## SUBSPACES OF SYMMETRIC MATRICES CONTAINING matrices with a multiple first Eigenvalue

S. Friedland and R. Loewy

Let $U$ be an $(r-1)(2 n-r+2) / 2$ dimensional subspace of $n \times n$ real valued symmetric matrices. Then $U$ contains a nonzero matrix whose greatest eigenvalue is at least of multiplicity $r$, if $2 \leqq r \leqq n-1$. This bound is best possible. We apply this result to prove the Bohnenblust generalization of Calabi's theorem. We extend these results to hermitian matrices.

1. Introduction. Let $\mathscr{W}_{n}$ be the $n(n+1) / 2$ dimensional vector space of all real valued $n \times n$ symmetric matrices. Let $A$ belong to $\mathscr{W}_{n}$. Arrange the eigenvalues of $A$ in decreasing order

$$
\begin{equation*}
\lambda_{1}(A) \geqq \lambda_{2}(A) \geqq \cdots \geqq \lambda_{n}(A) . \tag{1.1}
\end{equation*}
$$

We say that $\lambda_{I}(A)$ is of multiplicity $r$ if

$$
\begin{equation*}
\lambda_{1}(A)=\cdots=\lambda_{r}(A) \tag{1.2a}
\end{equation*}
$$

$$
\begin{equation*}
\lambda_{r}(A)>\lambda_{r+1}(A) . \tag{1.2b}
\end{equation*}
$$

Let $\mathscr{U}$ be a subspace of $\mathscr{W}_{n}$ of dimension $k$. We consider the question of how large $k$ has to be so that $\mathscr{U}$ must contain a nonzero matrix $A$ which satisfies (1.2a) for a given $r$. The nontrivial case would be

$$
\begin{equation*}
2 \leqq r \leqq n-1 \tag{1.3}
\end{equation*}
$$

Clearly for $r=n$ we must have $k=n(n+1) / 2$ as $थ$ will contain the identity matrix $I$.

We now state our main result:

Theorem 1. Let $\mathscr{U}$ be a $k$ dimensional subspace in the space $\mathscr{W}_{n}$ of $n \times n$ real valued matrices. Assume that an integer $r$ satisfies the inequalities (1.3).

If

$$
\begin{equation*}
k \geqq \kappa(r) \tag{1.4}
\end{equation*}
$$

where

$$
\begin{equation*}
\kappa(r)=(r-1)(2 n-r+2) / 2, \quad r=1,2, \cdots, n \tag{1.5}
\end{equation*}
$$

then $\mathscr{U}$ contains a nonzero matrix $A$ such that the greatest eigenvalue of $A$ is at least of multiplicity $r$. The lower bound $\kappa(r)$ is best possible for $2 \leqq r \leqq n-1$.

Theorem 1 is proved in $\S 2$. In $\S 3$ we prove that Theorem 1 is equivalent to the following result due to Bohnenblust (cf. [1] and [4]). We denote as usual by $(x, y)$ the inner product of the vectors $x$ and $y$ in $\mathbf{R}^{n}$, which is the underlying vector space for $\mathscr{W}_{n}$.

Theorem 2 (Bohnenblust). Let $\mathscr{V}$ be a subspace of dimension $k$ in $\mathscr{W}_{n}$ and let $1 \leqq r \leqq n-1$. Assume that $\mathscr{V}$ has the following property:

$$
\begin{equation*}
\sum_{i=1}^{r}\left(A x_{t}, x_{t}\right)=0 \text { for every } A \text { in } \mathscr{V} \tag{1.6}
\end{equation*}
$$

implies that $x_{t}=0$ for $i=1, \cdots, r$. If

$$
\begin{equation*}
k<f(r+1)-\delta_{n, r+1}, \tag{1.7}
\end{equation*}
$$

where

$$
\begin{equation*}
f(r)=r(r+1) / 2 \tag{1.8}
\end{equation*}
$$

then $\mathscr{V}$ contains a positive definite matrix.
In case $r=1$, Bohnenblust's result reduces to the following theorem, known as the Calabi theorem [2]: Let $n \geqq 3$ and suppose that $S_{1}$ and $S_{2}$ are $n \times n$ symmetric matrices such that $\left(S_{1} x, x\right)=\left(S_{2} x, x\right)=0$ implies $x=0$. Then there exist real $\alpha_{1}$ and $\alpha_{2}$ such that $\alpha_{1} S_{1}+\alpha_{2} S_{2}$ is positive definite.

