SUBSPACES OF SYMMETRIC MATRICES CONTAINING MATRICES WITH A MULTIPLE FIRST EIGENVALUE

S. FRIEDLAND AND R. LOEWY

Let \mathcal{U} be an (r-1)(2n-r+2)/2 dimensional subspace of $n \times n$ real valued symmetric matrices. Then \mathcal{U} contains a nonzero matrix whose greatest eigenvalue is at least of multiplicity r, if $2 \leq r \leq n-1$. This bound is best possible. We apply this result to prove the Bohnenblust generalization of Calabi's theorem. We extend these results to hermitian matrices.

1. Introduction. Let \mathcal{W}_n be the n(n+1)/2 dimensional vector space of all real valued $n \times n$ symmetric matrices. Let A belong to \mathcal{W}_n . Arrange the eigenvalues of A in decreasing order

(1.1)
$$\lambda_1(A) \geq \lambda_2(A) \geq \cdots \geq \lambda_n(A).$$

We say that $\lambda_1(A)$ is of multiplicity r if

(1.2a)
$$\lambda_1(A) = \cdots = \lambda_r(A),$$

(1.2b)
$$\lambda_r(A) > \lambda_{r+1}(A).$$

Let \mathcal{U} be a subspace of \mathcal{W}_n of dimension k. We consider the question of how large k has to be so that \mathcal{U} must contain a nonzero matrix A which satisfies (1.2a) for a given r. The nontrivial case would be

$$(1.3) 2 \leq r \leq n-1.$$

Clearly for r = n we must have k = n(n + 1)/2 as \mathcal{U} will contain the identity matrix *I*.

We now state our main result:

THEOREM 1. Let \mathcal{U} be a k dimensional subspace in the space \mathcal{W}_n of $n \times n$ real valued matrices. Assume that an integer r satisfies the inequalities (1.3).

_ If

$$(1.4) k \ge \kappa(r)$$

where

(1.5)
$$\kappa(r) = (r-1)(2n-r+2)/2, \qquad r = 1, 2, \cdots, n$$

then \mathcal{U} contains a nonzero matrix A such that the greatest eigenvalue of A is at least of multiplicity r. The lower bound $\kappa(r)$ is best possible for $2 \leq r \leq n-1$.

Theorem 1 is proved in §2. In §3 we prove that Theorem 1 is equivalent to the following result due to Bohnenblust (cf. [1] and [4]). We denote as usual by (x, y) the inner product of the vectors x and y in \mathbb{R}^n , which is the underlying vector space for \mathcal{W}_n .

THEOREM 2 (Bohnenblust). Let \mathcal{V} be a subspace of dimension k in \mathcal{W}_n and let $1 \leq r \leq n-1$. Assume that \mathcal{V} has the following property:

(1.6)
$$\sum_{i=1}^{r} (Ax_i, x_i) = 0 \text{ for every } A \text{ in } \mathcal{V}$$

implies that $x_i = 0$ for $i = 1, \dots, r$. If

(1.7)
$$k < f(r+1) - \delta_{n,r+1},$$

where

(1.8)
$$f(r) = r(r+1)/2,$$

then \mathcal{V} contains a positive definite matrix.

In case r = 1, Bohnenblust's result reduces to the following theorem, known as the *Calabi theorem* [2]: Let $n \ge 3$ and suppose that S_1 and S_2 are $n \times n$ symmetric matrices such that $(S_1x, x) = (S_2x, x) = 0$ implies x = 0. Then there exist real α_1 and α_2 such that $\alpha_1S_1 + \alpha_2S_2$ is positive definite.

Bohnenblust defines a subspace \mathcal{V} with the property:

(1.9)
$$\sum_{i=1}^{r} (Ax_i, x_i) = 0$$
 for every $A \neq 0$ in \mathcal{V} implies $x_1 = x_2 = \cdots = x_r = 0$

to be *jointly definite of degree r*. Thus, the equivalence of Theorems 1 and 2 relates the notion of a subspace which is jointly definite of degree r with that of a subspace containing a nonzero matrix whose largest eigenvalue has multiplicity r.

