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GEVREY CLASSES AND HYPOELLIPTIC
BOUNDARY VALUE PROBLEMS

RALPH A. ARTINO

Let P{D, Dt) be a hypoelliptic differential operator with
constant coefficients of type μ with index of hypoellipticity
equal to d Ξ> 1. Let Ω be an open subset of the half space
Rl+1 with plane piece of boundary ω contained in R%. Let
QdD, Dt), ->, Qμ{D, Dt) be μ partial differential operators
with constant coefficients and consider the boundary value
problem:

( 1 ) P(D,Dt)u=f in Ω

In this paper necessary and sufficient conditions are given
on Qlf , Qμ in order that all solutions u of (1) shall belong
to the Gevrey class of index d in Ω U ω whenever the initial
data belong to such classes of functions. In particular, we
give not only algebraic conditions but also show how to
construct a parametrix for such problems.

Introduction. In 1958 Hormander first studied regular boundary
value problems, giving necessary and sufficient conditions for solutions
of (1) to be C°°. (see Hormander [8]). There, Hormander gives an
algebraic characterization based on the variety of zeros of the
characteristic function of the boundary value problem. Later on,
it was shown that fundamental solutions to elliptic boundary value
problems can be constructed with the aid of this characteristic func-
tion (see J. Barros-Neto [4, 5]). Moreover, it can be used to construct
a parametrix for hypoelliptic problems (see J. Barros-Neto [6]). In
this paper the characteristic function is used to give an algebraic
characterization of ώ-hypoelliptic problems. In doing so a different
technique is used than that in [8] in order to get more refined
estimates. Consequently the special result obtained in [8] for elliptic
operators is obtained here. The results here can be extended to
Gevrey classes which distinguish the rate of growth of derivatives
in different directions, (see [7]). Furthermore, these results have
many applications to semi-elliptic problems (see [2]).

The plan of this paper is as follows: In § 1 ώ-hypoelliptic
boundary value problems are defined and the main results are stated.
In § 2 the first two equivalences are proved. In § 3 we make use of
the parametrix of the boundary value problem and conclude the proof
of the main results in § 4.

The author would like to thank Professor Jose Barros-Neto for
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1* ώ-hypoelliptic boundary value problems* Let P(D, A) be
a partial differential operator on Rn+1 with coefficients in C assumed
in the form

P(A A) - DT + Σ * i ( / W

where

and aό{D) are polynomials in D. For any

V = (p» , P»+i) , Pi e iV we have

(A A)p = A271 !>/• AP w + 1, I P I = Pi + + ί>u+i.

DEFINITION 1.1. P(A A) is hypoelliptic in Rn+1 if for some open
subset # c Rn~ι all 6̂ in 2f\^) such that P(A A)^ = 0 belong to

DEFINITION 1.2. Let d > 0, by Γ r f(^) we denote the set of all
u in C°°(^) such that to every compact subset K c ^ , there exists
a constant C(w, ίΓ) > 0 such that for all (n + l)-tuples of nonnegative
integers p = (plf •• ,p,+ 1),

will be called the Gevrey class of index d.

Let P(ζ, r) be the characteristic polynomial of P(A A) and

N={(ζ,τ)eCnxC:P(ζ,τ) = 0}.

The following characterization of hypoelliptic operators was given
by Hormander (see Hormander [9], or Treves [12]).

THEOREM (H). The following two conditions are equivalent:
(1) P(A A) is hypoelliptic
(2) If(ζ,τ)eN, | (ζ,τ) |~>+oo

then I Im (ζ, r) I —• + oo.
Moreover, given some d > 0 the following three conditions are

equivalent:
(1 )d P(A Dt)u 6 Γd(έ?) implies u e Γd{έ?) for all & open in

Rn+\
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(2 )d There exists a constant C > 0 such that if (ζ, τ)eN then

| ( C , τ ) r < C ( l + | I m ( ζ , τ ) | ) .

(3 )d There exists a K(x, t) in Γd(Rn+1 - {0}) such that

P(D, Dt)K(x, t) = δ + β

where β is analytic in Rn+1.

The latter conditions imply the former. If (1) or (2) holds, there
exists a d > 0 such that (l)d, (2)d and (S)d hold. The set of numbers
d for which (l)d, (2)d and (S)d hold is a closed half-line [dQ, +oo) with
d0 rational and do^l.

The smallest d for which (l)d holds is called the index of hypo-
ellipticity of P.

DEFINITION 1.3. A differential operator is of type μ if there
exists a compact set KdRn such that whenever ζ e Rn\K, P(ζ, τ),
as a polynomial in r, has μ roots with positive imaginary parts.

It is easy to prove that for n > 1 all hypoelliptic operators are
of type μ for some μ. This, however, is not true for n = 1, as can
be seen by the operator associated with:

P(ζ, T) — ζ + iτ in JBn. This is elliptic and hence hypoelliptic but
not of any type.

