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Attach the cone on yk~ιK^n+h that is, on a sub-k -1-fold "suspension" of
«9^~1F_n+fc_1. Such a sub-/c-1-fold "suspension" has the property that it
intersects F-n = K-n+ί U ̂ (F_n + ι) in a subcone of <# (F_n+1) and intersects
each %{p]~λK-n+^), j < k, in a subcone. Then the canonical contractions of
the cones <g(F_,,+1)Λ G and Wjf^K-^K G and of the base of each

K-n+j)^ G in this cone restrict to contractions of each filtration of
X + f c ) ^ G in the next one. Since ^(^k~lK-n+k)A G is filtered by

NDR's, these contractions give rise to a filtered contraction of
c(o(9>k~ιK-n+k)Λ G which, for each subbundle KCK-n+k9 keeps
« ( r i ) Λ G in itself.

The deformation R%(^-ικ__n+k) Λ G of the k -cell may be derived from the
obvious deformation of a cone in itself which ends with the lower half
being retracted to the base. This deformation keeps each subcone in
itself.

We will exploit 3.2 to define a product and natural operations in the
fiber-square spectral sequence for F as in 3.1. Our approach will be to
use v as the canonical length for displays of F, so that E~pq = E Γpq(v).

Observation 3.5. When F is as in 3.1, n ^ v, then #F_n + 1 is fiber
homotopically equivalent to 5̂ X_n+1. Let S = SfK-n+ι Λ G =
S(K_n+1 x β G), and p be the top point of S. The standard homotopy
between the diagonal map of 5 and a map into ( S x p ) U ( p x S ) induces a
similar homotop^ for SfF-n+x Λ G, and thus a similar homotopy for
£fnF Λ G. This homotopy is carried by the diagonal carrier. Thus it
satisfies the conclusion of 1.15.

In Theorem 6.1 of [5] and the central Theorem of [4] Smith mentions,
but does not go into the details of, a multiplication in E. This presumably
arises from a multiplication on TorH *(β)(/f *(F), H*(G)) and is compatible
on the Foo level with the product in H*(F x B G). This is not the product
arising from the diagonal approximation above, since products in
//*(S y (Fx β G)) are necessarily 0.

Smith demonstrates that, given a fiber map F-^F and a display
Fo->Ko-+F-x-> - - •—>F_n for F, there is a display F0->K0^>
F_! -> > F_n for F and morphisms making

Fo-> Ko-> F_!-> »F_n

/ 1 1 1 1
F o —> Ko —> F-χ —> > F_n

commute. Thus for F, F as in 3.1 with the projective dimension of H*(F)
over H * ( β ) = ^ - 1 = the projective dimension of H*(F) over H*(B), f
gives rise to a filtered map «9^F-H> ^ " F and a cellular map
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S"(FxBG)—> SV(F x BG). Of course, a cellular map is also induced by
any morphism G —» G.

4. Products and operations. It should be clear that the
diagonal approximations and equivariant diagonal approximations for
quasi-products enable us to define products and Steenrod operations in the
spectral sequences. We mention a few of the details involved in the
construction of the spectral operations, which parallels the construction of
Steenrod squares for regular CW-complexes, and also give some proper-
ties of the operations.

1. The cellular cochain complex is replaced by the Eι level of the
spectral sequence: Epq= Hp+q(Qp,Qp-λ).

2. Let d be as in the conclusion of 2.11, and T: S00—•S00 the
antipodal map. Then there are generators {wy E E{ 0(S°°) = H'(S}, S'"1)}
such that under the isomorphisms £(S°°x Q)~E(S°°)(g)E(Q) and
E(Q x Q)^E(Q)(g)E(Q) we can write, for any u G Epq(Q% the
relation d*[u (g) u] = Σ^q(ί + T*)wp+q-i (g) Sιu. This defines operations
Sι:EV^Ep+ι-q2\ (i^q).

3. The Sι pass to well-defined operations S': Er —> E2r-2, r > 1, with
Sldr = dlr-xS\ and thus to operations: EX—>EX, which are compatible with
the action of the Steenrod algebra on H*(Q). These operations satisfy
the Cartan formula and Adem relations. They agree with the operations
defined by Singer in [3] in the Serre and classifying-space spectral
sequences.

4. If /: Q -» Q is a cellular fiber map which factors through the
projection q on each quasi-cell of Q, then the 5' commute with /* on En

( r ^ 2 ) .
5. For Q = X=a CF space, we can define S{,: Epq-+Epq+i

(i ^ q), so as to make the following diagram commute, where X^'^ is X
with the filtration shifted upward by q - i (cf. 1.6).

— • Epq+i(X)

0 ) E p i

These pass to operations SV. Er —> E2r-2, r > 1, and £»—> EXJ which are
compatible with the action of the Steenrod algebra on H*(X). On Epq,
SV is Sq>:H>+*{XpiXp-ι)-*HW(X»Xp-ι).

We end with two points about these operations in the fiber-square
spectral sequence.

THEOREM 4.1. In the fiber-square spectral sequence {for Fas in 3.1),
on £L, 5' is the square for p'= 0, i = q, and is 0 otherwise.

Proof En'pq(n) is associated to a filtration of Hnp+q(Sn(F x BG))9

and E p q is associated to the corresponding filtration of H~p+q(F x BG).
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Since Sq' is 0 on either of these cohomology modules for i > q, and is the
square for p = 0, i = q, the theorem follows.

Thus when the fiber-square spectral sequence collapses, 5' is
described by 4.1, replacing oo by any r ^ 2 .

EXAMPLE 4.2. The operations S'v in the fiber-square spectral se-
quence are the ones considered by Larry Smith in [5], p. 50, and Rector in
[2], since they behave on Eλ as above. They are not 0 in general. An
example of a fibration F-> B with H*(F) of finite projective dimension
over H*(B) is gotten as follows. Consider the universal bundle over £?G,
where G is a Lie group whose cohomology over Z2 is the algebra on a
simple system of transgressive generators, Δ(jcfi, *, *,k). Then H*(BG) =
^2[y, 1+i, ,y.k+i] and the graded algebra

Z2[yiί+u '' vy. k+i] ®E[ziι9 , z j

(E denoting an exterior algebra) is a projective resolution of Z2 over
H*(BG), each y being in filtration 0 and each z in filtration - 1. Thus Z 2

has projective dimension k over H*(BG). Suppose, as is often the case,
that SqιXi = xi+i. The fiber-square spectral sequence for the diagram

G

I I
pt.-*BG

will collapse, with TorH*(BG)(Z2, Z2) = E[z i i 5 , z, J = fL, z, being the
coset of xi .in F-ιH^ιIF°H^\ Thus Sι

vz] must be z i + 1 .
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