Finally, in §4 we prove that if we let \mathcal{W}_n be the n^2 dimensional *real* space of all $n \times n$ hermitian matrices then Theorems 1 and 2 remain correct if $\kappa(r)$ and f(r) are defined as follows

390

(1.10)
$$\kappa(r) = (r-1)(2n-r+1),$$

(1.11)
$$f(r) = r^2$$
.

2. *Proof of Theorem* 1. We first establish a weaker form of Theorem 1 which will be needed for the proof of Theorem 1.

LEMMA 1. Let $1 \leq r \leq n$. Let \mathcal{U} be a k-dimensional subspace of \mathcal{W}_n and assume that

$$(2.1) k \ge 1 + \kappa(r).$$

Then there exists A in U such that

(2.2)
$$\lambda_1(A) = \cdots = \lambda_r(A) = 1.$$

Proof. For r = 1 (2.2) trivially holds. For r = n (2.2) is also obvious as $1 + \kappa (n) = n(n + 1)/2$. Suppose that the lemma holds for r = p. Next we construct A which satisfies (2.2) for r = p + 1. Let B^* satisfy

(2.3)
$$\lambda_1(B^*) = \cdots = \lambda_p (B^*) = 1, \qquad (p \ge 1).$$

The existence of B^* follows from our assumptions. Assume that

(2.4)
$$1 > \lambda_{p+1}(B^*).$$

Otherwise B^* would satisfy (2.2) for r = p + 1. Let

$$(2.5) B^*\xi_i = \lambda_i (B^*)\xi_i ; (\xi_i, \xi_j) = \delta_{ij}, i, j = 1, \cdots, n.$$

Suppose that A_1, \dots, A_k form a basis for \mathcal{U} . Consider the system

(2.6)
$$\sum_{j=1}^{k} \alpha_j A_j \xi_i = 0, \qquad i = 1, \cdots, p.$$

We claim that (2.6) is equivalent to $\kappa(p+1) = \kappa(r)$ scalar equations. Indeed, we can assume $[\xi_1, \dots, \xi_n]$ to be the standard basis in \mathbb{R}^n . Then each A_i is represented by an appropriate $n \times n$ symmetric matrix

(2.7)
$$A_i = (a_{\mu\nu}^i), \qquad i = 1, \cdots, k.$$

So (2.6) is equivalent to

(2.8a)
$$\sum_{j=1}^{k} \alpha_{j} a_{\mu\mu} = 0, \qquad \mu = 1, \cdots, p,$$

(2.8b)
$$\sum_{j=1}^{k} \alpha_{j} \dot{a}_{\mu\nu}^{j} = 0, \quad \mu = 1, \cdots, p; \ \nu = \mu + 1, \cdots, n.$$

Clearly (2.8a) and (2.8b) are a system of $\kappa (p+1) = p(2n-p+1)/2$ linear equations in the unknowns $\alpha_1, \dots, \alpha_k$. As $k \ge 1 + \kappa (p+1)$ we have a nontrivial solution of (2.6). Hence there exists $C \ne 0$ in \mathcal{U} such that

$$(2.9) C\xi_i = 0, i = 1, \cdots, p.$$

We can assume that

$$(2.10) \qquad \qquad \lambda_1(C) > 0.$$

(Otherwise take -C). Consider the matrix

(2.11)
$$C(\alpha) = B^* + \alpha C.$$

Clearly, (2.3), (2.4) and (2.9) imply for $|\alpha|$ small enough

(2.12a)
$$\lambda_1(C(\alpha)) = \cdots = \lambda_p(C(\alpha)) = 1,$$

(2.12b) $1 > \lambda_{p+1}(C(\alpha)).$

We claim that there exists α^* such that

(2.13)
$$\lambda_1(C(\alpha^*)) = \cdots = \lambda_{p+1}(C(\alpha^*)) = 1.$$

Otherwise we must have for all $\alpha > 0$ the conditions (2.12). But for a large positive α we have that $\lambda_1(C(\alpha)) = \alpha \lambda_1(C) + O(1)$. This contradicts (2.12a). Thus (2.13) holds. End of proof.