Let RVι = {(xl9 ••-,xn,t):t> 0, xt e R} and RVι i ts closure. Let
Ω be an open subset of J?++1 with plane piece of boundary ω in
Λf = {(a?i, •• ,αw,0)}.

Let Cί(JS^+1)(resp. Q{Ω U α>)) denote the set of Ck functions with

support in J?++1(resp. Ω U ω).

DEFINITION 1.4. Let Q,{D, Dt), •••, Qμ(D, Dt) be ^-partial differ-
ential operators with constant coefficients, we say (P(D, Dt), Q^D, Dt),
• , Qμ(D, Dt)) defines a ώ-hypoelliptic boundary value problem in Ω
iff:

( 1 ) P(D, Dt) is hypoelliptic of determined type μ with index of
hypoellipticity equal to d.

( 2 ) All solutions u in Ck(Ω U (o) of the boundary value problem

P(D, Dt)u = f in Ω U ω

QXD, Dt)u \ω = gv l^vt^μ,

with / in Γd(Ω U ω), gu in Γ r f(ω), belong to Γd(Ω U ω), where fc equals
the maximum of the orders of P, Qlf •••, Q^.
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Denote by

Y = {ζeCn:P(ζ,τ) = 0

has μ roots with positive imaginary parts and none that are real}.

Let r^ζ), , τμ(ζ) be the μ-roots of P(ζ, r) with positive imagi-
nary parts for each ζ in A. Denote

and

(1.2) S(ftc: &, , Q,) = *** Off, Γ*K>> Ξ C(ζ) .
Π (rfc(ζ) - τz(ζ))

DEFINITION 1.5. C(ζ) defined by (1.2) is called the characteristic
function of the boundary value problem (1.1).

C(ζ) is a polynomial in ζ, τ, and the coefficients of kζ(τ) and
Qv(ζ, r). C(ζ) is defined even in the case of repeated roots, (see
Hormander [8] page 231).

The object of this paper is to prove the following theorem.

THEOREM 1.1. The following conditions are equivalent:
(1) (P(D, Dt), QiD, Dt), •••, Qμ(D, Dt)) defines a d-hypoelliptic

boundary value problem (Definition 1.4).
( 2 ) Every solution u e Ck(Ω (J ω) of the homogeneous boundary

value problem

P(D, Dt)u = 0 in Ω U ω

lim QAD, Dt)u = 0 in ω l<,v ^ μ .

belongs to Γd(Ω U ω).
(3) Let C(ζ) be the characteristic function of the boundary

value problem (P; Qu •••, Qμ). There exists a constant M> 0 such
that if ζeCn and

then ζesϊf and C(ζ) Φ 0.
( 4 ) There exist K0(x, t), Kλ(x, ί), •••, Kμ(x, t) in Γd(Rl+ί - {0})

which satisfy

fP(A Dt)Klxy t) = δa®δt- β(x) ® δt in R^
( # \[Qι{D, Dt)K](x, 0) - 0 1 = 1, . , μ in Λ?
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\P{D, Dt)K(x, ί) = 0 in Rl+ι

lQ,(A A)ίζ,(s, 0) - δIiV(δ. - β(x)) in m

with β analytic in Rn, and dUv is the Kronecker symbol.

2* Proof of Theorem l . l That (1) implies (2) is obvious so
in this section we prove that (2) implies (3). Denote by H(Ω U co)
the linear subspace of Ck(Ω U co) consisting of the solutions of the
boundary value problem

P(D, Dt)u = 0 in Ω

QXD, Dt)u - O i n ft) 1 <>v^ μ .

Call T1 the topology on H(Ω U co) defined by the semi-norms

DPU(X, t)\ = \ \ u \P
(x,t)eK

where K runs through the compact subsets of Ω U co. H(Ω U co) is
then a closed linear subspace of Ck(Ω U ω). Let T2 be the topology
on H(Ω (J α>) defined by the semi-norms

= sup

v — 1, 2, and i£ runs through the compact subsets of Ω [J (ύ. It
is not difficult to show that T2 makes H(Ω U co) a Frechet space.
Now T2 is finer than 2\ hence since any one-to-one continuous linear
map of a Frechet space onto another is a homeomorphism, we have
that the topologies Tx and T2 are equivalent. Hence for any compact
set KaΩ\jω there is a compact set i ί v and a constant l?v > 0 such
that for all u in H(Ω U &>) we have

(2.2) S^)rg£J|

Apply (2.2) to exponential solutions of (2.1),

u(x, t) = βi<Xί<Mί) .

