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QUOTIENTS OF COMPLETE MULTIPARTITE GRAPHS

CHO WEI SIT

The principal result of this paper is the determination
of every graph that can be covered by a complete multipar-
tite graph, in the usual topological sense of covering spaces.

Various papers of S.R. Alpert, J.L. Gross, and T.W. Tucker
have explicitly recognized that knowing what a given graph covers
is helpful in constructing surface imbeddings for it, acknowledging
that this approach is the underlying secret in the combinatorial
current graph method of W. Gustin. Moreover, the fact that every
Cayley graph covers a bouquet of circles is of implicit importance
in other work on Cayley graph imbeddings, such as that of A.T.
White on the genus of a group.

1* Introduction* The present paper is a sequel to the work
of Gross and Tucker [2], whose terminology is adopted here. In
addition, the following notations are used.

Let G be a graph. Then V(G) and E(G) denote respectively
the set of vertices and the set of edges of G.

A k-partίte graph is a graph whose vertices can be partitioned
into k cells such that no two vertices within the same cell have an
edge adjoining them. In general, it is tedious to determine for a
given graph G the minimum number k such that G is ft-partite,
which is, of course, the chromatic number of G. The complete
k-partίte graph Knv...,nk is the (fe-partite) graph with a vertex set
partition Vu , Vk such that | Vt | — nt for ί = 1, •••,&, and for
each ueVi, ve Vjf there is an edge between u and v if and only

if iφj.
Given two graphs Gx and G2, the notation G1( + , d)G2 means the

d-fold suspension of Gλ and G2, which is defined to be the smallest
graph which contains both Gt and G2 and such that for every pair
of vertices (u, v) with u e ViG,), v e V(G2), there are exactly d-edges
between u and v. The 1-fold suspension of Gx and G2 is also denoted
by (?! + G2, and is elsewhere called the "join" of Gt and G2.

A graph map p:K-+Kr is called a d-fold pseudocovering if the
inverse image of each point and of each (open) line of K' has d
components in K and if for every vertex v of K the degree of v
equals the degree of its image p(v). In such a case, the graph Kf

is said to be a d-fold pseudoquotient of K.
A graph map p:K—> K' such that K' is connected is called a
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covering if every point v of K has a topological neighborhood which
is mapped one-one onto its image in K'. (Since Kf is compact, this
agrees with the usual definition of a covering.) In such a case, the
graph Kf is said to be a d-fold quotient of K.

It can be shown that every covering is also a pseudocovering
(e.g. using Lemma 3.4 of W.S. Massey [3]), and therefore that
every quotient is a pseudoquotient. What makes the determination
of quotients of complete multipartite graphs somewhat harder than
that of complete graphs is that whereas every pseudoquotient of a
complete graph is a quotient, no analogous result holds for complete
multipartite graphs. The following example illustrates this diffe-
rence.

EXAMPLE. Consider the symmetric bipartite graph ίf6,6.

Let V, = {ulf u2, v19 v2, v3, v,} ,

and

V2 = {u3, u4, wlf w2, w3, w,}

be the cells of the associated partition of vertices of iίΓ6,6.

w2

KQQ (edges not shown) G

FIGURE 1. A pseudoquotient of KQ>Q that is not a quotient.

Define a graph map p from K6>Q to the graph G in Figure 1 by
"dropping the subscript" and such that four edges are mapped to
one. The graph map p is obviously a 4-fold pseudocovering, and
therefore G is a pseudoquotient of Kβt9. The following argument,
however, shows that G is not a quotient of K6,9.

Suppose to the contrary that there exists a graph map /: K6t6-+G
that is a 4-fold covering. Then, since the vertex v has no self-
adjacency, the fibre over v (i.e. f~\v)) must lie entirely in one cell
of the partition, say Vx. For similar reasons, the fibre over the
vertex w is contained in the partition cell V2. Hence, after some
reindexing if necessary, the map / is identical to p on the set of
vertices. However, the four edges adjoining the vertex u^ to the
vertices v19 v2, vB, and v4 have to be mapped into the two edges
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adjoining u and v, establish ing that the map cannot be a local
homeomorphism, and consequently not a covering. This proves that
the graph G is not a 4-fold quotient of JKΓ6,6

A generalization of the above counting argument utilizing the
local homeomorphism property is used to distinguish the quotients
from the pseudoquotients of the complete fc-partite graph Knvm..,nk.
That generalization and the constructive method of reduced voltage
graphs are sufficient for a complete determination of all quotients
of Knί %k.

