
PACIFIC JOURNAL OF MATHEMATICS
Vol. 62, No. 2, 1976

ON THE STRUCTURE OF ALGEBRAIC ALGEBRAS

THOMAS J. LAFFEY

Let A be an infinite dimensional (associative) algebra over a
field F. It is shown that A has an infinite dimensional com-
mutative subalgebra C of one of the following types:

(a) C is generated by one element
(b) C2 = {0}
(c) C3 = {0} and C is an ideal of an ideal of A
(d) C is generated by mutually orthogonal idempotents
(e) C is a field.

A necessary and sufficient condition (in terms of the quadratic
forms over F) is obtained for the validity of the statement: Every
infinite dimensional nil algebra over F has an infinite dimen-
sional subalgebra B with B2 = {0}. An ideal y(A) of an algebra
A (analogous to the F.C. subgroup in group theory) is defined
and several properties of it are obtained.

In §1 of this paper we give a list of notation and definitions. In §2 we
prove some preliminary results on rings and algebras. In §3 we obtain
several properties of an ideal y(A) of an algebra A (defined in §1). The
ideal y(A) is an algebra-theoretic analogue of the F.C. (finite conjugate)
subgroup in group theory. The main result of this paper is the Main
Theorem, proved in §4, which states:

MAIN THEOREM (4.1). Let A be an infinite dimensional (associa-
tive) algebraic algebra over a field F and assume

(a) A contains no infinite set of mutually orthogonal idempotents.
(b) A contains no infinite dimensional subalgebra B with B2 — 0
(c) y(A) is finite dimensional.

Then A = M φ J V where M is finite dimensional and N is the direct sum of
finitely many algebraic division algebras.

An immediate consequence of the Main Theorem is the fact, proved
in [5], that every infinite dimensional associative algebra over a field has
an infinite dimensional commutative subalgebra.

Several results in this paper deal with algebraic algebras which have
no infinite dimensional subalgebras with square zero. This condition
restricts the structure of an algebraic algebra considerably. For example,
if A is a nil algebra over a field and A has no infinite dimensional
subalgebra C with C2 = 0, then A is locally finite and A is even
necessarily finite dimensional for a large class of fields.
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1. Notation and definitions. Throughout the remainder of
the paper the words ring and algebra will mean associative ring and
associative algebra, respectively. If A is an algebra over a field and B is a
subspace (or subalgebra) of A, A IB denotes the factor space of A by B
and, if B is an ideal of A, A IB denotes the corresponding factor algebra.

If X, Y are subspaces or subalgebras of A, X + Y denotes the vector
space sum of X, Y. If X or Y is an ideal of A, then X -\- Y coincides
with the algebra sum of X, Y. Also dim (X) denotes the dimension of X.

φ is used to denote the direct sum of algebras.
If S is a nonempty subset of ring R, then ring (S) denotes the subring

generated by S. If B is a nonempty subset of an algebra A, alg (B)
denotes the subalgebra generated by A.

If S is a nonempty subset of ring R, then

Ann(S) = {r G R \ rs = sr = 0 for all 5 G S}.

If S = {x}, write Ann({x}) = Ann(x).
If A is an algebra, we write

y (A) = {a G A [ dim (A /Ann (a)) is finite}

An algebra A is called algebraic over a field F if each element of A
generates a finite dimensional subalgebra A. A is called locally finite if
each finite nonempty subset of A generates a finite dimensional sub-
algebra of A.

We recall that by a result of Golod-Shafarevich ([3], Theorem
(8.1.3)) there exist algebras which are algebraic but not locally finite.

We say that a field F is square -dependent if given any sequence {an}
of elements of F, there exists a positive integer N = N({αn}) and elements
Λj, , λΛ G F, not all zero, such that

a\ λ i + * 4- <2,vλ}v — 0.

We note that a formally real field is not square-dependent.
Several results on and examples of square-dependent fields can be

found in [2].
0 is used to denote both the zero element and the zero algebra.
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2. Some general results on algebras. Our first result
deals with subalgebras of finite codimension. The group-theoretic
analogue of this result is well-known and the ring-theoretic analogue has
been obtained by J. Lewin ([6]).

LEMMA (2.1). Let A be an algebra over a field F and let B be a
subalgebra of A with dim(A/B) = n < oo. Then B contains an ideal I of A
with dim(A/I)^n(n + I)2.