Now u(x, t) satisfies (21) if and only if v(t) satisfies

(2.3)
Q.ίC, AMO) = 0 , v = l ,2, . . . f / I

It follows from Theorem 1.1 page 230 in [8] that (2.3) has a
nontrivial solution if and only if ζ e J^ and C{ζ) = 0. We now apply
(2.2) taking only derivatives in t up to order k and all orders in x
and get
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sup Σ
{x,t)eK <p'

Cp' I \eiix °v«\t)

g Bv sup Σ Iβ^^V'l bίP«
(x,t)eHu \p\£k

where p - (p', pn+ι). Now since (p' + 1)1 £ p'\l\2[Ί>>+l) the left-hand

side of the last inequality can be replaced by

sup
κ 2P 2ιl\p I

I C " I

and since I ̂  k this in turn can be replaced by

sup
1 /I

— Σ

Using this and (2.2) we get

Σ sup ] ev

(x,t) eK
Σ

*̂~~ Kuk fC I J^v »̂ ^ S U p / i I ι7 \^/

Lett ing δ = sup ( 3 ; , ί ) e x | x ] and δ, = s u p ( I ) ί ) 6 f f | x | one gets

Σ
p'

^ _ J _ Y + 1 / V (̂  c
^ M P ' I ! / \ 2 ώ + 12 d + 1

^ (2 f e A; ! ) d + 1 ^ ( δ + ^ ) ! T m ζ

sup
(a; , ί ) e iΓ

Σ va)(t)

s u p Σ \v{m)(t)\ .
k

It may be assumed that K £ H. Let α- be the positive number such
that t attains all values between 0 and a when (x, t) e K and b the
number such that t attains all value between 0 and b when (x, t) e Hv.
Thus the last inequality can be written

Σ sup I v<

s u p

Now since v(ί) satisfies (2.3) so does v{r)(t) for 0 ̂  r ^ k, it follows
from [8] pages 234 and 248 that

sup I v{r)(t) I ̂  (bla)™-1 sup |
0SίS6 OStSα

Hence there is a constant 2^ ^ 0 such that

ζ
Σ
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To simplify notation replace ζ by 2d+1ζ. Hence for suitable constants
δ, δ,y Cv we get

( 1
-Λ77
P \

+ l/i;

|

Now observe that

Hence (2.4) implies

^ Σ \ζp\.

It follows from this and Lemma 7.4 of [12], that there are constants
72 > 0, Bl > 0, A > 0 such that

(2.5) ^leμ/ίί+i/") ^ BleD>]lmζ] \ ζ \k .

By taking logs one gets if ζ e J ^ and C(ζ) = 0 that there exists a
constant M„ > 0 such that

\ζ\™+ι"')£Mu(l + | I m ζ | + A?log|ζ|).

Since log | ζ |/| ζ |β —* 0 as | ζ | -> co for any s > 0, the term k log | ζ |
can be absorbed on the left and a change of constant from this and
from the change in variable gives

(2.6) |

LEMMA 2.1 TΛβ following conditions are equivalent:
(1) ζ e J ^ C(ζ) = 0 αweZ | ζ | —> + °° implies | Im ζ | -*+«>.
(2) There exist constants M, 7 όoέ/t positive such that the set

= {ζeCn:\Reζ Γ | Im

is contained in Sf and C(ζ) Φ 0 for all ζ e D. Furthermore, the
set of all Ύ such that \ Re ζ \ί/γ ^ M(l + | Im ζ |) for ζ in Jtf and
C(ζ) Φ 0 is α closed half line [Ύo, +°o) witfe To rational and ^ 1.

Lemma 2.1 is used to complete the proof of (2) implies (3). Since
(2.6) implies for ζ € sf and C(ζ) = 0, | ζ | -> + 00 implies | Im ζ | -> + 00,
one can use Lemma 2.1 to take the limit in (2.6) to obtain

for some M > 0. This completes the proof.
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We conclude this section with the proof of Lemma 2.1 which
relies on the elimination theorem due to Seidenberg.

Proof of Lemma 2.1. One obviously sees that (2) implies (1).
So we prove (1) implies (2). First note that there exist constants
d > 0 and 7χ > 0 both positive such that J ^ contains all ζ e Cn such
that

(2.7)

Indeed, let Ύ1 and Cλ be as in Theorem (H). Let τ be real, then

|Re(ζ, τ ) Γ i ^ [Reζl 1 ^ ^ M(l + | I m ζ | ) = Mx(l + ]Im(ζ, τ)\) .

This implies that P(ζ, τ) Φ 0. Thus P(ζ, τ) = 0 has no real roots if
(2.7) holds. Hence the number of roots of P(ζ, τ) — 0 with positive
imaginary parts in constant in each component of the set defined by
2.7.