2* On the homogeneity of fibres* The local homeomorphism
property is now applied to prove two lemmas which are the keys
to distinguishing between quotients and mere pseudoquotients of

LEMMA 1. Let Vί9 •••, Vk be the associated vertex partition cells
of the complete k-partite graph Knv...tnje. Let the graph map p:
K*v...,nk~*G be a d-fold covering. Let v be a vertex of G and let
Vh1 •••, Vit be the cells which have non-empty intersection with the

fibre p~ι(v). Then the number \ p~x{v) (Ί F* \ is the same for all cells
Vtr, r = l , . . , ί .

Proof. For r = 1, ••-,£, define mr to be the number | p~\v) Π
Vir I of points in which the fibre over the vertex v meets the parti-
tion cell Vίr. Since d = | p~ι{v) |, it follows that d — Σ ί = 1 m r . Since
Knitm^tnje is complete A-partite, there are Σi<Jmimd edges between
vertices in the fibre p~\v), from which it follows that there are
precisely CΣ*<; m<mi)/(2 loops at the vertex v. On the other hand,
for any r = 1, , t, if u is a vertex in p~x{v) Π Vir, then there are
2i^r Wi edges adjoining u to other vertices of p~ι(v). Since the
covering p is a local homeomorphism, it follows that there are
Σ ^ r mt loops at v. Thus, (Σn<j /w>iM'j)ld = Σ ^ r mi — d — mr. The
left-hand formula is independent of r, so the right side must also
be independent of r. Hence, the numbers mr do not differ for
different cells F < r , proving the lemma.

Let V19 , Vk be the associated vertex partition cells of the
complete ά-partite graph J5ΓΛl,...,njfe. Let p: Knv..m,nk-+G be a covering,
and ve V(G). The vertex v is said to have fibre type {ilf •••, it) if
Vilf , Vit are the cells of partition which have nonempty intersec-
tion with the fibre p~\v). In such a case, the fibre p~ι{v) is said
to be of type {ilf , it). A fibre is said to be homogeneous if it is
contained in one cell of partition, that is, if its type contains only
one element.
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LEMMA 2. Let V19 , Vk be the vertex partition cells of the
complete k-partite graph Knίtm..,nk. Let p: Knv.m.tnk—»G be a d-fold
covering. Then the fibre types of any two vertices of G are either
disjoint or identical.

Proof. Suppose that vertices u and v of the graph G have
nondisjoint fibre types. Suppose also that vertex v has fibre type
{in '"y it} and that ix is also contained in the fibre type of u. To
obtain a contradiction, suppose further that p~ι(u) Π Vtj = 0 for some
cell Vtj such that t ^ j > 1, and that v is a vertex in p'^v) Π Vtj.
There is an edge between v and every vertex in p~ι(u), so there is
a total of d edges between v and vertices in p'^u). Since both the
fibres p~ι{u) and p~ι(v) have nonempty intersection with Vh, the
total number of edges adjoining vertices in p~\u) to vertices in
p~λ{v) is less than d2, and therefore the number of edges between u
and v is less than d, contradicting the fact that the covering p is
a local homeomorphism at the vertex v. Hence, the fibre p~λ(u)
must have nonempty intersection with the cell Vip for all j =
1, , t, that is, the fibre type of v is contained in the fibre type
of u. Reversing the roles of u and v completes the proof of the
lemma.

REMARK 1. It follows from Lemma 1 and Lemma 2 that if the
covering p: JELWI>...>WΛ—>G has some fibre of type {ilf •• ,i ί}, then

Given a graph G, the d-fold G, denoted by dG, is the smallest
graph having the same vertex set as G, and such that for every
edge between a pair of vertices u and v in G, there are exactly d
edges adjoining u and v in dG.