Proof Let xx + B, , xn + B be a basis for A IB. Define subspaces
Bij of B as follows:

Let

BOJ={beB\bx,eB} (j^ί)

Btj={bEB\ xMj e B) (i ̂  1, / g 1).

Fix (i,y)^(0, 0). The map b ->x ι bx ι + B(b E B) is an F-space
homomorphism of B into A IB with kernel BΨ So dim(JB/J3ί;)^ n. Let
/ = Π ( l ,;)?ί(Oιo)JBiy. Then

dim(A//) = dim(A/B) + dim(jB//)^ n + n((n + I ) 2 - 1) = n(n + I)2.

It is straightforward to check that / is an ideal of A.

We are grateful to the referee and to H. E. Bell for shortening our
original proof of the next result. The proof here is due to H. E. Bell.

LEMMA (2.2). Let R be a ring. The following statements are equiv-
alent:

(1) R has an infinite set of commuting idempotents.
(2) R has an infinite set of mutually orthogonal idempotents.

Proof Clearly (2) implies (1). Suppose then that (1) holds. Let X
be an infinite set of nonzero commuting idempotents pf R. We may
assume R is generated by X. For each subring S of R, let E(S) be the
set of nonzero idempotents in S. Note that if eEE(S), then 5 =
eS + Ann(e) so each fEE(S) splits as a sum fλ + f2 of idempotents fu

f2. Hence if E(S) is infinite so is at least one of E(eS), £(Ann(e)). Thus
starting with E(R) we may construct a sequence eu Ci, * * % em of
distinct nonzero idempotents such that for each / either (a) eιe] = 0 for all
/ > i or (b) e^j = e, for all / > i. If (a) holds for infinitely many i, then (2)
follows. We may thus assume that (b) holds for all i. Then {eλ - e2, e2 -
e3, e3 - e4, *} is an infinite set of mutually orthogonal idempotents.
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COROLLARY (2.3). Let R be a ring with no nonzero nilpotent
elements. The following are equivalent:

(i) JR has an infinite set of mutually orthogonal idempotents.
(ii) R has infinitely many idempotents.

Our next result gives some information on the structure of algebraic
algebras.

LEMMA (2.4). Let A be an algebraic algebra over a field F and
assume that A has no nonzero nilpotent elements. Then one of the
following statements holds:

(i) A has an infinite set of mutually orthogonal idempotents.
(ii) A is a finite direct sum of algebraic division algebras.

Proof. Assume that (i) does not hold. By Corollary (2.3), A has
only finitely many idempotents. Let X be the subalgebra generated by
the idempotents and let eu e2, ••-,£« be the primitive idempotents of
X. Then every idempotent in A is a sum of some of the et. If a E A,
the algebra generated by a is finite dimensional and thus it is a direct sum
of finitely many fields. Thus a = ea for some idempotent e. Thus
A = eλA Λ 4- enA and, since each et is central and e^ = 0 (iV /), this
sum is direct. Since e, is the only nonzero idempotent in e,A, e,A is a
division algebra. This completes the proof.

3. Properties of y ( A ) . In this section we obtain several
properties of y(A) for A an algebra over a field F.

We begin with some elementary facts.

LEMMA (3.1). Let A be an algebra over a field F. Then
(i) y(A) = A if A in finite dimensional.
(ii) y(y(A)) = y(A).
(iii) if a EA, then a Ey(A) if and only if Aa 4- aA is a finite

dimensional subspace of A.
(iv) if B is a subalgebra of A with A IB finite dimensional, then

= BΠy(A).
(v) j/y(Ά) is finite dimensional, then y(A/y(A)) = 0.

An easy consequence of Lemma (3.1)(iii) is.

LEMMA (3.2). Let A be an algebra over a field F. Then y (A) is an
ideal of A.

We now prove

LEMMA (3.3). Let A be an algebra over a field F. The following are
equivalent.
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(a) αGy(A)
(b) a is contained in a finite dimensional ideal of A.

Let a E y(A). Now a A, Aa are finite dimensional and also, since
aA C y ( A ) , Aa C y ( A ) , AaA is finite dimensional. It follows easily
that the smallest ideal containing a is finite dimensional. The converse
is trivial.

COROLLARY (3.4). Let A be an algebra over a field F. Then y(A)
is a locally finite ideal of A.

Our next result gives some information on the size of y(A).