Now let A be the set of point in a Euclidean space whose entries
are respectively: Re ζ, Im ζ, r, t, Re r^ζ), , Re τμ(ζ), Im τ^ζ), ,
Imτ^(ζ), the real and imaginary parts of the coefficients of kζ(τ),
Qι{ζ, ?), "', Qμ{ζ> ?")• The set of points A satisfies the following set
of polynomial equations and inequalities:

f

τ) = Π (T - r,(ζ)) , kζ(t) = Π (T - r,(ζ))

Im r,(ζ) > 0, . ., Im τμ(ζ) > 0, Im r,+1(ζ) < 0, , Imrm(Q

C(ζ) - 0 .

The set A is thus a semi-algebraic set (see Treves [12]). To
A we apply the projection p: x e A —• (Re ζ, r, £, Im ζ). We obtain a
set JS which is semi-algebraic (Seidenberg-Tarski theorem). In fact,
the set B satisfies the equations and inequalities

| R e ζ | 2 = 4 > l l m ζ l 2 ^ , * > 0 , r > 0 .
r 2 t2

Assuming (1) in Lemma 2.1, there is a number r0 > 0 such that on
the sphere | Re ζ | = 1/r, 0 < r < r0, the function | Im ζ | is positive.
We set

t{τ) = sup I Im ζ I"1, 0 < r < r0 .
r |Re C|=l

We apply to the set B the projection
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(Reζ,rfί,Imζ) >(r,t).

Again using the Seidenberg-Tarski theorem, its image, C, is semi-
algebraic. Now since [ I m ζ ί " 1 reaches its maximum on r | Re ζ | = 1
for 0 < r < r0, the point (r, t{r)) belongs to C. In fact, for 0 < r1 < r0,
£(rx) is the maximum of t on the intersection of C with the "vertical"
line r = rx in the (r, ί)-plane. This shows that when r varies in an
open interval (0, r0) the point (r, ί(r)) varies on the boundary of C.
Observe also that t{r) is a continuous function of r in (0, r0). Now
C being semi-algebraic, is a finite union of sets Gh j — 1, •••,&, each
one of these being defined by a finite set E, of polynomial equations
and polynomial inequalities. Now for at least one Cό containing
(r, t(r)), the set of equations Eό must be nonempty. Otherwise
(r, ί(r)) couldn't lie on the boundary of C, but would lie in its interior.
So, there is a finite number of polynomials Qu , Qs in two variables
with real coefficients, such that for every r in (0, r0) there is a least
one index i, 1 ̂  i ^ s, such that

Qt(r, ί(r)) - 0 for 0 < r < r0 .

But the algebraic varieties of zeros Lί9 •••, Lβ in JS2 of Qx, ••-, Q8,
respectively, can intersect only in a finite number of points (if one
does not lie entirely upon the other, in which case we exclude).
Since r —* (r, t(r)) is continuous there must be some r[ such that
0 < rf

G < r0 and an index i0, 1 <J i0 ^ s, such that for r ^ r'o the
points (r, ί(r)) always lie on L ί o,

i.e. Qί0(r, ί(r)) = 0 when 0 < r ^ r[.

It follows that t(r) has a converging Puiseux expansion in some
neighborhood of theorig in in the complex r-plane (See Hormander [8]):

t{r) = ao(rvq)k° + α^r1")*1 + •

where g is an integer > 0, lc3- > kό^ (a priori > 0, r < 0). Since it
may assumed α0 ^ 0 and one can choose the branch of rvq which is
positive when r > 0, then one can assume a0 is real and positive.
Now by hypothesis r —* 0 implies t{r) —• 0. This is possible only if
&0 > 0. Then near r = 0

= aor
k°/q(l + 0(rι/q)) .

This implies

— ^ — > 1 as r > 0 .

aor
k°/q

Hence
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— ^ 1 < e for e small and r small .

aor
k°/q

Hence t(r) < (1 + e)a,or
k°/q which implies that

t(r) ^ Crk

0°
/q for r small .

Taking r = | Re ζ I"1 with ζ e J ^ and C(ζ) = 0 we get

when I Re ζ I is large. Hence for every ζ e Sxf and C(ζ) = 0 we obtain

| R e ζ | ^

where M is a suitable constant. Letting Ί = max (r1? tf/&0)> the
assertion of the lemma is proved.

3* In this section that condition 3 in Theorem 1.1 implies 4 is
shown.

Now in view of Theorem (H), there exists a constant M > 0 such
that if I ζ I > M then P(ζ, r) Φ 0. Hence one may define

(3.1) G0(C, t) = (2τr)-1Γ - £ U _ ίr , | ζ | > ΛΓ, t > 0 .

We see immediately that G0(ζ, ί) satisfies

P(ζ, A)(?o(C, t) =

That is, G0(ζ, ί) is a fundamental solution for the differential operator
P(ζ, A) when | ζ | > M. We modify (?0(ζ, ί) to get a fundamental
solution G(ζ, ί) of P(ζ, A) which satisfies

P(ζ, A)G(C, t) = 8

QXζ, Dt)G(ζ, 0) = 0 1 ^ v ^ Ai .