Thus, Theorem 1 shows that if we relax the condition that the largest eigenvalue of $A \neq 0$ of multiplicity r would be distinct from zero then for $2 \leq r \leq n-1$ the bound (2.1) can be reduced by 1. We will show later that the bound $\kappa(r) + 1$ is sharp.

LEMMA 2. Let $2 \leq r \leq n$. Let \mathcal{U} be a k-dimensional subspace of \mathcal{W}_n and suppose that $k \geq \kappa(r)$. Assume that for any nonzero A in \mathcal{U} we have

(2.14)
$$\lambda_1(A) > \lambda_r(A).$$

392

Let $\eta_1, \eta_2, \dots, \eta_{r-1}$ be a set of r-1 arbitrary orthonormal vectors. Consider the system

(2.15)
$$A\eta_i = \lambda \eta_i, \quad i = 1, 2, \cdots, r-1, \quad and \quad A \in \mathcal{U}.$$

Then there exists a nonzero matrix A_0 in \mathcal{U} and a scalar λ_0 such that

$$(2.16) A_0 \eta_i = \lambda_0 \eta_i, i = 1, 2, \cdots, r-1,$$

and

(2.17)
$$\lambda_0 = \lambda_1(A_0) = \cdots = \lambda_{r-1}(A_0).$$

Moreover, for any pair A and λ , where A belongs to \mathcal{U} , that satisfies (2.15), there exists α such that

 $A = \alpha A_0$ and $\lambda = \alpha \lambda_0$.

Proof. From Lemma 1 we deduce the existence of $B^* \neq 0$ in \mathcal{U} such that $\lambda_1(B^*) = \lambda_{r-1}(B^*) = 1$. Let ξ_1, \dots, ξ_{r-1} be r-1 orthonormal vectors corresponding to 1. We first prove the lemma in case that $\eta_i = \xi_i$, $i = 1, \dots, r-1$. Suppose that there exists a matrix C in \mathcal{U} , linearly independent of B^* , such that $C\xi_i = \mu\xi_i$, $i = 1, \dots, r-1$. We may assume that $\mu = 0$, for otherwise replace C by $C - \mu B^*$. As in the proof of Lemma 1 we define $C(\alpha) = B^* + \alpha C$ and may conclude that there exists α^* such that $\lambda_1(C(\alpha^*)) = \lambda_r(C(\alpha^*))$ holds. This contradicts (2.14). Thus $C = \beta B^*$ and since $\mu = 0$ we must have that $\beta = 0$. So for $\eta_i = \xi_i$, $i = 1, \dots, r-1$ the lemma is proved.

Now let $\eta_1, \dots, \eta_{r-1}$ be r-1 arbitrary orthonormal vectors. Since r-1 < n it is easy to show that there exists a system $\xi_1(t), \dots, \xi_{r-1}(t)$ of r-1 orthonormal vectors for $0 \le t \le 1$ which depends continuously on t and

(2.18)
$$\xi_i(0) = \xi_i, \quad \xi_i(1) = \eta_i, \qquad i = 1, \cdots, r-1.$$

For any t, $0 \le t \le 1$, consider now the system

(2.19)
$$A\xi_i(t) = \lambda\xi_i(t), \quad i = 1, \dots, r-1, \text{ and } A \in \mathcal{U}.$$

As was shown in the proof of Lemma 1, this system is equivalent to $\kappa(r)$ linear equations. The number of variables is k + 1, namely $\alpha_1, \dots, \alpha_k, \lambda$ where $A = \sum_{i=1}^k \alpha_i A_i$ and k is the dimension of $\mathcal{U}(A_1, A_2, \dots, A_k$ form a basis for \mathcal{U}). The assumption $k \ge \kappa(r)$ implies the existence of a nontrivial solution of (2.19). Clearly, if A = 0 then $\lambda = 0$, so we always have a nontrivial solution with respect to $\alpha_1, \dots, \alpha_k$.