Bohnenblust defines a subspace $\mathscr{V}$ with the property:
(1.9) $\sum_{i=1}^{r}\left(A x_{i}, x_{i}\right)=0$ for every $A \neq 0$ in $\mathscr{V}$ implies $x_{1}=x_{2}=\cdots=x_{r}=0$
to be jointly definite of degree $r$. Thus, the equivalence of Theorems 1 and 2 relates the notion of a subspace which is jointly definite of degree $r$ with that of a subspace containing a nonzero matrix whose largest eigenvalue has multiplicity $r$.

Finally, in $\S 4$ we prove that if we let $\mathscr{W}_{n}$ be the $n^{2}$ dimensional real space of all $n \times n$ hermitian matrices then Theorems 1 and 2 remain correct if $\kappa(r)$ and $f(r)$ are defined as follows

$$
\begin{align*}
& \kappa(r)=(r-1)(2 n-r+1),  \tag{1.10}\\
& f(r)=r^{2} . \tag{1.11}
\end{align*}
$$

2. Proof of Theorem 1. We first establish a weaker form of Theorem 1 which will be needed for the proof of Theorem 1.

Lemma 1. Let $1 \leqq r \leqq n$. Let U be a $k$-dimensional subspace of $\mathscr{W}_{n}$ and assume that

$$
\begin{equation*}
k \geqq 1+\kappa(r) \tag{2.1}
\end{equation*}
$$

Then there exists $A$ in $U$ such that

$$
\begin{equation*}
\lambda_{1}(A)=\cdots=\lambda_{r}(A)=1 \tag{2.2}
\end{equation*}
$$

Proof. For $r=1$ (2.2) trivially holds. For $r=n$ (2.2) is also obvious as $1+\kappa(n)=n(n+1) / 2$. Suppose that the lemma holds for $r=p$. Next we construct $A$ which satisfies (2.2) for $r=p+1$. Let $B^{*}$ satisfy

$$
\begin{equation*}
\lambda_{1}\left(B^{*}\right)=\cdots=\lambda_{p}\left(B^{*}\right)=1, \quad(p \geqq 1) \tag{2.3}
\end{equation*}
$$

The existence of $B^{*}$ follows from our assumptions. Assume that

$$
\begin{equation*}
1>\lambda_{p+1}\left(B^{*}\right) \tag{2.4}
\end{equation*}
$$

Otherwise $B^{*}$ would satisfy (2.2) for $r=p+1$. Let

$$
\begin{equation*}
B^{*} \xi_{t}=\lambda_{l}\left(B^{*}\right) \xi_{i} ;\left(\xi_{t}, \xi_{l}\right)=\delta_{i j}, \quad i, j=1, \cdots, n \tag{2.5}
\end{equation*}
$$

Suppose that $A_{1}, \cdots, A_{k}$ form a basis for $\mathscr{U}$. Consider the system

$$
\begin{equation*}
\sum_{j=1}^{k} \alpha_{j} A_{j} \xi_{t}=0, \quad i=1, \cdots, p \tag{2.6}
\end{equation*}
$$

We claim that (2.6) is equivalent to $\kappa(p+1)=\kappa(r)$ scalar equations. Indeed, we can assume $\left[\xi_{1}, \cdots, \xi_{n}\right]$ to be the standard basis in $\mathbf{R}^{n}$. Then each $A_{1}$ is represented by an appropriate $n \times n$ symmetric matrix

$$
\begin{equation*}
A_{i}=\left(a_{\mu \nu}^{l}\right), \quad i=1, \cdots, k \tag{2.7}
\end{equation*}
$$

So (2.6) is equivalent to

$$
\begin{array}{r}
\sum_{j=1}^{k} \alpha_{j} a_{\mu \mu}=0,  \tag{2.8a}\\
\quad \mu=1, \cdots, p \\
\sum_{j=1}^{k} \alpha_{j} a^{j}{ }_{\mu \nu}^{j}=0, \quad \mu=1, \cdots, p ; \nu=\mu+1, \cdots, n
\end{array}
$$

Clearly (2.8a) and (2.8b) are a system of $\kappa(p+1)=p(2 n-p+1) / 2$ linear equations in the unknowns $\alpha_{1}, \cdots, \alpha_{k}$. As $k \geqq 1+\kappa(p+1)$ we have a nontrivial solution of (2.6). Hence there exists $C \neq 0$ in $\mathscr{U}$ such that

$$
C \xi_{1}=0, \quad i=1, \cdots, p
$$

We can assume that

$$
\begin{equation*}
\lambda_{1}(C)>0 \tag{2.10}
\end{equation*}
$$

(Otherwise take $-C$ ). Consider the matrix

$$
\begin{equation*}
C(\alpha)=B^{*}+\alpha C \tag{2.11}
\end{equation*}
$$

Clearly, (2.3), (2.4) and (2.9) imply for $|\alpha|$ small enough

$$
\begin{equation*}
\lambda_{1}(C(\alpha))=\cdots=\lambda_{p}(C(\alpha))=1 \tag{2.12a}
\end{equation*}
$$

$$
\begin{equation*}
1>\lambda_{p+1}(C(\alpha)) . \tag{2.12b}
\end{equation*}
$$

We claim that there exists $\alpha^{*}$ such that

$$
\begin{equation*}
\lambda_{1}\left(C\left(\alpha^{*}\right)\right)=\cdots=\lambda_{p+1}\left(C\left(\alpha^{*}\right)\right)=1 \tag{2.13}
\end{equation*}
$$

