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MAXIMAL QUOTIENT RINGS OF RING EXTENSIONS
KENNETH LOUDEN

Using torsion theoretic methods we obtain sufficient con-
ditions on a ring extension R—S so that Q,.(S)=
S @r Omax(R). This is applied to quasi-Frobenius extensions
and group rings, generalizing and unifying several known re-
sults.

1. Introduction and preliminaries. In [1] Burgess showed
that, for a ring A and a group G, AG ®un Qnux(AH) CQ,.. (AG) for
every central subgroup H of G, with equality if H is of finite
index. Later, Kitamura [6] showed that, for a Frobenius extension
R — S such that S is finitely generated over R by elements which
centralize R, S ®r Qnux(R)= Q,..(S). Finally, Formanek [3] recently
proved that Q,..(AH) C Q,.(AG) when H is a subnormal subgroup of
G.

We want to show here that a general torsion-theoretic argument
leads to a theorem which can be applied to generalize all of the above
results.

We note first that all rings have 1, and all modules are on the right
unless stated otherwise. We assume that the reader is familiar with
torsion theories, for example the contents of [12], whose notation we will
generally follow. For other unexplained terminology we refer to [7].

We begin by considering a general ring homomorphism ¢: R— S
(p(1)=1) with associated ‘‘restriction of scalars’ functor ¢ ,: Mod-S
— Mod-R. Recall that _ @ S is a left adjoint and Homg (S, —) is a right
adjoint of ¢ .. Let & be a topology (idempotent topologizing filter) of
right ideals of R. We set

F={D<S|¢(D)E F}.

Z is a filter but not necessarily a topology.
DEFINITION. % is said to be S-good if % is a topology.

An investigation of S-good topologies was made in [9]. In particu-
lar, the following useful criterion was found.

ProrosiTION 1. ([9], Theorem 2.5(f).) % is S-good if and only if
0 +(M QrS)=(M QrS)r is F-torsion whenever My is F-torsion.

489



490 KENNETH LOUDEN

Associated to the topology & on R is a quotient functor on Mod-R,
which we will denote by Q. When & is §-good, there is also a quotient
functor on Mod-$ associated to %. which we will denote by O. The
interest in S-good topologies is the following.

ProrosiTion 2. ([9], Theorem 2.7.) Let F be an S-good topology
on R, and suppose that S is flat.  Then ¢ ,Q(M)= Q(¢ «(M)) canoni-
cally for all M € Mod-S.

When M = S, Proposition 2 says that the module of quotients of Sk
with respect to # is a ring isomorphic to the ring of quotients of § with
respect to 7.

Modules of quotients are especially nice when they are given by
tensor products.

THEOREM 3. Let # be an S-good topolopy on R, and suppose that S
is flat and Si is projective. Then there is an embedding

S ®@xQ(R) C O(S)

with equality if Sk is finitely generated.

Proof. Recall that there is a commutative diagram

N\

¢ +(S)@r Q(R) 7 Q¢ «(3)).

Now ker B =1t(¢«(S)Q O(R)), the F-torsion submodule of
¢+(S)Q Q(R) (9], Proposition 1.1). But ¢.(S)QOQ(R) is Q(R)-
projective, hence F-torsionfree. It follows that 8 is mono. By Prop-
osition 2, Q(¢ +(S))= ¢ . O(S), giving the required embedding. .If Sy is
finitely generated, then Q(¢ «(S))= ¢ (5)& Q(R) [[4], Theorem 4.7),
completing the proof.

¢ :(S)

ReMARK. The embedding of Theorem 3 is as left S-right Q(R)-
modules. When equality holds, S & Q(R) can be made into a ring
compatible with the ring structures of S and Q(R) by lifting back the ring
structure of Q(S). We do not know if, under the hypotheses of the
theorem, S & Q(R) can always be made into a ring such that the
embedding is one of rings, though this will be true of our applications.
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We will need later the following description of & in terms of
cogenerating injectives.

PrOPOSITION 4. Let F be an S-good topology on R, and let zS be
flat. If I is an injective cogenerator for F. then 1* = Homg (S, 1) is an
injective cogenerator for F.

Proof. [9], Lemma 2.4 and Theorem 2.5(b).