The reduced voltage graph construction of Gross and Tucker
[2] is now applied to classify all the quotients of the complete
ά-partite graph that have only homogeneous fibres.

THEOREM 1. For each common divisor d of {nί9 •••, nk), the d-
fold complete k-partite graph dKnι/d>..^nk/d is a d-fold quotient of
Knv..',nk with all fibres homogeneous. Furthermore, the graph KHv...,nk

has no other quotients with only homogeneous fibres.

Proof (Existence). Let u and v be vertices belonging to different
cells in the graph dKni/d,...,nk/d. The d edges running from u to v
are bijectively assigned the voltages 0,1, , d-1 modulo d (assuring
that their respective reverses are assigned the voltages 0, (2-1, •••, 1
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modulo d). The corresponding derived graph has no multiple or
self adjacencies, and its vertices are partitioned into k cells accord-
ing to their images under the covering projection, making it ^-partite
and assuring homogeneity of all fibres. By counting edges, one
shows that the derived graph is actually complete A -partite.

(Uniqueness) If the graph map p: Knv ,nk~+G is a d-ίold cover-
ing with only homogeneous fibres, then the vertices of G can
evidently be partitioned into Λ-cells according to their inverse images
under the map p, making G a /c-partite graph. If the vertices u
and v oί G lie in different cells of the associated partition, then
there are d2 edges between the d vertices of P~ί(u) and the d
vertices of P" 1^), and consequently d edges between u and v,
proving that the graph G is the d-ΐolά complete ά-partite graph
•^n^d,.. ,nk/d'

3* Quotients of symmetric multipartite graphs* The following
lemma gives the necessary and sufficient conditions for the existence
and uniqueness of a special type of quotient of the symmetric k-
partite graph KΛt, .,n.

LEMMA 3. Let the graph G be a d-fold quotient of the symmetric
k-partite graph Kn> tn which has at least one fibre of type {1, 2, , k).
Then all fibres are of type {1, 2, , k}.

Furthermore, the following conditions are satisfied:
(i) k divides d.
(ii) If c — d/k, then c divides n and c(k — l)/2 is an integer.

Moreover, the graph G is realized by amalgamating a bouquet
of c(k — l)/2 circles to every vertex of the graph c[k~l)KnIc.

Conversely, given integers d and k satisfying (i) and (ii), there
exists a d-fold quotient of the symmetric Zc-partite graph ίΓn,...,w

with all fibres of type {1, 2, - , k}.

Proof. Since no fibre type can be disjoint from the type
{1, 2, ••-,&}, Lemma 2 implies that all fibres are type {1, •••,&}.
According to Lemma 1, the d vertices of any fibre are distributed
in equal number among the partition cells Vu •••, Vk, so k divides
d, which is precisely property (i). There are c vertices in the
intersection of a fibre with a cell and there are n vertices in each
cell. Hence, c divides n. Since there are c2k(k — l)/2 edges between
vertices within each fibre, there are c(k — l)/2 loops at each vertex
of G, proving that c(k — l)/2 is an integer. Let u and v be different
vertices of G. For each vertex in the fibre over u, there are
c(k — 1) edges adjoining it to a vertex in the fibre over v, hence
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there are c(k — 1) edges adjoining u and v, proving that G is as
described in the lemma.

To prove the converse, let L be a graph obtained by amalga-
mating a bouquet of c(k — l)/2 circles to the graph c{k~l)Kn/c. At
each vertex of L, give each of the circles a preferred direction and
assign the voltages 1, 2, , k — 1, ίc, k + 1, , 2k, , 3k, . ,
modulo d until the circles at that vertex are exhausted, where the
notation j denotes that j is deleted from the sequence. Since there
are only c(k — l)/2 circles at each vertex, only voltages up to [ck/2]
are assigned, (where the notation [x] denotes the greatest integer
less than or equal to x), guaranteeing that no two voltages are
inverses to each other which is necessary to ensure that the derived
graph has no multiple adjacencies. The c(k — 1) edges in the graph
L running from any vertex v to any other vertex u are assigned
the voltages 1, 2, , k — 1, k, k + 1, , 2k, , ck — 1 modulo d
(once again assuring that their respective reverses are assigned the
respective inverses as voltages). The vertices of the derived graph
are then partitioned into k cells according to the equivalence classes
of their second components modulo k. Since voltages congruent to
zero modulo k are not present, the derived graph is ^-partite. By
a counting argument similar to that in the proof of Theorem 1, it
is proved that the derived graph is actually complete Λ-partite.