For t = 0 it follows from (2.18) that the system (2.19) has rank $\kappa(r)$, whence $k = \kappa(r)$. Thus for $0 \le t \le \epsilon$ ($\epsilon > 0$) we would always have, up to scalar multiples, exactly one nontrivial solution A(t) in \mathcal{U} such that

(2.20)
$$A(t)\xi_{i}(t) = \lambda(t)\xi_{i}(t), \qquad i = 1, \dots, r-1.$$

We can choose A(t) to be dependent continuously on t as long as the rank of the system (2.19) is $\kappa(r)$. Without any restriction we may assume that ||A(t)|| = 1 for some matrix norm on \mathcal{W}_n . Since $\lambda(0) = \lambda_1(A(0)) = \cdots = \lambda_{r-1}(A(0))$, the continuity of A(t) for $0 \le t \le \epsilon$ and the assumption (2.14) imply

(2.21)
$$\lambda_1(A(t)) = \lambda(t)$$

for $0 \le t \le \epsilon$. Suppose to the contrary that (2.15) has at least two linearly independent solutions. Let $0 < t_0 \le 1$ be the first time that the system (2.19) has two linearly independent solutions. Thus A(t) is continuous for $0 \le t < t_0$. Now (2.21) together with the assumption ||A(t)|| = 1 implies the existence of $B \ne 0$ in \mathcal{U} such that

$$(2.22) B\xi_i(t_0) = \lambda_0\xi_i(t_0), i = 1, \cdots, r-1,$$

and $\lambda_0 = \lambda_1(B) = \cdots = \lambda_{r-1}(B)$. The condition (2.14) implies that $\lambda_1(B) > \lambda_r(B)$. By assumption we must have a solution C in \mathcal{U} , linearly independent of B, such that

(2.23)
$$C\xi_i(t_0) = \mu\xi_i(t_0), \qquad i = 1, \cdots, r-1.$$

If $\mu = 0$ then, as in the proof of Lemma 1, we deduce that there exists α^* such that $\lambda_1(C(\alpha^*)) = \lambda_r(C(\alpha^*))$, where $C(\alpha) = B + \alpha C$. If $\mu \neq 0$ let $B_1 = C(\alpha_1)$ where α_1 is chosen to be small enough such that $\lambda_1(B_1) > \lambda_r(B_1)$ and $\lambda_1(B_1) \neq 0$. Then as in the proof of Lemma 1 we may assume that $\mu = 0$ and we again have the equality $\lambda_1(C(\alpha^*)) = \lambda_r(C(\alpha^*))$. This contradicts (2.14). The proof is complete.

Proof of Theorem 1. Let $2 \le r \le n-1$. Assume to the contrary that any $A \ne 0$ in \mathcal{U} satisfies the inequality (2.14). We then deduce the existence of a nonzero matrix in \mathcal{U} such that

(2.24)
$$\lambda_1(C) > \lambda_2(C) = \cdots = \lambda_r(C) > \lambda_n(C).$$

For r = 2 the condition (2.14) implies (2.24) for any $C \neq 0$. Let $3 \leq r \leq n-1$. Consider again the matrix B^* which satisfies $\lambda_1(B^*) = \cdots = \lambda_{r-1}(B^*) = 1$. Let ξ_1, \dots, ξ_{r-1} be r-1 corresponding orthonormal

eigenvectors. Let \mathcal{U}' be a $\kappa(r) - 1$ dimensional subspace of \mathcal{U} which does not contain B^* . Consider the equation

(2.25)
$$C\xi_i = 0, \quad i = 2, \cdots, r-1 \text{ and } C \in \mathcal{U}'.$$

Since U' is $\kappa(r) - 1$ dimensional, (2.25) is equivalent to a linear system of $\kappa(r-1)$ equations in $\kappa(r) - 1$ unknowns. Since we assumed that $3 \le r \le n-1$ it follows that $\kappa(r) - 1 > \kappa(r-1)$, whence there exists a nonzero solution C of (2.25).