Otherwise we must have for all $\alpha>0$ the conditions (2.12). But for a large positive $\alpha$ we have that $\lambda_{1}(C(\alpha))=\alpha \lambda_{1}(C)+O(1)$. This contradicts (2.12a). Thus (2.13) holds. End of proof.

Thus, Theorem 1 shows that if we relax the condition that the largest eigenvalue of $A \neq 0$ of multiplicity $r$ would be distinct from zero then for $2 \leqq r \leqq n-1$ the bound (2.1) can be reduced by 1 . We will show later that the bound $\kappa(r)+1$ is sharp.

Lemma 2. Let $2 \leqq r \leqq n$. Let $\mathcal{U}$ be a $k$-dimensional subspace of $\mathscr{W}_{n}$ and suppose that $k \geqq \kappa(r)$. Assume that for any nonzero $A$ in $\mathscr{U}$ we have

$$
\begin{equation*}
\lambda_{1}(A)>\lambda_{r}(A) \tag{2.14}
\end{equation*}
$$

Let $\eta_{1}, \eta_{2}, \cdots, \eta_{r-1}$ be a set of $r-1$ arbitrary orthonormal vectors. Consider the system

$$
\begin{equation*}
A \eta_{t}=\lambda \eta_{t}, \quad i=1,2, \cdots, r-1, \quad \text { and } \quad A \in U . \tag{2.15}
\end{equation*}
$$

Then there exists a nonzero matrix $A_{0}$ in $\mathscr{U}$ and a scalar $\lambda_{0}$ such that

$$
\begin{equation*}
A_{0} \eta_{i}=\lambda_{0} \eta_{i}, \quad i=1,2, \cdots, r-1 \tag{2.16}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda_{0}=\lambda_{1}\left(A_{0}\right)=\cdots=\lambda_{r-1}\left(A_{0}\right) . \tag{2.17}
\end{equation*}
$$

Moreover, for any pair $A$ and $\lambda$, where $A$ belongs to $U$, that satisfies (2.15), there exists $\alpha$ such that

$$
A=\alpha A_{0} \quad \text { and } \quad \lambda=\alpha \lambda_{0}
$$

Proof. From Lemma 1 we deduce the existence of $B^{*} \neq 0$ in $\mathscr{U}$ such that $\lambda_{1}\left(B^{*}\right)=\lambda_{r-1}\left(B^{*}\right)=1$. Let $\xi_{1}, \cdots, \xi_{r-1}$ be $r-1$ orthonormal vectors corresponding to 1 . We first prove the lemma in case that $\eta_{t}=\xi_{t}, i=1, \cdots, r-1$. Suppose that there exists a matrix $C$ in $U$, linearly independent of $B^{*}$, such that $C \xi_{t}=\mu \xi_{i}, i=1, \cdots, r-1$. We may assume that $\mu=0$, for otherwise replace $C$ by $C-\mu B^{*}$. As in the proof of Lemma 1 we define $C(\alpha)=B^{*}+\alpha C$ and may conclude that there exists $\alpha^{*}$ such that $\lambda_{1}\left(C\left(\alpha^{*}\right)\right)=\lambda_{r}\left(C\left(\alpha^{*}\right)\right)$ holds. This contradicts (2.14). Thus $C=\beta B^{*}$ and since $\mu=0$ we must have that $\beta=0$. So for $\eta_{t}=\xi_{t}, i=1, \cdots, r-1$ the lemma is proved.