LEMMA (3.5). Let A be an algebra over a field F and assume that A
has no infinite dimensional subalgebra C with C2 = 0. Then a E y(A) if
and only if a2 E y (A).

Proof Let a E A be such that α 2 E y ( A ) . The map x —»
axa (x E Ann(α2)) is a linear transformation of Ann(α 2) whose image is
a subalgebra of A whose square is zero. Thus

U = {x E Ann(α 2 ) |αxα =0}

has finite codimension in Ann (a2) and therefore in A. Let W =
{ax I x E U}. Then W is a subalgebra of A whose square is zero. So W
is finite dimensional. Thus

V = {x E U I ax = 0}

has finite codimension in U. Using symmetry, we find that a E y(A).

The converse is trivial.

COROLLARY (3.6). Let A be an algebra over a field F and assume
that A has no infinite dimensional subalgebra whose square is zero. Then
A/y(A) has no nonzero nilpotent elements.

COROLLARY (3.7). Let A be a nil algebra over a field F and assume
that A has no nonzero finite dimensional ideals. Then A has an infinite
dimensional subalgebra whose square is zero (unless A = 0).

LEMMA (3.8). Let A be an algebra over a field F and assume that
y(A) is infinite dimensional. Then there exists a sequence {Xn\n =
1,2,3, } of ideals of A such that
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(a) Xn is finite dimensional.
(b) XnCy(A)
(c) XnXm=0(mέn)

and
(d) X π + 1 £X 1 + . . + Xn ( n ^ l ) .

Proof. Note if x E y (Λ) then the smallest ideal of A containing x
is finite dimensional. Having chosen elements xu , xn E y (A) such that
if Xt is the smallest ideal of A containing xi? then

(a) X, + 1 £Xi+ + X, (/i=l)

(j8) X,X, = 0

let

Note that Wn is infinite dimensional and that Xx + hXπ is finite
dimensional. Let

x n + 1 e W n - ί ^ + + X,,)

and let Xn+! be the smallest ideal of A containing xn+1. The result
follows by induction.

LEMMA (3.9). Let F be a square dependent field, V a finite dimen-
sional F-space and v0, vu v29 —

 m an infinite sequence of elements of V.
Then there exist sequences λ0, λ1? λ2, * of elements of F and 0 = n(0) <
n( l )< n(2)< - natural numbers, such that

(a) for all /, f/iere exίste i with n(j)^i < n(j + 1) 5wc/ι that λ f ^ 0,
and

(b) Σπ ( / ) S l <n(/+i) A ? uf = 0 .

Proof. If dim V = 1, the result is immediate from the definition of a
square-dependent field. Suppose dim V = n > 1 and let W, spanned by
w, be a one-dimensional subspace. Using induction we may assume that
there exist sequences λ0, λ1?λ2, ••• of elements of F and 0 = n ( 0 ) <
rc(l)< n(2)< of natural numbers such that

(a) for all /, there exists i with n(/) = i < w (/ + 1) such that A, ̂  0
and

( b ) Σ π 0 ) S l < π 0 + 1 ) λ
2iVi = aj w

for some αy E F.
Again, by the definition of a square-dependent field, there exist

sequences μ0, μi? M2, * * * of elements of F and 0 = m(0)< m(l)< m(2)
< of natural numbers such that
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(c) for all /, there exists i with m(j)^i < m(j + 1) such that μ, j^ 0
and

(d) Σ m ω s , < n ( y + 1 ) μ ί α , = 0 .

Hence

m ( k ) £ Σ ( k + i ) M / ) s Σ ; + i ) λ ^ ^ , = o

and the result follows.

THEOREM (3.10). Let A be an algebra over a field F and assume that
y(A) is infinite dimensional. Then one of the following statements holds:

(a) y (A) contains an infinite set of mutually orthogonal idempotents.
(b) A has an ideal I such that

0) r = {o}
(ii) I has an infinite dimensional commutative ideal C.

If, in addition, F is square-dependent, statement
(b)(ii) can be improved to
(b)(ii)' y(A) contains an ideal I of A such that I has an infinite

dimensional ideal C with C2 = 0.

Proof Let {Xn}Γ be an infinite sequence of ideals of A satisfying
the conclusion of Lemma (3.8). If infinitely many of the X, contain
nonzero idempotents, then conclusion (a) of the theorem
holds. Assume then that only finitely many of the X, contain nonzero
idempotents. By omitting these and relabelling, if necessary, we may
assume that no Xt contains a nonzero idempotent and further that X, is
nilpotent for all i.