2. Main theorem. We call the topology of dense right ideals
of a ring R the Lambek topology and denote it by &,. It is cogenerated
by the injective hull E(R) of R, and we say that a module M is
E(R)-torsionfree if it is Zr-torsionfree. Thus M is E (R )-torsionfree if
and only if M can be embedded in a direct product of copies of E(R).

THEOREM 5. Let ¢ : R — S be a ring homomorphism. Assume S s
flat, Sy is projective, and the Lambek topology % on R is S-good. Then
S Rk QunlR) C Q,(S), with equality if Sk is finitely generated, S* =
Homg (S, R) is E(S)-torsionfree, and the functor Homg (S, —): Mod-R
— Mod-S preserves essential extensions.

Proof. We use Q(S) as an “intermediate” quotient ring, where Q
is the quotient functor associated to %z (so Q,.(R)= Q(R)). By
Theorem 3, S Q Q(R) C O(S). We show Q(S) C Q,..(S). Indeed, let
{fs ss | B € A} be a dual basis for the projective module Sk, where A is an
index set and s, €S, f; € S* for all B € A. Define j: S—11,5* by
(j(s)s)(t) = fs(st). j is an S-homomorphism. j is also mono, for j(s)=0
implies f;(s) =0 for all B, and so s = X s, f5(s) = 0. By left exactness of
Homg (S, —), S*CE”*, where E = E(R), so there is an embedding
S CIl,E*. Since II,E” is injective, there is an embedding E(S) C
IM,E”. Now 9y is cogenerated by E*, by Proposition 4, hence %, C @5
and Q(S) C O,...(S) as desired.

Now assume the remaining conditions. Then S®Q(R)EO(S)
by Theorem 3. To complete the proof we show E”* CII E(S). By
assumption we have S* CII E(S), and since Hom(S, . ) preserves essen-
tial extensions, E” is an injective hull of $*. Since [T E(S) is injective,
- E7CIHE(S).

3. Applications.

DErFINITION. A topology &# on R is automorphism invariant if
o(D)={o(d)|d e D}€ F for all D € ¥ and o € Aut(R).
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Of course, not all topologies are automorphism invariant, but we do
have the following.

LEmMA 6. ([9], Example 1 after Corollary 3.6.) The Lambek
topology is automorphism invariant.

LEmMA 7. If % is automorphism invariant, then every automorphism
of R extends to an automorphism of Q(R).

Proof. Let t(R) be the torsion submodule of R with respect to
%. Since ¥ is automorphism invariant, o(t(R))=1t(R) for all
o € Aut(R). Let f:D—R/t(R) represent an element of
Q(R). Define o(f): o(D)— R/t(R) by o(f)(o(d))=o(f(d)). Since
o(t(R))=t(R), o(f)is well-defined. It is straightforward to check that
o(f) is a homomorphism and that this defines o on Q(R) to be an
automorphism.

DEFINITION. A bimodule M is said to be generated by normalizing
elements if there are sets {m, |i € [} CM and {o,|i € I} C Aut(R) such
that M =2,c,Rm; and mr=o,(r)m; forall i€, reR.

LEmMMA 8. Let ¢: R— S be a ring homomorphism such that S is
generated over R by normalizing elements. Then an automorphism
invariant topology on R is S-good.

Proof. We use the criterion of Proposition 1. Let ¥ be an
automorphism invariant topology on R, and let My be F-torsion. Let
{s.|i €I} be a set of normalizing generators of S with automorphisms
{o.]i €I}. Then any element of M @S may be written in the form
2 m, s, the sum taken over finitely many i € 1. Let D, € ¥ be such
that m,D, =0, and set D = M, 0;"(D,). Then D € % since the intersec-
tion is finite and & is automorphism invariant. But (Xm, Qs)D =
Sm Qo (D)s, CEIm, QDs,=2mD,Xs, =0. Hence MK S is %-
torsion, and ¥ is S-good.

LEMMA 9. Let & be an automorphism invariant topology on R with
faithful ring of quotients Q(R), and let kMg be generated by normalizing
elements. Assume further that RM and My are flat and that M Qr Q(R)
and Q(R)RQrM are F-torsionfree. Then M KrQ(R)=Q(R)Xr M,
and M Qr Q(R) becomes a Q(R)-bimodule generated by normalizing
elements.