Now let $\eta_{1}, \cdots, \eta_{r-1}$ be $r-1$ arbitrary orthonormal vectors. Since $r-1<n$ it is easy to show that there exists a system $\xi_{1}(t), \cdots, \xi_{r-1}(t)$ of $r-1$ orthonormal vectors for $0 \leqq t \leqq 1$ which depends continuously on $t$ and

$$
\begin{equation*}
\xi_{i}(0)=\xi_{i}, \quad \xi_{l}(1)=\eta_{l}, \quad i=1, \cdots, r-1 \tag{2.18}
\end{equation*}
$$

For any $t, 0 \leqq t \leqq 1$, consider now the system

$$
\begin{equation*}
A \xi_{t}(t)=\lambda \xi_{i}(t), \quad i=1, \cdots, r-1, \text { and } A \in U . \tag{2.19}
\end{equation*}
$$

As was shown in the proof of Lemma 1, this system is equivalent to $\kappa(r)$ linear equations. The number of variables is $k+1$, namely $\alpha_{1}, \cdots, \alpha_{k}, \lambda$ where $A=\sum_{i=1}^{k} \alpha_{1} A_{1}$ and $k$ is the dimension of $\mathscr{U}\left(A_{1}, A_{2}, \cdots, A_{k}\right.$ form a basis for $\mathscr{U})$. The assumption $k \geqq \kappa(r)$ implies the existence of a nontrivial solution of (2.19). Clearly, if $A=0$ then $\lambda=0$, so we always have a nontrivial solution with respect to $\alpha_{1}, \cdots, \alpha_{k}$.

For $t=0$ it follows from (2.18) that the system (2.19) has rank $\kappa(r)$, whence $k=\kappa(r)$. Thus for $0 \leqq t \leqq \epsilon(\epsilon>0)$ we would always have, up to scalar multiples, exactly one nontrivial solution $A(t)$ in $U$ such that

$$
\begin{equation*}
A(t) \xi_{t}(t)=\lambda(t) \xi_{t}(t), \quad i=1, \cdots, r-1 \tag{2.20}
\end{equation*}
$$

We can choose $A(t)$ to be dependent continuously on $t$ as long as the rank of the system (2.19) is $\kappa(r)$. Without any restriction we may assume that $\|A(t)\|=1$ for some matrix norm on $\mathscr{W}_{n}$. Since $\lambda(0)=$ $\lambda_{1}(A(0))=\cdots=\lambda_{r-1}(A(0))$, the continuity of $A(t)$ for $0 \leqq t \leqq \epsilon$ and the assumption (2.14) imply

$$
\begin{equation*}
\lambda_{1}(A(t))=\lambda(t) \tag{2.21}
\end{equation*}
$$

for $0 \leqq t \leqq \epsilon$. Suppose to the contrary that (2.15) has at least two linearly independent solutions. Let $0<t_{0} \leqq 1$ be the first time that the system (2.19) has two linearly independent solutions. Thus $A(t)$ is continuous for $0 \leqq t<t_{0}$. Now (2.21) together with the assumption $\|A(t)\|=1$ implies the existence of $B \neq 0$ in $\mathscr{U}$ such that

$$
\begin{equation*}
B \xi_{l}\left(t_{0}\right)=\lambda_{0} \xi_{l}\left(t_{0}\right), \quad i=1, \cdots, r-1 \tag{2.22}
\end{equation*}
$$

and $\lambda_{0}=\lambda_{1}(B)=\cdots=\lambda_{r-1}(B)$. The condition (2.14) implies that $\lambda_{1}(B)>\lambda_{r}(B)$. By assumption we must have a solution $C$ in $\mathscr{U}$, linearly independent of $B$, such that

$$
\begin{equation*}
C \xi_{i}\left(t_{0}\right)=\mu \xi_{i}\left(t_{0}\right), \quad i=1, \cdots, r-1 \tag{2.23}
\end{equation*}
$$

If $\mu=0$ then, as in the proof of Lemma 1, we deduce that there exists $\alpha^{*}$ such that $\lambda_{1}\left(C\left(\alpha^{*}\right)\right)=\lambda_{r}\left(C\left(\alpha^{*}\right)\right)$, where $C(\alpha)=B+\alpha C$. If $\mu \neq 0$ let $B_{1}=C\left(\alpha_{1}\right)$ where $\alpha_{1}$ is chosen to be small enough such that $\lambda_{1}\left(B_{1}\right)>$ $\lambda_{r}\left(B_{1}\right)$ and $\lambda_{1}\left(B_{1}\right) \neq 0$. Then as in the proof of Lemma 1 we may assume that $\mu=0$ and we again have the equality $\lambda_{1}\left(C\left(\alpha^{*}\right)\right)=\lambda_{r}\left(C\left(\alpha^{*}\right)\right)$. This contradicts (2.14). The proof is complete.