If $\lambda_2(C) = \cdots = \lambda_{n-1}(C) = 0$ then (2.24) clearly holds. Hence we may assume that $\lambda_1(C) \ge \lambda_2(C) > 0$, and let $C(\alpha) = B^* + \alpha C$. It follows from (2.25) that $\lambda_1(B^*)$ is an eigenvalue of $C(\alpha)$ of multiplicity r - 2 at least, for any α . But for α sufficiently large $\lambda_1(C(\alpha)) > \lambda_1(B^*)$ and $\lambda_2(C(\alpha)) > \lambda_1(B^*)$. Define

$$T = \{ \alpha : \alpha \ge 0, \lambda_1(C(\alpha)) > \lambda_1(B^*) \text{ and } \lambda_2(C(\alpha)) > \lambda_1(B^*) \}.$$

T is not empty, so define $\gamma = \inf\{\alpha : \alpha \in T\}$. We must have $\gamma > 0$, because of (2.14). The matrix $C(\gamma)$ satisfies (2.24).

Finally, we show that (2.14) leads to a contradiction. Let C be a matrix that satisfies (2.24). Let $\eta_1, \eta_2, \dots, \eta_{r-1}$ be r-1 orthonormal eigenvectors corresponding to $\lambda_2(C) = \dots = \lambda_r(C)$. By Lemma 2, there exists a matrix A in $\mathcal{U}, A \neq 0$, such that $\lambda_1(A) = \lambda_{r-1}(A)$ and $A\eta_i = \lambda_1(A)\eta_i$, $i = 1, 2, \dots, r-1$. Moreover, by Lemma 2 $C = \alpha A$ for some $\alpha \neq 0$. But this contradicts (2.24). This contradiction proves that there exists a nonzero matrix in \mathcal{U} satisfying the condition $\lambda_1(A) = \dots = \lambda_r(A)$.

We now show that the bound $\kappa(r)$ is sharp. Consider the subspace \mathscr{U} of $n \times n$ symmetric matrices $A = (a_y)$ of the form

(2.26)
$$a_{ij} = 0, \quad i, j = 1, \cdots, n - r + 1,$$

(2.27)
$$\sum_{i=n-r+2}^{n} a_{ii} = 0.$$

It is clear that the dimension of this subspace is $\kappa(r) - 1$. We claim that there exists no $A \neq 0$ in \mathscr{U} which satisfies $\lambda_1(A) = \lambda_r(A)$. Suppose to the contrary that such A exists. As $\operatorname{tr}(A) = 0$ and $A \neq 0$ we must have that $\lambda_1(A) > 0$. Consider the matrix $B = \lambda_1(A)I - A$. The assumption $\lambda_1(A) = \lambda_r(A)$ implies that the rank of B does not exceed n - r. From the conditions (2.26) we deduce that the principal minor $B(\frac{1}{1,\dots,n-r+1}) = \lambda_1(A)^{n-r+1} \neq 0$. So the rank of B is at least n - r + 1. From the contradiction above we deduce the non-existence of $A \neq 0$ in \mathscr{U} satisfying $\lambda_1(A) = \lambda_r(A)$. The proof of the theorem is completed. REMARK 1. By modifying the example given in the proof of Theorem 1 we demonstrate that the bound $\kappa(r) + 1$ which was given in Lemma 1 is sharp. Consider the $\kappa(r)$ dimensional subspace \mathcal{U} given by the condition (2.26). Let $A \neq 0$ and $\lambda_1(A) = \lambda_r(A)$. The existence of such A follows from Theorem 1. Now let $B = \lambda_1(A)I - A$. Thus the rank of B does not exceed n - r. So $B(1, \dots, n-r+1) = \lambda_1(A)^{n-r+1} = 0$.

