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THE STRATIFICATION OF COMPACT CONNECTED
LIE GROUP ACTIONS BY SUBTORI

CHRISTOPHER ALLDAY

A stratification of the spectrum of the mod p equivariant
cohomology ring of a compact Lie group action in terms of
elementary p-subgroups has been obtained by Quillen. A
corresponding result for compact connected Lie group actions in
terms of subtori is proven in this paper by different means. In
addition some localization and primary decomposition theorems
are obtained. The paper closes with an application to uniform
torus actions.

Introduction. In [11] Quillen proves a stratification theorem for
compact Lie group actions by elementary abelian p -subgroups in
equivariant cohomology with coefficients in Z/pZ. In the first section of
this paper we prove the stratification theorem for compact connected Lie
group actions by subtori in equivariant cohomology with rational
coefficients. We do not attempt to follow Quillen's method of proof,
however. There are three reasons for this. First, the existence in
Quillen's situation of a "universal invertible" (the element eA of
Theorem 4.2 of [10]) has no natural analogue in our situation. Secondly,
Quillen's vital Main Theorem (Theorem 6.2 of [10]) appears to require
certain restrictions on the orbit structure which can be avoided. (See
Lemma 1.5, below). Thirdly, the results and techniques of Hsiang,
Chang and Skjelbred ([7], [6] and [13]) give rise to a proof which is more
direct and less sophisticated than the proof Quillen gives for his theorem.

In the second section of this paper, we prove a localization theorem
for Hτ(X)-module structures and deduce analogues of the results of [6],
using Hτ(X)-module structures instead of iτΓ(J5τ)-module structures. The
advantage of this approach is that it distinguishes between components of
the fixed point set of a subtorus. In the third section, by way of an
application, the useful concept of a uniform torus action is defined, and a
simple algebraic characterization of uniformity is given.

Throughout this paper the cohomology and equivariant cohomology
theory used will be sheaf theoretic, or equivalently, Cech. Rational
coefficients will be used throughout, and these will be suppressed from
the notation. The form of the "going up" theorem of Cohen and
Seidenberg, which is used in the first section, is that which may be found
in Serre ([12]).

We wish to thank Professor W.-Y. Hsiang, T. Chang and T.
Skjelbred for many useful discussions and suggestions.
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1. The stratification theorem. Let G be a compact con-
nected Lie group, and let X be a topological space, on which G acts
continuously. Throughout this paper we shall assume that the G-space X
satisfies one of the following two assumptions:

(A) X is compact (Hausdorff), and dimQ//*(X)<oo;
(B) X is paracompact, cdQ(X)<™, dimQH*(X)<cc, and G acts

on X with finitely many orbit types.
We shall be concerned with the set SΓ(X) of all pairs (K, c), where K

is a subtorus of G, such that X * ^ 0 , and c is a component of
Xκ. 3~(X) will be partially ordered as follows:

for (H, d) and (K, c) in ^(X), (H, d) ̂  (K, c), if and only
if there exists g e G, such that gHg~ι C K and gd 2 c.

If (H, d) ^ (K, c) and (K, c) g (H, d), then we shall write (fί, d) = {K, c).
Thus, in 3~(X), (H,d) = (K, c) if and only if there exists g E G, such that
gHg~ι = K and gd = c.

Following Quillen [11], let HG(X) = men(X\ and let HL = H*{BL\
for any closed subgroup L C G. A pair ( K , c ) G J ( I ) determines a
cross-section of the bundle Xκ —» £K, and hence a map Bκ —> XG. The
induced map on cohomology, HG{X)-> Hκ, will be denoted by (iC, c)*,
and the kernel of (X, c)* will be denoted by p(X, c). Since we are using
sheaf-theoretic cohomology, (K, c)* is independent of the choice of point
in c used to determine the cross-section Bκ -> Xκ. It is clear, too, that if
(H, d) = (K, c) in ^(X), then p(/f, d) = p(K, c).