Proof. Let{m,|i € I} be a set of normalizing generators for M with
associated automorphisms {o;|i EI}. Define B:MK Q(R)—
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QR)RXM by BEm Qq)=20,(q)QRm, where o; is extended to
Q(R)viaLemma 7. We show that 8 is a well-defined automorphism. It
is then easy to see that this makes M & Q(R) into a Q(R)-bimodule
with normalizing, generators {m; @ 1|i € I}. So suppose % m, ® q =0;
and let D € ¥ be such that gD CR for all i. Then (EZm, ®q.)D =
EmgD)R®1=0. Now M, is flat and R C Q(R), so M C M Q Q(R)
via the map m » m ® 1. Hence 2mgqD =0, and so 0 =1R I mgD =
20,(q)0(D)®m, =Ro(q)R@m)D, so Z20,(q)@®m =0 since
O(R)® M is torsionfree. It follows that B is well-defined. By sym-
metry, 87" is also well-defined, so B is an isomorphism.

LeEmMMA 10. Let ¢: R — S be a ring homomorphism such that S is
finitely generated over R by normalizing elements. Then Homg (S, —)
preserves essential extensions.

Proof. Let MC.N, and let f: S—N be a nonzero R-.
homomorphism. Let {s,|i = 1,---, n} be a set of normalizing generators
for § with automorphisms {o,|i =1,---,n}. Arrange the s, so that
f(s))#0. Then there is an r,€ R such that 0# f(s)r,=f(s;r)=
f(oi(r)s) = (fou(r))(s)) E M. If (fo(r))s,)=0 for i =2,---,n we are
done. If not, suppose (fo,(r,))(s.) = f(s.)o3'o(r;) # 0. Then there exists
an r, € R such that 0 # f(s,)o7'o:(r,)r, = (fo(r))o(r,))(s.) € M. Note that
then (fo(r,)o(r))(s)) = f (s))r.oi'ox(r,) € M. By finite induction, we are
done.

We are now ready for the applications. Recall ([11]) that a ring
monomorphism R — S is a (left) quasi-Frobenius (or QF) extension if gS
is finitely generated projective and there exists a module sM such that
sSr B sMr = P} %Sk, where *S = Hom(zS, rR).

THEOREM 11. Let R — S be a left QF extension such that S is finitely
generated by normalizing elements over R. Then Q,,(S)=
SRrOnx(R). If R—S is two-sided QF, then S XgOQ.n.(R)=
Qu(R)Rr S, Qi R)— Q(S) is two-sided QF, and Q,,..(S) is finitely
generated by normalizing elements over Q,,.(R).

Proof. We write Q for Q... By Lemmas 6 and 8 the Lambek
topology % on R is S-good. Since &S is projective, it is flat. By [11],
Satz 2, Sr is finitely generated projective. By Lemma 10, Homg (S, —)
preserves essential extensions. Finally, RS§@ M 5= B =Ss ([11], Satz
2), so S$* is E(S)-torsionfree. Theorem 5 applies to give Q(S)=
S® Q(R). Now assume R — S is also right QF. Then $Sg P Ni =
@1" sSk, 50 in particular ;S is a direct summand of EB;" rSr. Hence %S
is generated over R by normalizing elements, because xSz and thus also



494 KENNETH LOUDEN

Pr Sk is. This implies that Homg(*S, Q(R)) is Pk-torsionfree, as
follows. Let f: *S— Q(R) be an R-homomorphism with fD =0 for
some D € @. Let {m;} be a set of normalizing generators of *S with
automorphisms {0}, and let m = % myr, € *S be arbitrary. Then D,, =
Nr'loc(D)E D¢ and f(m)D,, = f(mD,)CXf(Dm,)=0,s0 f(m)=0
and f=0. Now, Homg(*S,Q(R))=Q(R)X®=rS by [10], V.4.1 and
V.4.2. Hence Q(R)®S is PDr-torsionfree. SQ Q(R) is also Pg-
torsionfree, since Sk is projective. Lemma 9 applies to give S @ Q(R) =
O(R)® S and that Q(S) is finitely generated by normalizing elements
over Q(R).