The following lemma which gives a quotient for the suspension
of two derived graphs with voltages in the same group is proved
using arguments sufficiently similar to those for Lemma 3, and the
proof is omitted.

LEMMA 4. Let (Gί9 &) and (G2, β2) be reduced voltage graphs
with voltages in a group G of order d. Let the set {xl9 , xd) be
the set of elements of the group G. Let the reduced voltage graph

+ , d)G2f β) be defined by:

β(e) =

if e is an oriented edge in Gif i — 1, 2.

if e is the j t h oriented edge adjoining a

vertex in Gx to a vertex in G2.

Then their derived graphs satisfy the following condition:

, d)G2y = Gfi + Gf* .

Conversely, let G[ and G2 be arbitrary graphs. Then any d-
fold quotient of the graph G[ + Gf

2 is isomorphic to the d-fold
suspension GΛ + , d)G2 where the graphs G, and G2 are some d-fold
quotients of the graphs G[ and G2 respectively.
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4* Characterization of quotients of complete ^-partite graphs*
Given any d-folά covering p:Knv.m.,Λk—>G, according to Lemma 2
the collection of all the various fibre types partitions the set
{1, •••, k). Reindex if necessary, assume them to be

{1,2, •..,£,}, (type 1)

{k, + 1, k, + 2, . , k, + k2} , (type 2)

{ & ! + . . . + k^λ + 1, , kx + + &,-_! + k3) , (type j)

{k, + + kj + 1} ,

{kx + + kj + 2} ,

From Remark 1, it follows that

n, = n2 = = w^ ,

etc. .

Therefore the complete Λ-partite graph Knv,m,tnjt can be decom-
posed as follows:

&! indiees fe2 indices fcy indices

w h e r e

m1 = %„ m 2 = tt4l+1, m 3 = n t l + f c 2 + 1 , •• , w ί = % .

THEOREM 2. Lei iAe graph G be a d-fold quotient of the com-
plete k-partίte graph Knv...,nk with fibre types as described above.
Then the graph Knv..m,nk can be decomposed as in (*). Furthermore,
the following are satisfied:

( i ) d divides Σ*=i ni
(ii) For all i = 1, « , i , ίΛe cardinality kt of fibre type i

divides d, and if d — ĉ fci, ί/z-eti cf divides mt and c^kt — l)/2 is an
integer.

(iii) d divides mh for every h such that j <h<*t. Moreover, the



538 CHO WEI SIT

graph G is isomorphic to the graph Gγ{ + , d)G2( + , d) ( + , d)Gj( +, d)G*,
where Gέ is the graph c^ki — l)Km./c. with c^ki — l)/2 circles amalgam-
ated at each vertex and G* is the graph dKmj+ι/d,...>mt/d.

Conversely, given a complete fc-partite graph JBLWI Λjfc that can
be decomposed as in (*), and an integer d satisfying (i), (ii), (iii),
then a d-ΐold quotient of -BΓΛ1,...,Λfc with fibre types as described exists.

Proof. Condition (i) follows from the property of d-fold quoti-
ents. All the rest follows from repeated applications of Lemma 4
utilizing what is known from Theorem 1 and Lemma 3.

REMARK 2. Since the complete graph Kn can be considered as
the symmetric w-partite graph Ku tl, Therem 2 extends the result
in [2].

REMARK 3. For the complete bipartite graph Knvn2, quotients
with nonhomogeneous fibres exist only when nt = n2.
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