Continuing to recall the notation of [11], let

V(K, c) = {p E Spec (Hσ (X)) | p D p(X, c)},

and let V(K,c)+= V(K,c)~ U{V(H,d)\p(H,d)D p(K,c)}.
Let Norm(X, c) = {g E G\gKg~ι = K and gc = c}, and let ZX =

{g E G Igxg"1 = JC, for all x E X}. Since the centralizer of K, ZK, is
connected (see, for example, Bredon [5]), gc = c, for all g E ZK, and all
components c of Xκ. Let T be any maximal torus in G, and let NT be
the normalizer of T in G. Thus the Weyl group of G, W, is equal to
NT IT. If K C Γ, let M/(K,c) be the group Norm (K,c)Π NΓ/ZK ΓΊ
NT

Given a maximal torus T C G, and given (H,d)E3~(X), there
exists (X,c)ESΓ(X) such that X C T and (K,c) = (H,d). Thus we
may find a subset I τ of if (X), such that

(i) (X,c)e/ T Φ K C Γ , and
(ii) for any (//, d) E ίΓ(X), there exists one and only one (X, c) E /τ

such that (H,d) = (tf,c).
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Recall from Chang and Skjelbred [6] that for a torus, K, there is a
function

σ: Spec(//*)—>{PL E Spec(HK)\L is a subtorus of K},

which assigns to each prime ideal p of //*, the ideal generated by
pΠ H2(BK). Thus p D PL if and only if σ(p) D PL. σ(p) will be
called the support of p. Let K+ = {pE Spec(//K)|σ(p) = (0)}.

The remainder of this section will be devoted to proving the
following version of the Stratification Theorem.

THEOREM 1.1. Let T be a maximal torus of G. Then
(i) The spectrum of HG(X) admits a stratification as a disjoint

union

Spec(HG(X)) = LJ V(K,c)+;
(K,c)Elτ

(ii) W(K,c) acts on K+, and there is a homeomorphism

(iii) for any (//, d) and (K, c) in J"(X), p(H, d)Dp(K,c) if and
only if (H,d)£(K,c).

REMARKS 1.2.

(i) Theorem 1.1 (i) is equivalent to asserting the existence of a
function

with the property that, for any (//, d) E 3~(X\ p D p(H, d) if and only if
σ(p) D p(H, d). σ(p) will be called the support of p.

(ii) In the above remark we have used the fact that the commuta-
tive ring HG(X) is Noetherian. This is clear since HG is Noetherian, and
the fact that dimojF/*(X)< co implies that HG(X) is a finitely generated
HG-algebra ([10]).

(iii) The sufficiency of the condition in Theorem 1.1 (iii) is clear,
since (H,d)^-(K,c) implies that we may factorize (H,d)* through
(K,c)*.

(iv) If So is the multiplicative set generated by nonzero elements in
H\BK), then K+ is homeomorphic to Spec (So1//*).

(v) AH topologies ^αn ring spectra used above are Zariski to-
pologies.
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(vi) W(K, c) has the discrete topology. Since we have an epi-
morphism [Norm(K, c) Π NT]/Γ—> W(K, c), and a monomorphism
[Norm(K, c) Π NT]/T-> W, it is clear that W(K, c) is finite, with order
less than or equal to the order of W.

The following proposition will enable us to prove Theorem 1.1 by
two separate applications of the going up theorem of Cohen and
Seidenberg. ΊT is the bundle map Xτ —» Bτ, R = Hτ, and / is the kernel
of 7r*: R^HT(X). π* will be denoted by p. Part (ii) is due to T.
Skjelbred [8]: we include his proof.

PROPOSITION 1.3.

(i) HT(X) is an integral extension of R/J.
(ii) HT(X) is a finite Galois extension of HG(X). In particular the

extension is integral

Proof
(i) Let x E HT(X). Then the i?-submodule of HT(X) generated

by powers of x is finitely generated.
(ii) Skjelbred has shown that it is an easy consequence of a

theorem of Borel, that the natural map HG{X)->HT(X) is an isomor-
phism of HG(X) onto Hτ (X)w, the subring of HT(X) fixed by the natural
action of W ([8]). For x E HT(X), consideration of YlwGW(x - wx)
completes the proof.

REMARK. In [7] W.-Y. Hsiang shows that V7= Πτ=ιPKn where
Ku - - , Km are the maximal connective isotropy subgroups of the action
of T on X.

For the time being we shall assume that G = T, a torus, and we shall
prove Theorem 1.1 in this case. For a subtorus K C Γ, let βκ be the
map Xκ-+Xτ, and let QK be the ideal generated by ρ(PK) in
HT(X). If Kx is the identity component of the isotropy subgroup of the
action of K on X at x E X, let F(X, x) be the component of Xκ°k, which
includes x.

PROPOSITION 1.4. Jn HT(X),

p(K°x,F(K,x)).
x<ΞX

Proof To prove that Vker(jβ|) = λ/Q#, consider the Serre spec-

tral sequence in rational cohomology of the fibration XK.-*XT-^BL,

where L = T/K. R = HL(g)Hκ acts on E2 via the action of HL on itself,
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and the action of Hκ on H*(XK). E2 is a finitely generated bigraded
differential R -module.