Theorem 1 shows that the situation described in Lemma 2 can only hold for r = n. Thus we have

COROLLARY 1. Let \mathcal{U} be a subspace of \mathcal{W}_n of co-dimension 1 (dim $\mathcal{U} = n(n+1)/2 - 1$). Assume that \mathcal{U} does not contain the identity matrix I. Then for any given n-1 orthonormal vectors $\eta_1, \dots, \eta_{n-1}$ there exists a unique nonzero matrix A in \mathcal{U} (up to a multiplication by positive scalar) such that

(2.28)
$$\lambda_1(A) = \cdots = \lambda_{n-1}(A) > \lambda_n(A)$$

and the corresponding eigenspace for the eigenvalue $\lambda_1(A)$ is spanned by $\eta_1, \dots, \eta_{n-1}$.

3. The equivalence of Theorems 1 and 2. We regard W_n as a real inner product space with the standard inner product (A, B) = tr(AB). Let

$$(3.1) B\xi_i = \lambda_i (B)\xi_i, (\xi_j, \xi_j) = \delta_{ij}, i, j = 1, \cdots, n.$$

Then by choosing $[\xi_1, \dots, \xi_n]$ as a basis in \mathbb{R}^n we obtain

(3.2)
$$\operatorname{tr}(AB) = \sum_{i=1}^{n} \lambda_{i}(B)(A\xi_{i}, \xi_{i}).$$

We need in the sequel the following well known lemma (cf. [3]).

LEMMA 3. Let \mathcal{U} be a subspace and \mathcal{K} be a pointed closed convex cone in \mathbb{R}^n . Let \mathcal{U}^{\perp} be the orthogonal complement of \mathcal{U} and \mathcal{K}^* the dual of \mathcal{K} in \mathbb{R}^n . Then the following are equivalent

(a)
$$\mathcal{U} \cap \mathcal{H} = \{0\}.$$

(b) $\mathcal{U}^{\perp} \cap interior \ \mathcal{K}^* \neq \emptyset$.

Now let \mathcal{K} be the cone of positive semidefinite matrices in \mathcal{W}_n . It is a well known fact that $\mathcal{K}^* = \mathcal{K}$. Finally we remark that the functions $\kappa(r)$ and f(r) defined by (1.5) and (1.8), respectively, satisfy the identity

(3.3)
$$\kappa(r) + f(n-r+1) = \dim \mathcal{W}_n, \qquad r = 1, \cdots, n.$$

(In case that \mathcal{W}_n is the space of $n \times n$ hermitian matrices we use the Definitions (1.10) and (1.11).)

Theorem 1 implies Theorem 2. Suppose that the subspace \mathcal{V} of \mathcal{W}_n satisfies the assumptions of Theorem 2. By Lemma 3 it suffices to prove that

$$(3.4) \qquad \qquad \mathcal{V}^{\perp} \cap \mathcal{K} = \{0\}.$$

Suppose this is not the case. It follows from (1.6) and (3.2) that \mathcal{V}^{\perp} contains no nonzero positive semidefinite matrix of rank *r* or less. Let d = dimension of \mathcal{V}^{\perp} . It follows from (1.7) and (3.3) that

$$(3.5) \quad d = \frac{n(n+1)}{2} - k > \frac{n(n+1)}{2} - f(r+1) + \delta_{n,r+1} = \kappa(n-r) + \delta_{n,r+1}.$$

Since $1 \le r \le n-1$ we have $1 \le n-r \le n-1$.