Let /c, be the least positive integer for which Xf' = 0 and let h{ = /c,/2
(if kx is even), /ι, = (fc, + l)/2 (if kt is odd). Let Ht = X|\ Now H, is an
ideal of A and H2 = 0. Also HtHj = 0. Let H be the algebra gener-
ated by {f/J. Then H2 = 0, H is an ideal of A and, if H is infinite
dimensional, conclusion (b) of the theorem holds with I = C = H.

Assume from now on that H is finite dimensional. There exists a
positive integer m such that for all n> m,

In particular XnHn = HnXn = 0. Thus XI = 0 for all n>m. Let / be
the ideal generated by {Xn + H\n> m}. Then P - 0 and conclusion (b)
(i) of the theorem holds.

Let vn EXn - (Xw+, + + Xn_, + H) (n > m) and let Cn be the
algebra generated by {vmHn}. (We note that vn exists because of our
choice of m). Since XnH = HXn = 0, Cn is commutative. Also Cn is an
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ideal of /. Thus conclusion (b) (ii) of the theorem holds with C =
alg({Cn}).

Suppose now that F is a square-dependent field. Let v\-
hn E H. Since H is finite dimensional, Lemma (3.9) provides us with a
sequence λ0, λ1? of elements of F and 0= n(0)< n(l)< n(2)< of
natural numbers such that

(1) for all /, there exists i with n (j) ^ i < n(j + 1) such that A, / 0
and

( 2 ) ^nθ)gi<n(/+l) A , Λj = 0 .

L e t w7 = Σn(/)^,< r t(/ +i)λ, ϋi.

Then w;wk = 0 for all /, k and {w;} is linearly independent. Also the
algebra generated by H U {w7} is an ideal of /. Thus conclusion (b) (ii)'
of the theorem holds. The proof is now complete.

EXAMPLE (3.11). Let F be a field which is not square-dependent
(i.e., there exists an infinite sequence {αn}Γ of elements of F such that

for λ( E F and m ^ 1 implies λi = = λw =0). Let A be the algebra
generated over F by

Mo, Mi, * , M Π , •

subject to the relations

Then y(Λ) = A and AM0 is the only subalgebra of A whose square is
zero. Thus the conclusion (b)(ii) cannot in general be modified to
C2 = 0 for fields which are not square-dependent.

Theorem (3.10) and Example (3.11) yield the following characteriza-
tion of square-dependent fields.

THEOREM (3.12). Let F be a field. The following are equivalent
(i) F is square dependent
(ii) every infinite dimensional nil algebra over F has an infinite

dimensional subalgebra C with C2 = 0.

4. The main results. We first prove the Main Theorem.

Proof. Assume that A satisfies (a), (b) and (c). By Lemma (3.1)
(v), y(A/y(A)) = 0. By Corollary (3.6) and the fact that (b) holds,
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A/y(A) has no nonzero nilpotent elements. Let H = Ann(y(A)) and
L = y (A) Π H. Then H/L is isomorphic to a subalgebra of A /y (A), so
H/L has no nonzero nilpotent elements. Next we show that H/L does
not have an infinite set of mutually orthogonal idempotents. For suppose
that {/„ -f L} is such a set. Then, since HL = LH = 0, {/„} is an infinite set
of mutually orthogonal idempotents of A, against our assumptions.

Now Lemma (2.4) implies that H/L is a finite direct sum of division
algebras. In particular H/L has an identity e + L. Let

K = {w E H I we2 = £2w = w}.

Since we 2- w and e2w - w are elements of L for all w E if, we see that
K has finite codimension in H. Also / = e2 is the identity of JfC. Let

No = {α E A I α/ = fa = α}.

We note that A/No is finite dimensional. Let a E A and consider
α/ - α. Then (af - a )Kι = Kλ{af - a) = 0 where JK, is the maximal ideal
of A contained in K. Thus α f - α E y ( A ) . Similarly fa-aE
y (A). Now

Let iV be the maximal ideal of A contained in No. Again, by
Lemma (2.1), A/N is finite dimensional. Since / y θ and /y(A) = 0,
No Π y (A) = 0. So N is isomorphic to a subalgebra of H/L. In
particular N is a finite direct sum of division algebras. So N has an
identity, g say. Now if u E A, ug - u is annihilated by N. Thus
Mg-we y(A). Thus u E y(A) + N = y ( A ) 0 N .