Since £ x is a subquotient of E2 and R is Noetherian, it follows that
£ x = Er for some r < °°, and Er is a finitely generated R -module. Thus,
with the standard filtration, there exists a set of generators for Er as an
HL-module having bounded filtration degree. Let n be an integer
greater than the maximum filtration degree of the elements of such a
generating set. Let xEkeτβ*κ. Then x E FXH%(X), and so xn E
FnH%{X).

It now follows that there exist yl5 , ym in H*(X), and ah *, am of
positive degree in Hu such that xn = a{yx + + αmym. But q* maps the
elements of positive degree in HL into p(PK). Hence, if x E
kev(β*κ\Hτ(X)\ then xn E OK.

Clearly, QK C ker(β£).
We must prove now that Vktr(β*κ) = Π , e x p(K°, F(K, x)). Given a

subtorus L C K, and a component c of XL, let (L, c)'*: HK(X)-*HL be
the associated map, and let p'(L, c) = ker(L, c)'*. Then p(L, c) =

Now Quillen's Proposition 3.2 of [10] implies that in HK(X),
V(0)=nxGXp'(K:,F(K,x)). Hence

The next lemma enables us to dispense with any condition on the
number of orbit types when X satisfies condition (A).

LEMMA 1.5. If a torus K acts on a space X satisfying condition (A),
then the family

{p(K;, F(K, x))\xEX}C Spec(Hκ(X))

has only finitely many minimal members.

Proof By Remarks 1.2 (iii) it is enough to show that the family
F = {(K°x, F(K, x))\x EX} has only finitely many maximal members. Let
0 ^ r ̂  rank(K), and let Fr = {(K;, F(K, JC))|x E X and corank(K ) = r}.
Let SΓ_, = {JC E X | c o r a n k ( K ; ) ^ r - 1 } .

If (K°x, F(K,x)) is in Fr and is maximal in F, then F(K, JC) Π SΓ_i = 0 .
Hence, by the Localization Theorem ([6]), PK°xESupp(Ht(X,Sr^)).
Furthermore, PK°X is clearly minimal in Supp(H£(X, 5r_i)). But, from [2],
Hκ(X, 5Γ_i)) is a finitely generated //^-module, and so Supp(//κ(X, 5Γ-i))
has only finitely many minimal elements.
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R E M A R K S .

(1) From the commuting diagram

(K,c)*

pΐ it
R >

 HK

it follows that p^faζK, c)) = PK.
(2) Since V(0) = Πxex p(T;, F(T,x)% every prime ideal in HT(X)

contains some p(K, c).
To establish the existence of supports we need the following lemma:

LEMMA 1.6. Let p E Sptc(Hτ(X)). If ρ~λ(p) = PK, then there is a
component c of Xκ such that p = p(X, c).

Proof. ρ-1(p) = PK => pD OK Hence by Proposition 1.4 (and
Lemma 1.5), there exists x E X such that p D p(Kχ, F(K, x)).

Therefore, FK = p ! (p) D ρ"Xp(X;, F(IC, x)) = PKX. But K; C X,
and so PKXD PK. Hence K = Kx, and p and p(K, c), where c =
F(K, x), are two prime ideals of HT(X) lying over the prime ideal p(PK)
in JR//, with p D p(K, c). The result follows by the Cohen-Seidenberg
Theorem from Proposition 1.3 (i). (Note that PK D J, since K is
contained in T°x).

The next lemma is straightforward.

LEMMA 1.7. For any (K,c) in SΓ(X), the map

is an isomorphism ψ: R/PK = Hκ -=> Hτ(X)/p(K, c).

LEMMA 1.8. Lei p E Sρec(JF/τ(X)), teί PL = σp"Xp), and /eί d and
d' be components of XL. If p D p(L, d) + p(L, d'), ίΛβn d = d'.

Proo/. Suppose άφ d\ and let d = du df = d2, , d5 be the com-
ponents of XL. Let x be the element (1,0, --,0) in H?(X L ) =
H?(di)Θ * '(&Hoτ(ds). Following the notation and methods of [6], let

Ix={aER\axElm[φt: H%{X)-+ H*T(XL)]}.

Let aElx. Then φtp(a) = α (1,1, , 1). There exists y E
HT{X\ such that φt(y)=ax = a (1,0, ,0). Hence y Ep(L,d ;), and
p (a) - y E p(L, d). Thus pa E p.
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We have, then, that p~*(p) D Ix, and hence, PL = σρ~J(p) contains
some PH, where H belongs to x. Since it is clear that the subtori, which
belong to x, cannot contain L, we have a contradiction.