Suppose first that \mathcal{V}^{\perp} contains a positive definite matrix. Since the assumptions and the conclusion of Theorem 2 remain valid under a congruence transformation, we may assume that $I \in \mathcal{V}^{\perp}$. If $r \leq n-2$ then (3.5) and Theorem 1 imply that there exists a nonzero matrix in \mathcal{V}^{\perp} such that $\lambda_1(A) = \lambda_{n-r}(A) > \lambda_n(A)$. Hence there exists a nonzero positive semidefinite matrix in \mathcal{V}^{\perp} of the form $\alpha A + \beta I$ which has rank r or less, contrary to our assumption. If r = n - 1 then $d \geq 2$, by (3.5). Hence there exists A in \mathcal{V}^{\perp} which is linearly independent of I. The matrix $\lambda_1(A)I - A$ is a nonzero positive semidefinite matrix of rank n-1 or less, contrary to our assumption.

It remains to consider the case that \mathcal{V}^{\perp} contains no positive definite matrix. Let A_1 be a nonzero positive semidefinite in \mathcal{V}^{\perp} of minimal rank q. Then $q \ge r+1$. Hence we may assume that $1 \le r \le n-2$. We may also assume that

$$A_1 = \begin{bmatrix} I_q & 0 \\ 0 & 0 \end{bmatrix}.$$

Let A_1, A_2, \dots, A_d be a basis for \mathscr{V}^{\perp} . Partition these matrices in the form

$$A_i = [A_i^{(1)}, A_i^{(2)}], \qquad i = 1, 2, \cdots, d,$$

where $A_i^{(1)}$ is of size $n \times q$. We claim that the matrices $A_2^{(2)}, \dots, A_d^{(2)}$ are linearly dependent. Indeed, consider

$$\sum_{i=2}^{d} \alpha_i A_i^{(2)} = 0.$$

This leads to a linear system of $n(n+1)/2 - q(q+1)/2 = \kappa(n+1-q)$ equations in d-1 unknowns. By (3.5) $d-1 \ge \kappa(n-r)$, so we get a nontrivial solution with the only possible exception being q = r+1 and $d-1 = \kappa(n-r)$. But in the latter case, if $A_2^{(2)}, \dots, A_d^{(2)}$ are linearly independent, we may form a new basis for \mathcal{V}^{\perp} that contains among its matrices the matrix A_1 and the matrices B_1, B_2, \dots, B_{n-q} , where

$$\boldsymbol{B}_{i} = \begin{bmatrix} \boldsymbol{B}_{11}^{i} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{E}_{ii} \end{bmatrix}, \qquad i = 1, 2, \cdots, n-q.$$

Here E_{ii} is the matrix of order $n - q \times n - q$ all of whose entries are zero except the *i*, *i* entry which is 1. We can now form a positive definite matrix as a linear combination of A_1, B_1, \dots, B_{n-q} , contrary to assumption. Hence $A_2^{(2)}, \dots, A_d^{(2)}$ are linearly dependent.

Hence there exists a matrix B, $B = \sum_{i=2}^{d} \alpha_i A_i$, such that $b_{ij} = 0$ whenever i > q or j > q. Clearly, there exists a linear combination of A_1 and B which is nonzero and positive semidefinite of rank q - 1 or less. This contradicts the definition of q. Hence (3.4) is satisfied, completing the proof.

Theorem 2 implies Theorem 1. Assume that $2 \le r \le n-1$ and that \mathscr{U} satisfies the assumptions of Theorem 1. Suppose that \mathscr{U} contains no nonzero matrix A such that $\lambda_1(A) = \lambda_r(A)$. Then $I \not\in \mathscr{U}$ and let $\mathscr{U}_1 =$ linear space spanned by \mathscr{U} and I. Clearly dim $\mathscr{U}_1 \ge \kappa(r) + 1$. Let $\mathscr{V} = \mathscr{U}_1^{\perp}$, so $\mathscr{U}_1 = \mathscr{V}^{\perp}$. The subspace \mathscr{U}_1 contains no nonzero positive semidefinite matrix of rank n-r or less. Now (3.3) implies that dim $\mathscr{V} < f(n-r+1)$. Since $n-r \le n-2$ we have that $\delta_{n,n+1-r} = 0$, so the subspace \mathscr{V} satisfies the assumptions of Theorem 2. It follows that \mathscr{V} contains a positive definite matrix. However, since I is in \mathscr{U}_1 , from the fact that $\mathscr{V} = \mathscr{U}_1^{\perp}$ it follows that for any A in \mathscr{V} we must have that tr(AI) = tr(A) = 0. Thus \mathscr{V} could not contain a positive definite matrix. This contradiction implies the existence of $A \ne 0$ in \mathscr{U} such that $\lambda_1(A) = \lambda_r(A)$.