This completes the proof for general F.
Note that if F is square-dependent, (c) is a consequence of (a), (b),

by Theorem (3.12).
Since a maximal subfield of an infinite dimensional division algebra

is infinite dimensional ([4], p. 165), Theorem (4.1) implies

COROLLARY (4.2). Every infinite dimensional algebra over a field F
has an infinite dimensional commutative subalgebra.

This is the main result of [5]. We note that Theorem (4.1) shows
that such a commutative subalgebra C can be found of one of the
following types:

(a) C is generated by one element.
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(b) C2 = 0.
(c) C is generated by mutually orthogonal idempotents.
(d) C3 = 0 and C is an ideal of an ideal of A.
(e) C is a field.

We now prove

THEOREM (4.3). Let A be an algebraic algebra over a field F with F
finite or algebraically closed. If A is not locally finite, then A has an
infinite dimensional subalgebra C with C2 = 0.

Proof. Suppose that the theorem is false and let A be a counterex-
ample. By Corollary (3.6), A/y(A) has no nonzero nilpotent elements.
Suppose first that F is finite. Let x E A/y(A). The ring generated by
x is finite (since A is algebraic) and has no nonzero nilpotent elements,
so xpk = x for some k ^ 1 where p is the characteristic of F. Then
A/y(A) is commutative by Jacobson's theorem ([3], Theorem (3.1.2))
and thus it is locally finite. Hence A is locally finite, since y(A) is
locally finite.

Suppose then that F is algebraically closed. Each element x E
Aly(A) is then an F-linear combination of idempotents all of which are
central, since A/y(A) has no nonzero nilpotent elements. So A/y(A)
is commutative and the result follows.

Our next result is a consequence of the proof of Theroem (3.10), and
the Main Theorem.

THEOREM (4.4). Let A be an algebraic algebra over a field F and
assume that A has no infinite dimensional subalgebra C with C2 = 0. Then
A is Artinian if and only if A is Noetherian.

Proof. If A is Noetherian, then the proof of Theorem (4.1) shows
that conclusion (iv) of Theorem (4.1) must occur. Thus A is Artinian.

Suppose now that A is Artinian and that A is not Noetherian.
Clearly conclusion (i) or (iv) of Theorem (4.1) cannot occur, so conclusion
(iii) must occur. Thus y(A) is infinite dimensional. Choose the se-
quence {Xn} as in Lemma (3.8). Then the sequence

Ann(X,), Ann(X, + X2), , Ann(X, + + Xn\

does not terminate.
We give two final results on how the assumption that an algebra A

has no infinite dimensional subalgebra whose square is zero restricts the
structure of A. These results are elementary.
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THEOREM (4.5). Let A be an algebra over a field F and assume that
A has no infinite dimensional subalgebra B with B 2 = 0. Then

(a) every left invertible element of A is right invertible,
(b) if A has an element which is a left zero-divisor but is not a right

zero-divisor, then A has a finite dimensional nonzero ideal I with I2 = 0.

Proof (a) Suppose x, y E A with yx = 1, x y ^ l . Suppose that

{xk(xy - l)\k ^ 1} is linearly dependent. Let λ0, ,λ k G F , λ f c ^ 0 , be

such that

λQ(xy - l) + λιX(xy - 1)+ + λkx
k(xy - 1) = 0.

Multiplying on the left by y\ we get xy - 1 = 0, which is impossible.
(b) Let z 6 A be such that zx = 0 for some 0 ̂  x E A and that

uz - 0 for u E A implies u = 0. The subalgebra C generated by the
elements xzk(k — 1,2, ) satisfies C2 = 0, so it is finite dimensional.
Then since z is not a right zero-divisor it follows that {xzk\k~
0,1,2, } is linearly dependent. Hence there exist α0, au ,amE.F, not
all zero, such that

aox + aλxz + + amxzm = 0.

We may assume that m is the least such integer. Then aQ ̂  0. Hence
x2 = 0. By Corollary (3.6), x E y(A). The same argument shows that
w2 = 0 for all w in the smallest right ideal of A containing x. Thus, for
cEA,

0 = (x 4- xc)2 = JC2 + JC2C + jccx + (xc)2 = xcx.

Hence (Ax)2 = (JCA)2 = 0. The result follows.
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