If d and d' are distinct components of XL, for L a subtorus of Γ, we
shall say that a pair (X, c) in &(X) connects d and df iϊ K C L and
j U ί i ' C c . Then the following corollary is deduced easily from the
above.

COROLLARY 1.9. Vp(L, d) + p(L, d') = Π; = ] p(ίς cf), where (K,,^),
• , (Kr, cr) are the maximal pairs of SΓ(X)? which connect d and d'.

LEMMA 1.10. Let A be a Q-linear subspace of H Γ (X), such that
p(K,c)CA. Then

as Q-linear subspaces.
Thus, if A is an ideal in HT(X), and A' is the ideal generated by

A Π ρ(R), then A = p(K, c) + A', as ideals.
In particular, if (X, c) ^ (L, d), then

Froo/. Clearly p(iC, c) + (A Π p(JR)) C A. Let α £ A , and let
q.R->RIPK, q: Hτ(X)-^Hτ(X)!p(Kyc) be the projections. By
Lemma 1.7, there exists r E R such that qρ(r)= ψq(r) = q(a). Thus
p ( r ) - f l E k e r q = p ( X , c ) C Λ , and so ρ(r)E A Π ρ(R). Hence aE

We shall now prove Theorem 1.1 (iii) for a torus acting on X.

LEMMA 1.11. If p(H9 d) D p(K, c)9 then (H,d)^(K,c).

Proof By applying p'1 we have that PH D PK, and hence JhΓ C
K. Thus there exists a component d ; of XH, such that d' D c; and so
p(/ί, t/') D p(K, c) also. Lemma 1.10 implies that

p(H, d) = p(H, d') = p(K, c) + QH.

It follows that p(H, d) = p(H, d) + p(//, d')7 and so d' = d, by Lemma
1.8.

The next lemma, together with Lemma 1.8 completes the proof of
Theorem 1.1 (i) for torus actions.

LEMMA 1.12. // p D p(X, c) in HT{X), and if PL = σp'ι(p)9 then
there exists a component d of XL, such that
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Proof. By Lemma 1.10,

p = p(K,c) + pp-'(p) D p(/C, c) + p(PL) = p(L, rf),

where d is the component of XL, which contains c.
Suppose that X is a compact rational Poincare duality space with

X7 / 0 . Let F be a component of X7, and let / G H%XT) be the top
class of F. Let

/, = {a E R I af E Im [φ *: H*T(X)-> H*T(XT)]};

Let //be the ideal generated by If in HT(X); and let /f be the annihilator
in HT(X) of the H7(X)-submodule of H%(X,XT) generated by
δf. Then Jf = {xE Hτ(X)\φ*(x)f G Im φ*}, and we have the following
corollary of Lemma 1.10.

COROLLARY 1.13. Jf = /;+p(T,F), and Vlf= ΓΊ;=1p(K{, c(), where
Ku- ,Kr are the local weights at F, with corresponding F-υarieties
Cι, , cf, respectively.

Proof. Clearly /, 2p(T,F), and Jf Π p(R) = p(If). Thus /, =
/}+ p(T, F) by Lemma 1.10.

For the second part, we have that Vlf= Πr

ι = i PKn by [1]; and, letting
c, be the component of Xκ\ which contains F, we have, by Lemma 1.10
again,

ή P(K,,C,) = P ( T , F ) + P ( n PK

= V7,

REMARKS. _

(1) The part of Corollary 1.13 which states that Vjf= ΓϊUxjfiK,, ct),
follows directly from Theorem 2.4 (ii), below.

(2) Let Strat(H7(X))-{p(X,c)|(K,c)G^(X)}, and let
Strat(jR) = {PK \K is a subtorus of T}. Then Lemma 1.12 implies that
the support functions enjoy the following commutativity:
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Strat(Hτ(X))

pH j p * |Strat(/fτ(X))

Spec(i?)Λstrat(i?)

(3) Since, with the notation of Lemma 1.10, φq = qp, φ being the
isomorphism of Lemma 1.7, it follows easily that K+-+ V(K,c)+ C
Spec(Hτ(X)), the map being p->(K, c)* ι(p).

We shall now prove Theorem 1.1 in the general situation, where G is
a compact connected Lie group, T is a maximal torus of G, and W is the
Weyl group. The action of W on HT(X) induces an action of W on
Spec(ί/Γ(X)). The next lemma, together with Proposition 1.3 (ii), is the
key to extending the results.