Proof of Theorem 1. Let $2 \leqq r \leqq n-1$. Assume to the contrary that any $A \neq 0$ in $\mathscr{U}$ satisfies the inequality (2.14). We then deduce the existence of a nonzero matrix in $\mathscr{U}$ such that

$$
\begin{equation*}
\lambda_{1}(C)>\lambda_{2}(C)=\cdots=\lambda_{r}(C)>\lambda_{n}(C) . \tag{2.24}
\end{equation*}
$$

For $r=2$ the condition (2.14) implies (2.24) for any $C \neq 0$. Let $3 \leqq r \leqq$ $n-1$. Consider again the matrix $B^{*}$ which satisfies $\lambda_{1}\left(B^{*}\right)=\cdots=$ $\lambda_{r-1}\left(B^{*}\right)=1$. Let $\xi_{1}, \cdots, \xi_{r-1}$ be $r-1$ corresponding orthonormal
eigenvectors. Let $\mathscr{U}^{\prime}$ be a $\kappa(r)-1$ dimensional subspace of $\mathscr{U}$ which does not contain $B^{*}$. Consider the equation

$$
\begin{equation*}
C \xi_{i}=0, \quad i=2, \cdots, r-1 \text { and } C \in \mathcal{U}^{\prime} . \tag{2.25}
\end{equation*}
$$

Since $U^{\prime}$ is $\kappa(r)-1$ dimensional, (2.25) is equivalent to a linear system of $\kappa(r-1)$ equations in $\kappa(r)-1$ unknowns. Since we assumed that $3 \leqq r \leqq$ $n-1$ it follows that $\kappa(r)-1>\kappa(r-1)$, whence there exists a nonzero solution $C$ of (2.25).

If $\lambda_{2}(C)=\cdots=\lambda_{n-1}(C)=0$ then (2.24) clearly holds. Hence we may assume that $\lambda_{1}(C) \geqq \lambda_{2}(C)>0$, and let $C(\alpha)=B^{*}+\alpha C$. It follows from (2.25) that $\lambda_{1}\left(B^{*}\right)$ is an eigenvalue of $C(\alpha)$ of multiplicity $r-2$ at least, for any $\alpha$. But for $\alpha$ sufficiently large $\lambda_{1}(C(\alpha))>\lambda_{1}\left(B^{*}\right)$ and $\lambda_{2}(C(\alpha))>\lambda_{1}\left(B^{*}\right)$. Define

$$
T=\left\{\alpha: \alpha \geqq 0, \lambda_{1}(C(\alpha))>\lambda_{1}\left(B^{*}\right) \text { and } \lambda_{2}(C(\alpha))>\lambda_{1}\left(B^{*}\right)\right\} .
$$

$T$ is not empty, so define $\gamma=\inf \{\alpha: \alpha \in T\}$. We must have $\gamma>0$, because of (2.14). The matrix $C(\gamma)$ satisfies (2.24).

Finally, we show that (2.14) leads to a contradiction. Let $C$ be a matrix that satisfies (2.24). Let $\eta_{1}, \eta_{2}, \cdots, \eta_{r-1}$ be $r-1$ orthonormal eigenvectors corresponding to $\lambda_{2}(C)=\cdots=\lambda_{r}(C)$. By Lemma 2, there exists a matrix $A$ in $U, A \neq 0$, such that $\lambda_{1}(A)=\lambda_{r-1}(A)$ and $A \eta_{1}=$ $\lambda_{1}(A) \eta_{i}, i=1,2, \cdots, r-1$. Moreover, by Lemma $2 C=\alpha A$ for some $\alpha \neq 0$. But this contradicts (2.24). This contradiction proves that there exists a nonzero matrix in $U$ satisfying the condition $\lambda_{1}(A)=\cdots=$ $\lambda_{r}(A)$.

We now show that the bound $\kappa(r)$ is sharp. Consider the subspace $U$ of $n \times n$ symmetric matrices $A=\left(a_{v}\right)$ of the form

$$
\begin{equation*}
a_{i j}=0, \quad i, j=1, \cdots, n-r+1, \tag{2.26}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{i=n-r+2}^{n} a_{i i}=0 . \tag{2.27}
\end{equation*}
$$

It is clear that the dimension of this subspace is $\kappa(r)-1$. We claim that there exists no $A \neq 0$ in $\mathscr{U}$ which satisfies $\lambda_{1}(A)=\lambda_{r}(A)$. Suppose to the contrary that such $A$ exists. As $\operatorname{tr}(A)=0$ and $A \neq 0$ we must have that $\lambda_{1}(A)>0$. Consider the matrix $B=\lambda_{1}(A) I-A$. The assumption $\lambda_{1}(A)=\lambda_{r}(A)$ implies that the rank of $B$ does not exceed $n-r$. From the conditions (2.26) we deduce that the principal minor $B\binom{1, \cdots, n-r+1}{1, \cdots, n-r+1}=$ $\lambda_{1}(A)^{n-r+1} \neq 0$. So the rank of $B$ is at least $n-r+1$. From the contradiction above we deduce the non-existence of $A \neq 0$ in $U$ satisfying $\lambda_{1}(A)=\lambda_{r}(A)$. The proof of the theorem is completed.