If one chooses the constant M > 0 such that P(ζ, τ) =£ 0 and
C(ζ) ^ 0 when \ζ\ > M (which can be done by hypothesis), then using
Theorem 1.2 of Hδrmander [8] P. 232, G(ζ, t) is given by

(3.2) G(ζ, t) - G0(ζ, <) - Σ [Q.(C, A)Go(Cf O)]1ΓV(C, ί)
κ = l

where

))

and the numerator is the determinant of the μ x μ matrix obtained
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from (Qfc(ζ, τv(ζ))), k, j = 1, , μ by replacing the Vth row by

We have the following lemma (see Hormander [8] p. 233).

LEMMA 3.1. If the zeros of P(ζ, τ) satisfy the inequalities
I r(ζ) I ̂  Co, I Im r(ζ) | ^ 1 + Cu C, > 0 ίλβn we have

I A'G0(C, ί) I ̂  2»+Ws

for all t^O and β ^ 0.

LEMMA 3.2. Suppose that the set

D={ζ:\ Reζ\1/d ^ M(l + | Im ζ |)}

is contained in Szf and C(ζ) Φ 0 in D, then there are constants
ikΓt > 0 and C1 > 0 such that

Proof. Let JS/ be the set of points e in a real Euclidean space

whose entries a re : R e d , •••, Reζ % , I m d , •••, I m ζ % , r, ί, Rer x , •••,

R e r m , I m ^ , •••, I m τ w , satisfying the following set of equations and

inequalities:

P(C, τ) = Π (r - ry(ζ)) , *c(r) = Π (r - r,(C))

^ikf 2 (l+ \Imζ\)2d

Im rL > 0, , Im τμ > 0; Im τμ+1 < 0, , Im τm < 0 .

C(ζ) - R(kζ; Q£ζ9

Since one can assume d is rational, E is a semi-algebraic set. (Treves
[12]). Since C(ζ) =̂ 0 when ζe D, there exists an r0 > 0 such that on
the sphere | Re ζ ( = 1/r, where 0 < r < r0, the function 1/| C(ζ) | is
strictly positive. Let

t(r)= sup l/|C(ζ)|.
|rRθζ|=l

Now suppose 1/| C(ζ) | is bounded in 2?. There is nothing to prove
in this case. So suppose it is unbounded in D, then t(r)->+oo as
r — 0.

Applying the projection E-+R2 given by xeE—+(t,r), we get
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a semi-algebraic set (Seidenberg-Tarski theorem). Since r—>0 implies
έ(r) —> oo we proceed as in Lemma 2.1 to show that there exists a
rational number ε < 0 and a constant 60 > 0 such that

t(r) = b^{l + 0(r1/ff))

where g is a positive integer. This implies that there exist constants
Mx > 0 and C, > 0 such that

l when ζ e
C(ζ)

LEMMA 3.3. There are constants C > 0 and N > 0 suc/i
αίZ ί/iβ 2?eros of P(ζ, τ) satisfy

\τ(Q\^C'(\ζ\N + 1 ) .

Proof P(ζ, τ) = τ w + aμ_{cm~ι + + α0, hence the coefficients
ttj are polynomials in r and the zeros satisfy

m—1

! r(ζ) I ^ 1 + Σ «, (O
i=o

LEMMA 3.4. There are constants M2, C2, T2, all positive, such that
the functions

DίG{ζ, t) and DfHXζ, t) of ζ are analytic

in the set D and satisfy

(3.4) \ D t

β G ( ζ , t ) \ £ M w d

(3.5) \Dβ

tHu(ζ,t)\ £

for t^O, 0 ^ β ^ σ - 1, ζ e D.

Proof. 1. Since P is d-hypoelliptic

I Re (ζ, τ) 1 S Λfd(l + | Im (ζ, τ) \)d ^ C(l + | Im (ζ, τ) \d)

implies P(ζ, τ) ^ 0 . If τ is a complex zero of P(ζ, τ) = 0 then

I Re ζ I ^ I Re (ζ, τ) | ^ C(l + | Im (ζ, τ) |d)

Hence

C31 Im τ \d ^ I Re ζ | - C3(l + | Im ζ |d) ,

so since one can assume that for all ζ e D
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for ζeD and P(ζ, τ) = 0 we have

| I m r | ^ C 3 | R e ζ | 1 / ώ .

Since d ^ 1 this implies

(3.6) l l m ζ l ^ C s l C Γ .