LEMMA 1.14. Let pG Spec(HG(X)). Let a = p H τ (X) be the
ideal of HT(X) generated by p. Let q E Spec(HΓ(X)) be such that
q(ΊH G (X) = p. Then

Va = Π wq.

Froo/. First, note that there always exists q such that q Π HG(X) =
p, by the Cohen-Seidenberg Theorem. Now p C q , and so p = w p C
w q. Hence

a C Π w q.

Suppose x E Π ^ H . W q. Then, for any w E W, WJC E q. As be-
fore, consider Π w e w (x ~ WJC) = 0. If the order of W is n, then we obtain
an equation xn + b{x

n] + 4- bn = 0, where each 6( E q Π
T h u s x " E a .

COROLLARY 1.15. There exists a homeomorphism

f: ^

such that the diagram

Spec(//τ(X)) —-ϋ-> Spec(fίτ(X))/W

Spec(HG(X))

commutes, where i* is the restriction, and π is the orbit map.
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Proof. Clearly there exists a well-defined continuous map
g:Spec(Hτ(X))/W-*Spec(HG(X))9 such that gτr = ί*; g(W(q)) =
qnHG(X).

If g(W(q)) = g(W(q')) = p, say, then, with p, q and a as in Lemma
1.14, we have that q' D v a, and hence q' D wq, for some w E W. Thuδ
q' = wq, by the Cohen-Seidenberg Theorem, and hence g is injective.

Finally, /* is closed and surjective by the Cohen-Seidenberg
Theorem; and hence g too is closed and surjective.

To distinguish between HT(X) and HG(X\ we shall, for the
remainder of this section, denote the elements of Strat(Hτ(X)) by
q(K, c), reserving the notation p(iC, c) for Spec(HG(X)).

LEMMA 1.16.

(i) q(K,c)ΠHG(X) = p(K,c)
(ii) If w E W is represented by gT in NT/T, then w - q(K, c) =

Proof, (i) is clear from the definition of p(K, c). To see (ii)
consider the diagram

Bκ -* cκ -» Xτ

θg i I φg

where for z E EG(BG = JBG/G), θg is the map K(z)-> gKg~ι(gz), and, for
x E X, ψg is the map Γ(x, z ) ^ T(gx, gz). ψg depends only on w, but θg

depends upon the choice of g. Clearly the rows may be chosen so that
the diagram commutes, and the composition on the top row gives (X, c)*,
while the composition on the bottom row gives (gKg~\ gey, and clearly,
the latter map depends only on w, since tc = c, for any t E T. The result
now follows since θg is a homeomorphism, and ψg is the homeomorphism
on Xτ, which induces the action of w"1 on HT(X).

Thus Strat(jyr

τ(X)) is W-invariant, and we have the following
lemma.

LEMMA 1.17. σ: Spec(Hτ(X))->Strat(Hτ(X)) is W-equiυariant.

Proof. Let q E Spec(Hτ(X)), let σ(q) = q(K, c), and . let
wEW. Suppose that wq D q(H, d) for some (H, d)E J(X). Then
q D W^JFί, d), and so q(X, c) D w"^//, d). Thus wq D wq(X, c) D
q(H,d), and, hence σ(wq)= wσ(q)= wq(K, c).

We are now in a position to prove Theorem 1.1 as stated.
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Proof of Theorem 1.1. Given pE Spec(HG(X)), choose q E
Spec(Hτ(X)), such that qΠH G (X) = p, and set σ(p) = σ(q)Π
HG{X). By Lemma 1.17, σ is a well-defined map of Spec(HG(X)) onto
Strat(HG(X)) = {p(K,c)|(K,c)E Jτ}, and σ(p) is independent of the
choice of q. Clearly, if p D p(H, d), then σ(p) D p(H, d), and so parts
(i) and (iii) of the theorem are proved.

For (K, c) G Iτ, we have

γ = {p6 Spec(HG(X))| σ(p) = p(K, c)}.

Let

γ = {q E Spec(Hτ(X)) | σ(q) = q(X, c)},

and let Wo = {w E W\ wq(K, c) = q(K, c)} be the isotropy subgroup of
the W-action on Spec(Hτ(X)) at q(K,c). Then U(K,c)+ is HV
invariant by Lemma 1.17.