Remark 1. By modifying the example given in the proof of Theorem 1 we demonstrate that the bound $\kappa(r)+1$ which was given in Lemma 1 is sharp. Consider the $\kappa(r)$ dimensional subspace $\mathscr{U}$ given by the condition (2.26). Let $A \neq 0$ and $\lambda_{1}(A)=\lambda_{r}(A)$. The existence of such $A$ follows from Theorem 1. Now let $B=\lambda_{1}(A) I-A$. Thus the rank of $B$ does not exceed $n-r$. So $B\binom{(1, \cdots, n-r+1}{1, \cdots, n-r+1}=\lambda_{1}(A)^{n-r+1}=0$.

Theorem 1 shows that the situation described in Lemma 2 can only hold for $r=n$. Thus we have

Corollary 1. Let $U$ be a subspace of $\mathscr{W}_{n}$ of co-dimension 1 $(\operatorname{dim} \mathscr{U}=n(n+1) / 2-1)$. Assume that $\mathscr{U}$ does not contain the identity matrix $I$. Then for any given $n-1$ orthonormal vectors $\eta_{1}, \cdots, \eta_{n-1}$ there exists a unique nonzero matrix $A$ in $U$ (up to a multiplication by positive scalar) such that

$$
\begin{equation*}
\lambda_{1}(A)=\cdots=\lambda_{n-1}(A)>\lambda_{n}(A) \tag{2.28}
\end{equation*}
$$

and the corresponding eigenspace for the eigenvalue $\lambda_{1}(A)$ is spanned by $\eta_{1}, \cdots, \eta_{n-1}$.
3. The equivalence of Theorems 1 and 2. We regard $\mathscr{W}_{n}$ as a real inner product space with the standard inner product $(A, B)=\operatorname{tr}(A B)$. Let

$$
\begin{equation*}
B \xi_{t}=\lambda_{t}(B) \xi_{t},\left(\xi_{l}, \xi_{l}\right)=\delta_{i j}, \quad i, j=1, \cdots, n \tag{3.1}
\end{equation*}
$$

Then by choosing $\left[\xi_{1}, \cdots, \xi_{n}\right.$ ] as a basis in $\mathbf{R}^{n}$ we obtain

$$
\begin{equation*}
\operatorname{tr}(A B)=\sum_{i=1}^{n} \lambda_{i}(B)\left(A \xi_{t}, \xi_{i}\right) \tag{3.2}
\end{equation*}
$$

We need in the sequel the following well known lemma (cf. [3]).
Lemma 3. Let $\mathscr{U}$ be a subspace and $\mathscr{K}$ be a pointed closed convex cone in $\mathbf{R}^{n}$. Let $\mathscr{U}^{\perp}$ be the orthogonal complement of $\mathscr{U}$ and $\mathscr{K}^{*}$ the dual of $\mathscr{K}$ in $\mathbf{R}^{n}$. Then the following are equivalent
(a) $\mathscr{U} \cap \mathscr{K}=\{0\}$.
(b) $\mathscr{U}^{\perp} \cap$ interior $\mathscr{K}^{*} \neq \varnothing$.

Now let $\mathscr{K}$ be the cone of positive semidefinite matrices in $\mathscr{W}_{n}$. It is a well known fact that $\mathscr{K}^{*}=\mathscr{K}$. Finally we remark that the functions $\kappa(r)$ and $f(r)$ defined by (1.5) and (1.8), respectively, satisfy the identity

$$
\begin{equation*}
\kappa(r)+f(n-r+1)=\operatorname{dim} \mathscr{W}_{n}, \quad r=1, \cdots, n \tag{3.3}
\end{equation*}
$$

(In case that $\mathscr{W}_{n}$ is the space of $n \times n$ hermitian matrices we use the Definitions (1.10) and (1.11).)