2. Let Fu -•', Fμ be analytic functions of a complex variable
τ and define

F . . . F)- det
Π (Tι ~ Γy)

where τL, , τμ are the roots of P(τ9 ζ) with positive imaginary parts.
It can be shown (Barros-Neto [4], [5], Hormander [8]), that

ft /μ~ί 7F(kH/A\

(3.7) I B(P; Fu • •, Fμ) \ £ Π ( Σ sup £ ^ M ) ,
3 = 1 \fc=0 a e Z K\ /

ζy r(ζ))

where K denotes the convex hull of the zeros τu - - , τμ.
It follows from (3.3) that

DlHχζf t) =

It follows from 3.7 that:
The numerator is not greater than the sum over 1 <̂  σ1 < «« <

Gμ ̂  [* of a product of factors of the form

and

Qi7(ζf r(ζ)) , O ^ r ^ μ - l .

By using Leibnitz's formula, Lemmas 3.3 and 3.6, the first is bounded
in absolute value by

where C and Cι and constants depending on σ.

By using Lemma 3.3 the second is easily bounded by a power
of | ζ | . Finally using Lemma 3.2 one gets 3.5.

Inequality 3.4 is proved similarly, the only difference is the use
of Lemma 3.1 to take care of the term G0(ζ, t).

Let ψ(ξ) be in C™(Rn) such that ψ(ζ) = 1 when \ζ\ < M and zero
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when I ζ | ^ M + 1. In view of Lemma 3.4 the functions

(1 - ψ(ξ))G(ξ, t)

and

(1 - Hξ))HAS, t)

define tempered distributions. Hence we define

(3.8) K0(x, t) - &T\\ - f (ί))G(f, t)

(3.9) KAx, t) = jTf\\ - ψ(ξ))HAξ, t) ,

where ^f1 denotes the inverse Fourier transformation wit hrespect
to the <f-variable only. It is a simple matter to verify that K0(x, t),
KAx, t) satisfy 1.3 and 1.4 in the sense of distributions.

To show Kv(x, t) 6 Γd(Rl+1 — {0}), one needs the following lemmas.

LEMMA 3.5. Let D - {ζ e Cn: | Re ζ \1/d ^ M(l + ] Im ζ |)}. For all

ξ 6 Rn such that | f \υd > M + 1, there is a constant C > 0 such that
the sphere

with p = C I ξ \υd is contained in D. Furthermore, there is a constant
Cx > 0 such that, for all ζ e S, we have \ ζ | ^ Cλ \ ξ |.

Proo/. For ί e i ? " such that \ζ\vd> M+l let ώ(f) be the dis-
tance between ξ and 3D, the boundary of D. Clearly, there is a
constant Co > 0 such that Co ^ ώ(ί) < + °° for all such f. Let ζ0 be
in 3D such that d(£) = | ξ - ζ01. Now

σo(i

It suffices to take C = A"1 to see S c D.
Next if ζ G S we have:

since |f | is bounded below for all ξeRn such that \ζ\υd ^ Jkf + 1.

LEMMA 3.7. Le£ iΓ(ζ) δe α s^cΛ analytic in the set D and satisfy
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(3.10) \K(Q£A\ζ\'

then there is a constant B > 0 depending on M and d but independent
of A and 7 such that

( 3 . 1 1 ) I D l ( ξ a K ( ζ ) ) I ^ A B | β | + l f f l + ' \q\l\ξ | r+ι« ι-w/*

for all a, q, and real £ such that \ ζ | ^ M + 1.

Proof. Since \ξ"K(ξ)\ ^ A\ξ\r+la{ it suffices to prove 3.10 when
a = 0; for the general result follows when one applies this special
case to ζaK(ζ).

It follows from Lemma 3.6 that there is a constant C> 0 such
that the sphere

is contained in D if | £ | > Λf + 1, and a constant d > 0 such that
for all ζ in S, \ ζ | < C, | £ |. Hence it follows from 3.11 that in S.

But then it follows from Cauchy's inequality for derivative of an
analytic function in a sphere that

THEOREM 3.1. The kernels Kv(x, t)(l^ι>^μ) belong to Γ\R\+ι -

{0}).

Proof. One must show to every compact set KdRl+1 — {0},
there exists a constant C(K, KJ)>0 such that for every p = (plf , pn),
β = 0, 1, 2,

sup I D*DiK£x, t) I ^ C lp l+^+1(| p | + β)\*.
(x,t)eK

Let q = (gΊ, , ?Λ) be an w-tuple of nonnegative integers consider
the integral:

x'DW!K£x, t) = (2τr)- [ β̂  ^ f K l - ψ(ζ))ζ'DlHAξ9 t)]dζ .

This splits into the sum of the following integrals:

To - (2τr)- ( β<<β'e>[l - ψ(ξ)]DKξqDiHv(ξ, t))dξ
JRnRn

JRn
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where r + s = q and r > 0.

l Estimate of To. In view of 3.5 and 3.11 there is a constant
C> 0 such that

ξ, t))\<>\q\\

hence

( 3 . 1 2 ) I Γ o I ^ (2;r)— I g I! C l l > l + l « l + r * f | ξ I

The last integral is absolutely convergent when

(3.13) I q I > d(Ύ2 +\p\ + n ) .