As in Corollary 1.15, we have a homeomorphism

defined by W0(q)-*q Π HG(X).
Now, representing w E W by gT E NT IT, g E NT, it follows from

Lemma 1.16, that w E W{) if and only if g ENorm(K, c). Thus Wo is
isomorphic to (Norm(K, c) ΓΊ NT)/T, which maps onto W(iC, c), with
kernel (ZKΠNT)/T

Since ZX is connected, it follows that (ZK Π NT)/T acts trivially on
U(K, c)+, and, hence, there is induced on U(K, c)+ an action of W(K, c),
with U(K,c)+/W(K,c) homeomorphic to U(K,cy/W0.

K+, however, is homeomorphic to U(K,c)+', and so we have an
induced W(K, enaction on X+, with K+/W(K, c) homeomorphic to
V(K, c)+, completing the proof of the theorem.

REMARK. The essence of the proof of Theorem 1.1 (i) and (iii) is
that the homeomorphism, /, of Corollary 1.15 induces a homeomorphism
/:Strat(HG(X))^Strat(Hτ(X))/W, such that fσ = σ'f where σ':
Spec(HG(X))/W->Strat(//τ(X))/W is induced from σ:Spec(Hτ(X))
->Strat(Hτ(X)), by Lemma 1.17: and Strat(//τ(X))/W is in one-to-one
correspondence with Iτ, by Lemma 1.16 (ii).

The support maps defined above are natural, in as much as we have
the following theorem, whose proof is straightforward, and will be
omitted.

THEOREM 1.18. The diagram
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Spec(R)

σ I

Strat(R)

<— Spec (HΊ

σ I

«-Strat(ff7

• ( * ) ) -

• ( * ) ) -

*Spec(HG(X))

*Strat(HG(X))

in which the horizontal maps are the obvious ones, is commutative and
natural with respect to equivariant maps (G, X)->(G', X'), where G, G'
are compact connected Lie groups, X, X' satisfy conditions (A) or (B) and
the maximal torus of G' is chosen to contain the image of the maximal
torus of G.

REMARK. The support maps are not, in general, continuous with
respect to Zariski topologies. The j>et of all V(a), where a is an ideal in
HG(X) such that a = (0) or (1), or Va = ΓΊ;=1 p(Kn ct), for any (Kn ct)<Ξ Jτ,
is a topology of closed sets on Spec(HG(X)); and if we take the subspace
topology induced from this topology on Strat (HG (X)), then, clearly, σ is
continuous.

2. The localization theorem and ideal theory. In [6],
Chang and Skjelbred use the Localization Theorem of [7] (and [10]) to
discuss the primary decomposition of certain ideals of geometric
significance. This theory is concerned with R -module structures, and
ideals in R. In this section, we shall recover similar results for HT(X)-
module structures and ideals in HT(X).

We shall be concerned only with torus actions on X, and we shall
consider closed invariant subspaces of X, Y and Z, which satisfy the
conditions that dimQ/f *(Y)< oo? and dimQ//*(Z)<°o. (Merely, we need
H%Y) and H*T{Z) to be finitely generated Hτ(X)-modules.) The long
exact sequence of the pair (X, Y) in equivariant cohomology is an exact
sequence of Hτ(X)-modules.

To simplify notation we shall denote the ring HT(X) by B. Recall,
too, the notation of [10], §3, that q: X —> X/T is the orbit projection, and
if u E β, then ύ is the corresponding global section of the Leray sheaf on
X/T. It is clear from the definition of ώ, that, in B,

where F(x) = F(T,x).

DEFINITION. For f E B, let Yf = {x E Y | /g p(T;,F(jc))}. Thus
Yf = XΠ q-χ{y E X / Γ | / ( y ) ^ 0}; and so Yf is a closed invariant sub-
space of X.

LEMMA 2.1. Upon localizing the B-module structures, the restriction
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H*τ(Y)->H*τ(Yf), induces a Brmodule isomorphism, H*τ(Y)f

->H%{Yf)f. (As usual, Bf is the localization of B with respect to the
multiplicative set generated by /.)

Proof. Let φ*: HT(X)->HT(Y) denote the restriction, and, for
y G Y, let

p ' ( r y , F ( y ) ) - k e r [ H τ ( Y ) ^ H τ ( F ( y ) ) ^ H r y ] . Thus,

p'(Γ°,F(y))GStrat(Hτ(Y)), and p(T°y, F(y)) = φ*y(T°,F(y)).

Suppose that Yf = 0 . Then ^ ( / ) 6 p ' ( Γ ; , F ( y ) ) , for all y G Y
Hence φ *(/) is nilpotent in //τ( Y), and we have H%{Y)f -+ H%{Yf)f = 0.