Theorem 1 implies Theorem 2. Suppose that the subspace $\mathscr{V}$ of $\mathscr{W}_{n}$ satisfies the assumptions of Theorem 2. By Lemma 3 it suffices to prove that

$$
\begin{equation*}
\mathscr{V}^{\perp} \cap \mathscr{K}=\{0\} . \tag{3.4}
\end{equation*}
$$

Suppose this is not the case. It follows from (1.6) and (3.2) that $\mathscr{V}^{\perp}$ contains no nonzero positive semidefinite matrix of rank $r$ or less. Let $d=$ dimension of $\mathscr{V}^{\perp}$. It follows from (1.7) and (3.3) that

$$
\begin{equation*}
d=\frac{n(n+1)}{2}-k>\frac{n(n+1)}{2}-f(r+1)+\delta_{n, r+1}=\kappa(n-r)+\delta_{n, r+1} . \tag{3.5}
\end{equation*}
$$

Since $1 \leqq r \leqq n-1$ we have $1 \leqq n-r \leqq n-1$.
Suppose first that $\mathscr{V}^{\perp}$ contains a positive definite matrix. Since the assumptions and the conclusion of Theorem 2 remain valid under a congruence transformation, we may assume that $I \in \mathscr{V}^{\perp}$. If $r \leqq n-2$ then (3.5) and Theorem 1 imply that there exists a nonzero matrix in $\mathscr{V}^{\perp}$ such that $\lambda_{1}(A)=\lambda_{n-r}(A)>\lambda_{n}(A)$. Hence there exists a nonzero positive semidefinite matrix in $\mathscr{V}^{\perp}$ of the form $\alpha A+\beta I$ which has rank $r$ or less, contrary to our assumption. If $r=n-1$ then $d \geqq 2$, by (3.5). Hence there exists $A$ in $\mathcal{V}^{\perp}$ which is linearly independent of $I$. The matrix $\lambda_{1}(A) I-A$ is a nonzero positive semidefinite matrix of rank $n-1$ or less, contrary to our assumption.

It remains to consider the case that $\mathscr{V}^{\perp}$ contains no positive definite matrix. Let $A_{1}$ be a nonzero positive semidefinite in $\mathscr{V}^{\perp}$ of minimal rank $q$. Then $q \geqq r+1$. Hence we may assume that $1 \leqq r \leqq$ $n-2$. We may also assume that

$$
A_{1}=\left[\begin{array}{cc}
I_{q} & 0 \\
0 & 0
\end{array}\right] .
$$

Let $A_{1}, A_{2}, \cdots, A_{d}$ be a basis for $\mathscr{V}^{\perp}$. Partition these matrices in the form

$$
A_{i}=\left[A_{i}^{(1)}, A_{i}^{(2)}\right], \quad i=1,2, \cdots, d
$$

where $A_{i}^{(1)}$ is of size $n \times q$. We claim that the matrices $A_{2}^{(2)}, \cdots, A_{d}^{(2)}$ are linearly dependent. Indeed, consider

$$
\sum_{i=2}^{d} \alpha_{t} A_{t}^{(2)}=0
$$

This leads to a linear system of $n(n+1) / 2-q(q+1) / 2=\kappa(n+1-q)$ equations in $d-1$ unknowns. By (3.5) $d-1 \geqq \kappa(n-r)$, so we get a nontrivial solution with the only possible exception being $q=r+1$ and $d-1=\kappa(n-r)$. But in the latter case, if $A_{2}^{(2)}, \cdots, A_{( }^{(2)}$ are linearly independent, we may form a new basis for $\mathscr{V}^{\perp}$ that contains among its matrices the matrix $A_{1}$ and the matrices $B_{1}, B_{2}, \cdots, B_{n-q}$, where

$$
B_{i}=\left[\begin{array}{ll}
B_{11}^{i} & 0 \\
0 & E_{i i}
\end{array}\right], \quad i=1,2, \cdots, n-q .
$$

Here $E_{i i}$ is the matrix of order $n-q \times n-q$ all of whose entries are zero except the $i, i$ entry which is 1 . We can now form a positive definite matrix as a linear combination of $A_{1}, B_{1}, \cdots, B_{n-q}$, contrary to assumption. Hence $A_{2}^{(2)}, \cdots, A_{d}^{(2)}$ are linearly dependent.

Hence there exists a matrix $B, B=\sum_{i=2}^{d} \alpha_{t} A_{i}$, such that $b_{i j}=0$ whenever $i>q$ or $j>q$. Clearly, there exists a linear combination of $A_{1}$ and $B$ which is nonzero and positive semidefinite of rank $q-1$ or less. This contradicts the definition of $q$. Hence (3.4) is satisfied, completing the proof.