It remains to show that Q(R)— Q(S) is QF. It is easy to see that
this is a monomorphism and that Q(S) is right and left projective over
QO(R). Further applications of Lemma 9 give S*® Q(R)=
Q(R)RS* and M*Q O(R)=Q(R)QM?*, so these both have a
structure of right Q(S)-left Q(R)-bimodule. Finally,

Q(R)® S*=Homk (S, O(R))=Homor(S & Q(R), O(R))
= Homox(Q(S). Q(R)) = Q(S)*
(the * as Q(R)-module), and

o(S)*@m(R)@M*)sq"a O(R)RS zé}; Q(S),

so Q(R)— Q(S) is left QF, by [11], Satz 2. The right QF-ness follows
similarly.

We remark that the ring structure on S @ Q..(R) obtained from
Q...(S) can be defined directly in the expected way, namely (Z,5; & g;) X
Es Xp)==2.55 & o;'(q)p, where the s, are normalizing generators of
S over R with automorphisms o,.

Theorem 11 applies in particular to Frobenius extensions, projective
separable algebras, and Azumaya algebras. We note that centralizing
generators are a special case of normalizing generators, so for instance an
algebra over a commutative ring is always generated by normalizing
elements with all the automorphisms equal to the identity automorphism.
Group rings, however, provide examples of rings with normalizing, but
not centralizing, generators.

CoroLLARY 12. Let A be a ring, G a group, and H a normal
subgroup of G. Then AG @iy Qua(AH) is a ring, and there is a ring
embedding AG Qan Qua(AH) C Qni(AG) with equality if H is of finite
index.



MAXIMAL QUOTIENT RINGS OF RING EXTENSIONS 495

Proof. By Lemmas 6 and 7, the G-action on AH defined by
xf=g'xg for x € AH and g € G extends to Q..(AH). The ring
structure on AG & Q,...(AH) is now defined by (2g ®q.)2 g Xp)=
3 g8 Xqép. AG is generated by normalizing elements over AH, so
Lemmas 6 and 8 and Theorem 5 give AG ® Q...(AH) C Q,..(AG). Itis
easy to see that this is a ring embedding. Finally, if H is of finite index
then AH — AG is a Frobenius extension, so Theorem 11 applies to give
equality.

CoroLLARY 13. If A isaring, G is a group, and H is a subgroup of
G of finite index, then Qn,(AG)=AG Qin Qua(AH).

Proof. There is a K<G and of finite index with K C H. By
Corollary 12, Q. (AG) = AG Qak Qnx(AK) = AG Ran
(AH ®AK Qmax (AK)) = AG ®AH Qmax (AH)

DErINITION. A subgroup H of G is subnormal-by-finite if there is a
subnormal subgroup H, of G such that H C H, and H is of finite index in
H,.

CorOLLARY 14. If H is a subnormal-by-finite subgroup of G, then
OnilAH) C Qnas(AG).

Proof. Suppose first that H is normal in G. Then
AG R O0..(AH) C Q,.(AG) by Corollary 12. Since AG,y is free and
hence faithfully flat, we have O, (AH)CAGQ O,.(AH) via
g 1®q. Thus Q.. (AH)C Q..(AG). This extends immediately to
the case when H is subnormal. Finally, let H, be subnormal such that H
is a subgroup of H, of finite index. Then an application of Corollary 13
gives Qnw(AH) C Q,.(AH,), and the result follows.

Corollary 14 generalizes a result of Formanek [3].

Conjecture. 1f H is a normal subgroup of G, then Q,.(AG)=
AG ® Q.(AH) if and only if H is of finite index.

REMARKS.

1. When H =1 the conjecture is a generalization of the recently
proved self-injectivity theorem for group rings, which says that AG is
self-injective if and only if A is self-injective and G is finite (see for
example {2]). The conjecture for H =1 also follows from that theorem
when the singular ideal of AG is zero. Some further partial results
when H =1 appear in [8]. The general case when H# 1 seems to be
more difficult, even in special cases.
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2. A corresponding conjecture for the classical quotient ring,
avoiding questions of Ore-ness, is the following: If H is a normal
subgroup of G, and AH and AG are right Ore, then Q.(AG)=
AG QanQ4(AH) if and only if H is of locally finite index (i.e. G/H is a
locally finite group). This is a generalization of a conjecture of Herstein
([5], page 36). A discussion and special cases appear in [8].
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