Now suppose that W 0 . Just as in [10], let N be a closed
invariant neighborhood of Yf in Y, and let AT = Y - N. Then (ΛΓ/ =
0, and the Mayer-Vietoris sequence implies that H%Y)f-^ H%N)f.
Again, as in [10], the result follows from taking direct limits as N varies.

We may now prove the Localization Theorem for B -module struc-
tures.

THEOREM 2.2. Let pESρec(B), and suppose that σp =
p(K, c). Then, with respect to B-module structures, localization induces
isomorphisms,

and

Proof. From the long exact sequence for the pair (X, Y), the
second isomorphism will follow from the first.

The first isomorphism follows from the continuity of sheaf cohomol-
ogy, and Lemma 2.1, and the fact that

c= n{x
REMARKS.

(1) Give Spec(B) the Zariski topology and let Df =
{pE Spec(£?)|/£: p} denote a typical basic open set. Let & denote the
sheaf, Df-^H%Y)f, and let % denote the presheaf, Df->
H%(Yf)f. Then Lemma 2.1 says that SF and <§ are isomorphic as
presheaves, and hence, as sheaves. The first isomorphism of Theorem
2.2 is then the isomorphism induced on the stalks at p.

(2) Given p(K, c), let r(K, c) = ker[Hτ(c)-+Hκ]. Then it is easy to
show that restriction induces a ring isomorphism, Hτ(X)p{Kc)

^> Hτ(c)Γ{Kc).
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We have the following analogue of [6], Lemma 1.1.

PROPOSITION 2.3. Let pESpec(B), and suppose that σp =
p(X, c). Let N be the B-module H%{c, c Π Y)®Hl{c)H%(c Π Z). Then
the localization map, N^>NP, is a monomorphism.

Proof. Let L = T/K9 so that H%{c, cΠY) = Hκ® H£(c, c Π Y),
H*τ(cnZ) = Hκ®H*(cnZl and Hτ(c) = Hκ®HL{c). Then the
middle four interchange ([9]), gives an isomorphism

H*τ(c,cΠ η ® H l ( c ) H ί ( c n Z ) ^ H J c ® [ H * L ( c , c n Y)®Wαc)Hί(c HZ)].

The result now follows just as in [6].
Let M be a B-submodule of H*T(X,Y)®BH%(Z). For a given

(K,c)E SΓ(X), denote by M(K,c), the image of M under restriction into
H*τ(c,cΓ) Y)®HΊic)H*(cΠZ).

DEFINITION. With the above notation, let ann(M) be the an-
nihilator of M in B, and let ann(K C)(M) be the annihilator of M(K, c) in
B. We shall say that a pair (K,c)E SΓ(X) belongs to M if and only if

(i) ann (*'c )(M)^(l); and
(ii) i f(H,d)>(K,c),(i .e.(H,d)^(X,c)and(H,d)^(i: ,c)),then

ann(H'd)(M) = (l).
The following results may be proved in a manner strictly analogous

to the corresponding results of [6], using Theorem 2.2 and Proposition
2.3.

THEOREM 2.4.

(i) // p E Spec(β), and σp = p(K, c), then ann(M)p ΠJB =
ann(Mp) Π B = ann{Kc)(M).

(ii) Vann (M) = Π {p(iC, c) | (K, c) fce/ong5 to M}.

COROLLARY 2.5.

f_(^' c ) belongs to M, then ann(Kc)(M) is primary, with

(ii) // (X, c) belongs to M, then

ann(Kc\M) = {x G B \ ann(M): (*) £ p(K, c)}.

THEOREM 2.6. Tftere ex/sis α reduced primary decomposition of
ann(M) of the form ann(M)= Π {ann(Kc)(M)|(X,c) belongs to M}
Π q! (Ί Π qm, where, for each i, 1 ̂  ί' ^ m, Vq, = j>(Hh di), for some
(Hn di)E SΓ(X), which does not belong to M, but for which (K,c)^ (Hh dt)
for some (X, c), which does belong to M;
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ann(H*d'>(M) C Π {ann(Xc)(M)| (K, c)> (Hh dt)}.

REMARK. Let F be a component of Xτ, assuming that Xτ^ 0 . Let
M = H£(X, XT)®BH%{F\ and let N = H%{X, F)(g)Bff *(F). It is easily
verified that Supp(M) = Supp(N); and indeed, from [3], for example, we
have that

Supp(M) = V(ann(M)) = Supp(H?{X, *τ)) Π Supp (H*T(F))

= Supp(H*τ(X, F)) Π Supp(H*τ(F))

= Supp(N)= V(ann(ΛΓ)).