Theorem 2 implies Theorem 1. Assume that $2 \leqq r \leqq n-1$ and that $\mathscr{U}$ satisfies the assumptions of Theorem 1. Suppose that $\mathscr{U}$ contains no nonzero matrix $A$ such that $\lambda_{1}(A)=\lambda_{r}(A)$. Then $I \notin U$ and let $U_{1}=$ linear space spanned by $\mathscr{U}$ and $I$. Clearly $\operatorname{dim} U_{1} \geqq \kappa(r)+1$. Let $\mathscr{V}=\mathscr{U}_{1}^{\perp}$, so $U_{1}=\mathscr{V}^{\perp}$. The subspace $\mathscr{U}_{1}$ contains no nonzero positive semidefinite matrix of rank $n-r$ or less. Now (3.3) implies that $\operatorname{dim} \mathscr{V}<f(n-r+1)$. Since $n-r \leqq n-2$ we have that $\delta_{n, n+1-r}=0$, so the subspace $\mathscr{V}$ satisfies the assumptions of Theorem 2. It follows that $\mathscr{V}$ contains a positive definite matrix. However, since $I$ is in $\mathscr{U}_{1}$, from the fact that $\mathscr{V}=U_{1}^{\perp}$ it follows that for any $A$ in $\mathscr{V}$ we must have that $\operatorname{tr}(A I)=\operatorname{tr}(A)=0$. Thus $\mathscr{V}$ could not contain a positive definite matrix. This contradiction implies the existence of $A \neq 0$ in $\mathscr{U}$ such that $\lambda_{1}(A)=\lambda_{r}(A)$.
4. Extensions and remarks. We now reformulate Theorems 1 and 2 in the case where $\mathscr{W}_{n}$ is the $n^{2}$ dimensional real space of $n \times n$ complex valued hermitian matrices.

Theorem 3. Let $\mathscr{U}$ be a $k$ dimensional subspace in the space $\mathscr{W}_{n}$ of $n \times n$ complex valued hermitian matrices. Assume that an integer $r$ satisfies the inequalities $2 \leqq r \leqq n-1$. If $k \geqq \kappa(r)$, where $\kappa(r)=$ $(r-1)(2 n-r+1)$, then $\mathscr{U}$ contains a nonzero matrix such that the greatest eigenvalue of $A$ is at least of multiplicity $r$. The lower bound $\kappa(r)$ is best possible for $2 \leqq r \leqq n-1$.

Proof. The proof of this theorem is identical with the proof of Theorem 1 except for the following detail. Let $\xi_{1}, \cdots, \xi_{r-1}$ be $r-1$ orthonormal vectors. Consider the system

$$
\begin{equation*}
A \xi_{j}=\lambda \xi_{j}, \quad j=1, \cdots, r-1 \tag{4.1}
\end{equation*}
$$

where $A$ belongs to $U$. We claim that this system is equivalent to $\kappa(r)$ real valued equations. Indeed, if we complete the set $\xi_{1}, \cdots, \xi_{r-1}$ to a basis of orthonormal vectors $\left[\xi_{1}, \cdots, \xi_{n}\right]$ then, assuming this to be the standard basis, we obtain instead of (4.1):

$$
a_{\mu \mu}=\lambda, \quad \mu=1, \cdots, r-1
$$

and

$$
\begin{equation*}
a_{\mu \nu}=0, \quad \mu=1, \cdots, r-1 ; \nu=\mu+1, \cdots, n \tag{4.3}
\end{equation*}
$$

Since $A=\left(a_{i j}\right)$, is hermitian, $a_{\mu \mu}$ is real. So (4.2) is equivalent to $r-1$ equations. Since $a_{\mu \nu}$ for $\mu \neq \nu$ is complex valued, (4.3) is equivalent to $(r-1)(2 n-r)$ real equations. This fact explains the change of the value of $\kappa(r)$ in case that $\mathscr{W}_{n}$ is the space of hermitian matrices. End of proof.

Finally, we restate Bohnenblust's theorem for the hermitian case.
Theorem 4 (Bohnenblust). Let $\mathscr{V}$ be a subspace of dimension $k$ in $\mathscr{W}_{n}$ and let $1 \leqq r \leqq n-1$. Assume that for any $A$ in $\mathscr{V}$ the equality (1.6) implies that $x_{i}=0$ for $i=1, \cdots, r$. If the inequality (1.7) holds where $f(r)=r^{2}$, then $\mathscr{V}$ contains a positive definite matrix.

Acknowledgement. After the completion of this manuscript, we have received Bohnenblust's unpublished original manuscript. His proof of Theorems 2 and 4 differs from our approach.

## References

1. F. Bohnenblust, Joint positiveness of matrices, unpublished manuscript.
2. E. Calabi, Linear systems of real quadratic forms, Proc. Amer. Math. Soc., 15 (1964), 844-846.
3. A. Ben Israel, Complex Linear Inequalities, Inequalities III, edited by O. Shisha, Academic Press, New York and London, 1972.
4. O Taussky, Positive Definite Matrices, Inequalities I, edited by O. Shisha, Academic Press, New York, 1967.

Received September 4, 1975. The first author was supported in part by N.S.F. Grant M.P.S. 72-05055 A02.

The Institute for Advanced Study
AND
The University of Tennessee