Assuming 72 is an integer, as one may, and choosing | q |^such that

(3.14) d(Ύt + I V I + n) < \q \ ^ d(Ύ2

one can use Euler's gamma function,

Γ(χ) =

to estimate ] q \! Accordingly, to every ώ ^ 1 and x an integer and
α a constant, it is easy to prove that there is a constant C > 0 such
that

+ α + 1) ^ c]xl+1(xl)d

with C independent of x.

Using this fact and condition 3.14 on \q\ one obtains

Since (a + 6)! ^ 2a+ba\b\,

(3.15) (72 + I p I + n)\ ^

Using this one obtains a constant C4 > 0 such that

(3.16) | ? | ! ^ C 4

l p l + 1 | ί ? | ! d .

From 3.12 and 3.16 one gets the following estimate on Γo

(3.17) I To I ^C^+1(\p\)ld .

2. Estimate of TTl9. Using 3.11,

I DlξqDβ

tHXξ, t) I ^ C]pl+sJ^sl I ξ |
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Since the support of D r (l — ψ(ξ))9 which is denoted by H, is con-
tained in the set

{£: M ^ I ξ ! ^ M + 1}

one may let

R = SUP ! ς
f e//

Then

Since \s\<\q\, and choosing \q\ as in 3.14, there is a constant
C6 > 0 such that

(3.18) |Γr,.| ^C'^\\v\γ.

The estimates 3.17 and 3.18 show that to every compact set
KdRT1 there exists a constant C(K, Kv) > 0 such that for every
w-tuple p = to, , P»), /5 = 0, 1, σ - 1 there exists q = (qlf , g j
such that j £ | ^ | p \ a + β where a and /9 are independent of p such
that

sup I xqDlDfKXx, t) I ^ C ! p - ](| p \)d .
(ϊ,ί)eA'

That ifv(x, t) belongs to Γ(RXrl — {0}) is a consequence of the
following lemma.

LEMMA 3.8. Let K be a compact subset of Rn

r

+1\{0} and Kv{x, t)
a solution of P(Dy Dt)Kv{x, t) = 0 such that

sup \DpDβKXx, t)\ ^ C l p l + 1 ( | p ! ! ) d for all p ,
(x,t)eK

and 0 ^ β ^ a - 1, ίfeen Kv{x, t) belongs to Γd(RTΛ\{0).

Proof. Since one can write P(D, Dt) = Df + Σ p ί Pj(D)DI and
P(A A)^(ί», 0 = 0 one gets

(3.20) Z?ίΊζ,(B, t) = -ΣiPj(D)DίKXx, t) , where P,(J9)

are polynomials in D of degree σ — j . We shall prove that there
exists positive constants G, M such that for any compact subset

K of R"+

+1\{0]

(3.21) sup I D{DpKAx, t) \ ^ C l / ϊ |+l ί>l+1Jlf' ί(| p \ + β)\d ,
( ί ) ^
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for all β and p, where C and M depend only on K and σ but not
on p and β. Note that (3.21) is obviously true for all 0 <£ β <: σ — 1
in view of (3.19).

Now assume that (3.21) is true for all β < σ + m where m > 0.
One must show it is true for β = σ + m. Differentiating (3.20) one
obtains

D*DΓMKu(x, t) - - Σ PAD)DpDtKXx, t)
j

Now

Thus one must estimate terms of the form

(3.22) ajμD
μ+pDΓJKXx, t) , and then sum them .

In view of the induction hypothesis

I ajμD^DΓjKu(x, t) \

^ I a j μ I C[μ[ + [p[+m+

\ μ\ p m + j)\d .

Since j ^ σ — 1 and
can be estimated by

Assuming M is larger than

sup I Dp(Dϊ+mKAx, t)

the right side of the least inequality

p\ m)\d

i I ajμ I o n e has

**-1^ + \p + m)\d .

This implies 2ζ,(a?, t) 6 Γ d ^
Note that K0(x, t) e Γd(Rl+ι\{0}) follows in a similar manner. One

must consider an extra term which is analytic and theorefore doesn't
affect the agrument.

4. We now show that (4) implies (1) in Theorem 1.1. To do so
one needs the following lemma.

LEMMA 4.1. Let V be an open subset of Rl = {{xy 0): xe Rn}, and
F a continuous function in R™ with compact support such that
FeΓd(V), then Ku(x, t)*'F(x) eΓd(V x JB+), where (*)' denotes con-
volution with respect to the x-variable.