Thus, if X is a Poincare duality space over Q, the local weights at F,
and their corresponding F-varieties ([1]), are precisely the pairs, (K, c),
which belong to M, or, equivalently, which belong to N.

3. An Application. We shall say that an action of a torus, Γ,
on a space, X, is toricly uniform, if given any two subtori, H and K, such
that H C K, and Xκ^ 0 , then every component of XH contains at least
one component of Xκ\ that is c Π X * ^ 0 , for every component, c, of
XH. A space, X, will be called toricly uniform, if every torus action on X
is toricly uniform. It is clear that X is toricly uniform if, and only if,
every torus action on X with a nonempty fixed point set is toricly
uniform.

Toricly uniform spaces are common. For example, if the even
rational homotopy groups of X are zero, then X is toricly uniform, since
all nonempty fixed point sets are connected in this case ([4]). It will
follow from Corollary 3.4 below, that X is toricly uniform if Hodd(X) =
0. Thus, if X has the rational cohomology of complex or quaternionic
projective space, then X is toricly uniform. The following is a simple
example of a nontoricly uniform action.

EXAMPLE. Let Y = S2 x S\ and let the torus T2 = Sι x Sι act on Y
by the product action of Sι rotating S2 about an axis through the north
and south poles, n and 5, and S1 acting on S1 by multiplication. Let A
be the invariant subspace {n}xS\ and let X be the quotient space
Y/A. Clearly X inherits a Γ2-action from Y; and this action is not
toricly uniform, since T2 fixes the single point A /A, and the first factor of
T fixes this point plus {s} x Sι.

We shall use the ideals, p(X, c), to give the following algebraic
characterization of toricly uniform actions. In HT(X), let JV be the ideal
of i?-torsional elements.

THEOREM 3.1. // the torus T acts on X, suchjhat Xτ/ 0, then the
action is toricly uniform, if, and only if N C V(0) in HT(X).
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REMARK. If Xτ is not necessarily_nonempty, then the action is
toricly uniform if and only if M C V(0), where the ideal M is the
intersection of all ker[iτΓτ(X)->Hτ(X*)], K ranging over the maximal
subtori of T with Xκ^ 0 . The proof is strictly analogous to the proof
of Theorem 3.1 as stated. By [7], M may be characterized algebraicly as
the set of all x G HT{X), such that ann(x) and / = ker[p: R -> HT(X)]
have no common minimal primes.

For the proof of Theorem 3.1 we need the following proposition.

PROPOSITION 3.2. If a torus Tacts on X such thatX7^ 0 , and ifF\
1 ^ i ^ 5, are the components of Xτ, then

= n P(T,F<).
i = l

Proof. Let φ: (Xτ)τ -> Xr, ςp.: F'Γ-* XΓ, 1 g ΐ S-s, be the inclusions.
The localization theorem of [7] or [10] implies that N = ker φ*. Clearly
ker φ * = Πf=1 ker φ *.

VNow p(ZFι)=φ*ί(R®H(F1)), and so Vkerφ? = p(i; F1'). The
result follows.

COROLLARY 3.3 ([7]). Xτ is connected if and only if λ/N is prime.

Proof of Theorem 3.L_ Clearly the action is toricly uniform if, and
only if, Πs

ι=] p(Γ, F1) = V(0). The theorem follows.
The following corollary also follows easily from the localization

theorem.

COROLLARY 3.4. // the torus T acts on X such that X is totally
nonhomologous to zero (with respect to rational cohomology) in Xτ —> J5Γ,
then the action is toricly uniform.

Proof N = (0) in this case.

Concluding Remarks. The ideals, p(K, c), or similar ideals in a
closely analogous context were used to great effect, with varying degrees
of explicitness, by Hsiang, Chang and Skjelbred in [7], [6] and
[13]. Indeed, one could rework the program of [7] in the following
way. Let π: R[xu - -,xk]->HT(X)/V(0) be an R-algebra epimorph-
ism; suppose that Xτ^ 0, and let F\ 1 ̂  i g 5, be the components of Xτ\
let a)=(T,Fι)*π(xi)eR. Then π ^ T , F1) = (x, - aι

u ,xk - α'fe) for
l ^ i ^ s ; and we have that

')+ π -p(T, F')] ΠR = p-'[p(Γ, F') + p(T, F')]

= (α', -a',, •• ,αk-αi)
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The latter ideal has, therefore, minimal primes of the form PK in R and
it is a very useful ideal for describing the geometry of connecting subtori,
as was done in [7], [6] and [13]. (Cf. Corollary 1.9, above).
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