4. Extensions and remarks. We now reformulate Theorems 1 and 2 in the case where \mathcal{W}_n is the n^2 dimensional real space of $n \times n$ complex valued hermitian matrices.

THEOREM 3. Let \mathcal{U} be a k dimensional subspace in the space \mathcal{W}_n of $n \times n$ complex valued hermitian matrices. Assume that an integer r satisfies the inequalities $2 \leq r \leq n-1$. If $k \geq \kappa(r)$, where $\kappa(r) = (r-1)(2n-r+1)$, then \mathcal{U} contains a nonzero matrix such that the greatest eigenvalue of A is at least of multiplicity r. The lower bound $\kappa(r)$ is best possible for $2 \leq r \leq n-1$.

Proof. The proof of this theorem is identical with the proof of Theorem 1 except for the following detail. Let ξ_1, \dots, ξ_{r-1} be r-1 orthonormal vectors. Consider the system

(4.1)
$$A\xi_i = \lambda\xi_i, \qquad j = 1, \cdots, r-1,$$

where A belongs to \mathcal{U} . We claim that this system is equivalent to $\kappa(r)$ real valued equations. Indeed, if we complete the set ξ_1, \dots, ξ_{r-1} to a basis of orthonormal vectors $[\xi_1, \dots, \xi_n]$ then, assuming this to be the standard basis, we obtain instead of (4.1):

and

(4.3)
$$a_{\mu\nu} = 0, \quad \mu = 1, \cdots, r-1; \quad \nu = \mu + 1, \cdots, n.$$

Since $A = (a_{ij})$, is hermitian, $a_{\mu\mu}$ is real. So (4.2) is equivalent to r-1 equations. Since $a_{\mu\nu}$ for $\mu \neq \nu$ is complex valued, (4.3) is equivalent to (r-1)(2n-r) real equations. This fact explains the change of the value of $\kappa(r)$ in case that \mathcal{W}_n is the space of hermitian matrices. End of proof.

Finally, we restate Bohnenblust's theorem for the hermitian case.

THEOREM 4 (Bohnenblust). Let \mathcal{V} be a subspace of dimension k in \mathcal{W}_n and let $1 \leq r \leq n-1$. Assume that for any A in \mathcal{V} the equality (1.6) implies that $x_i = 0$ for $i = 1, \dots, r$. If the inequality (1.7) holds where $f(r) = r^2$, then \mathcal{V} contains a positive definite matrix.

ACKNOWLEDGEMENT. After the completion of this manuscript, we have received Bohnenblust's unpublished original manuscript. His proof of Theorems 2 and 4 differs from our approach.

REFERENCES

1. F. Bohnenblust, Joint positiveness of matrices, unpublished manuscript.

2. E. Calabi, Linear systems of real quadratic forms, Proc. Amer. Math. Soc., 15 (1964), 844-846.

3. A. Ben Israel, *Complex Linear Inequalities, Inequalities III*, edited by O. Shisha, Academic Press, New York and London, 1972.

4. O Taussky, Positive Definite Matrices, Inequalities I, edited by O. Shisha, Academic Press, New York, 1967.

Received September 4, 1975. The first author was supported in part by N.S.F. Grant M.P.S. 72-05055 A02.

The'Institute for Advanced Study and The University of Tennessee