Proof. Let ^ be a compact subset of V and let ^ be a rela-
tively compact open subset such that ^a^cz^ciV. Let a e Co°°( V)
be such that a = 1 in ^ . Write
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(4.1) KΐF = KVaF + K*\l - a)F .

For every p — (plf , pn), β = 0, 1, 2, , it follows by induction
that

(4.2)
V ' = DξKVaD'F + Σ A D^DίKΠDjaXDj+ι Dm+1F),

where A = Dm+ί = identity operator, Dp = D 0A Dm + 1. Let

To = DfKϊ'aD'F

Ti = Σ A A-iD!KV(D5a){Dj+1 - D ^ F ) .

Estimate of To in ^. The support of aDvF is some compact
set L. The values of K*aDpF in ^ depend only on the values of
Kv on the bounded set ^ — L, regarded as a distribution in x
depending smoothly on t. Hence Kv equals a distribution of finite
order, in x, in a neighborhood of ^ — L. Then

Kv = Σ £ * i ^ , «) ,

where F g are continuous functions with compact support in a neigh-

borhood of ^ — L(zR%, and belonging to Γd(R+) in £. Then one can

write:

Γo - Σ ί W O * ~ V, tW(a(y)D*F(y))dy .

Hence, after applying Leibnitz's formula,

sup I DΪKrccDp+qF I ̂  Cf+1(/3! )d sup | aDp+qF(y) \ ,

is a small number > 0.
Since FeΓd(V) one gets

*vφ\DίKϊaDF\ S Cί+1(βl)dQPl+lql+1(\p\ + \q\)ld

(4.3) * € ^
°̂ ^δ ^ Cβ+lp]+1(\p\

Estimate of T3- in ^ . Since #: = 1 in ^ , Dόa — 0 in ^ ^ hence
the support of (Zλ, α:)(.Z)i+1 Dm+ιF) is contained in

Supp α n # f ,

where 9^? denotes the complement of ^ in Λ?. On the other hand,

the values of (A DJ)Dt

βKϊ'(DJa)(DJ+ι A»+1/) in ^ depend on

the values of (A Dj)Dt

βKu on ^ - supp α n ^ ί 7 , a subset of



20 RALPH A. ARTINO

JRO — {0}. Since on this set K» belongs to Γd we get

QITΠ I Π . . D ΏβTC (T t\ I < Πβ+i( i 4- /3Ίt d

Since . F G H F ) one has:

sup [ Di+1 Dm^F{x) I £ C*-''+1(m - i + β)\d .

These last two inequalities yield:

sup I (Do - D^DiKt(Dόa)(Ds+1 A>+1flr)(a, ί) !
(4.4) oJS

Since δ was arbitrary and ^ was an arbitrary compact set contained
in J?o 4.3 and 4.4 shows that the first term in 4.1 belongs to
Γd(Vx R+). That DξDKKΠl - a)F) is in Γd(V x B+) is done in a
similar manner.

Proof of Theorem 1.1. Let Ωx be a relatively compact open

subset of Ω with plane piece of boundary ωι(zω such that Ωι U cyL c

i2 U <w. Let α G Cc(Rl+1) be such that α = 1 in flL U cw,. and its support

is contained in Ω U ω. Let u be a solution of 1.1. By using a as a

cut off function we see that

P(D,Dt)U=g inί2Uα>

QAD,Dt)U=hv in ω 1 ^ v ^ /i

with flr in Γd(Ωι (J ίt>i), and hu e Γd(ω^y and ^ and h, are continuous
with compact support in Ω U a), U = αw.

Consider

(4.6) K0*g + ±Ku*'K.
i/ = l

The problem

Q,(

for sufficiently large | (i.e. | ζ \ ̂  M) has a unique solution given
by:

(4.6)' ί ^ 0 ( ί , ί -
JO

Thus
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U(ξ, t) = ψ(ξ)U(ξ, ί) + (1 - Ϋ(ζ))ϋ(ζ, t)

= f(ς)U(ξ, t) + ί " ( l - *(ς))ίtjtζ, t - S)g(ξ, s)ds
Jo

+ Σ (1 - ^ £

Taking back the Fourier transform and applying the Paley-
Wiener theorem one gets that

U(x, t) - β(x)*'U(x, t) + K*g + Σ £>(&, ί)*'Λv ,

with /3(#) analytic in i£π, as a solution to 4.5.
It follows from Lemma 4.1 that the last two terms belong to

Γd(Ω1 U #Λ) Since /9(.τ) is analytic the convolution β(x)*'U(x, t) is
analytic in x and of class Cm with respect to the transversal variable
t. Finally since

P(D, Dt) U = DΓ U(x, t) + - - + am{D) U(x, t) = g

and g e Γ^Ω, U ωL) it follows that U e Γ^Ω, U ωλ) . Finally since
Ωx U (ol was arbitrary it follows that

u e Γd(Ω U ω) .
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