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ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF
RETARDED DIFFERENTIAL DIFFERENCE
EQUATIONS

J. C. LiLLo

The asymptotic behavior of the solutions of nonautonom-
ous n'® order linear retarded differential difference equations
is studied in this paper. It is shown that if the coeflicients
satisfy certain restrictions, then for any real K there exists
a finite dimensional subspace F(K) of the solution space
having the following property. For any solution x of the
equation one has for all ¢ > 0 that x(f) = xx(¢t) + x,(t) where
x, belongs to F(K) and z,(t) = 0(exp(—Kt)) as t > oo, As in
the author’s earlier papers, considering the periodic and
almost periodic cases, the spaces F(K) are obtained by treating
the nonautonomous equation as a perturbation of an n'®
order autonomous equation.

1. Introduction and notation. We consider perturbations of
the autonomous n'™ order equation

L(k)

(1.1) Lya(®) = a™(t) + 3, Seua(t — 4,) = 0

=0 =0
where 0 = 4, < 4, < 4,, and the ¢, for all pairs (I, k) occurring in
(1.1), are real numbers. We assume m = 1. We also assume that
1(0) < n and that (k) <mn, ¢;uy, # 0 for k=1, ---, m. The perturbed
equations will be of the form

(12) La(t) = Dia(t)
where
(13) D) = 3 5 0.2t — 0,)

Here it is assumed that the ¢,, belong to C**(— oo, =) and there
exists an M, > 0 such that

(1.4) g | = M,

for te(—co, =), 7 < 2n, and (g, h) € B, where B denotes the set of
all prirs (g, &) in (1.3) for which ¢,,(¢) # 0.

In earlier papers, the author has established, in the cases where
the coefficients ¢q,, are periodic [6] or almost periodic [7], that for
K > 0 and sufficiently large there exist finite dimensional solution
spaces F(K) of (1.2) possessing the following properties. Any so-

431



432 J. C. LILLO

lution of (1.2) has a representation of the form
(1.5) x(t) = we(t) + x.(t) .

Here z, € F(K) and there exists an M(x) such that

(1.6) |2.(t) | < M(x)exp (—Kt) for all ¢=0.

If H(K) denotes the corresponding subspace for (1.1) then there
exists a sequence @,, lima, = —c such that

1.7 n(a,) = dim H(—a,) = dim F(—a,) .

In §3 we shall extend these results to systems of the form (1.2)
under certain additional restrictions on the perturbations (1.3). In
order to state these restrictions we next introduce the notion of a
distribution diagram for (1.1) and (1.3).

Associated with (1.1) we have the characteristic polynomials

(1.8) P(z) = 2‘1‘[2 et exp (—4,2) + 2°

and G(z) = P(z) exp (4,,2) where ZMZ denotes the double sum occurring

in (1.1). For G(z) we define its distribution diagram [6] as follows.
Let S(G@) denote the set of points, in a Cartesian plane, consisting
of the point (4,, n) and the points (4,, — 4,, I) where (I, k) is any pair
of subscripts in (1.1) for which ¢, # 0. We denote by p; = (B, m;),
j=0, .-+, k, those points in S(G) which possess the following proper-
ties: )

(a) Do = (Oy l(m))7 Pr = (Am, ’”’)

(b) B;<Bjy and m; <myy, for j=0,1, .-, k—1

(¢) if I; denotes the line segment connecting p;_, and p; then
every point of S(G) lies on or below at least one of the I;, 7 =1,

- k,

(d) if w; denotes the slope of I; then wu, > u, -+, > wu,.

The graph consisting of the line segments [, ---, [, is referred to
as the distribution diagram of G. For j=1, ---, k we denote by
G;(z) those terms in G(z) which correspond to points in S(G) on the
line segment ;. Each of the polynomials G;(2) may be factored

(L9 Gi(a) = bzt exp (85-2) T (2 exp (2fus) — 7)o

where 7;, = 7;; for ©# h and b; denotes the coefficient in G(z) of
the term 2™/ exp (B;z). Since our estimates for | G(z)| depend directly
on the numbers B(7j, ) in (1.9) we associate with P(z) the following
constant
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(1.10) o(P) = max pB(j, h) for j=1, ---, k and hell, ---, a(s)] .

DEFINITION. Equation (1.1) is said to satisfy condition Ia if
o(P) = a for its associated polynomial P(z) as defined in (2.1).

As mentioned earlier it is necessary to impose a restriction,
condition ITe, on the perturbation term (1.3). In order to define this
condition we associate with (1.8) a distribution diagram. Let

(1.11) F(z) = exp (4,2) ZZ 7,12° €Xp (—0,2)

where »,, =1 if (g9, h)eB, r,, =0 if (g, h) ¢ B, and 22 denotes

the double sum in (1.8). As in the case of G(z) one now deﬁnes the
set of points S(G) and then the distribution diagram of F which is
also referred to as the distribution diagram associated with (1.3).

Let R(o) denote the closed region bounded by the lines 2 = o/u,,
y=0, x = 4,, and the line segments [,(0), -, l,(0). Here l;(0) is
the line segment joining the points p;(0) = (B; + o/u,, m;) and
2;_(0) = (Bj_1 + o/u;, m;_,) where p; and p;_, are the endpoints of
l; in the distribution diagram of G(z).

DEFINITION. We say that (1.3) satisfies conditions II, for any
real a if its distribution diagram is contained in R(g) for some
o> a.

For an intuitive discussion of condition II, the reader is referred
to the author’s earlier paper [6]. Before stating the estimates that
we shall need in §2 we introduce the following notation.

For any complex number z, we have

(1.12) k(z) = |exp (—=2,/u,)| and

(1.13) l(z,) = {#: Re () = Re (z,)} .

For any pair (g, h) € B we define

(1.14) H(g, h, w, 2) = exp [—4,(z — ww)](z — ww)//P(z — iw) .

Let Z denote the set of zeros of P(z). In an earlier work [6] the
author has shown that there exists a decreasing sequence or real
numbers {a,}, lima, = — o, @, — 2 lies to the right of Z and 1, and
an M, such that the strips S, = {z:|Rez — a,| < M,k %(a,)} do not
contain any points of Z. Using the estimates established in [6] one
has the following results. If (1.1) satisfies I, and (1.8) satisfies II,,,,
Y =0, then there exists @ >0, H, >0 such that for any pair
(9, R)e B, r = H, and J, = M,k Y(a,)/4 one has the estimates

(1.15) [H{(g, h, 0, 2) < k“**"(a,) for Reze(a, —6,, a, + 6,) = a,
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(1.16) S | H(g, h, 0, 2) || dz | = k***"*(a,)

(L.17) [ 15 1,0, 2)11d2] < -+ @)

where the integrals in (1.16) and (1.17) are along any line I(z,) for
Rez ca,. We also have that there exists an M = 0 such that for

any 0 = 0

(1.18) |H(g, h, 0,2)| < M/ |z for zel(a, + 0)
(1.19) 15, 1, 0,91 1dz] < Mi(a, + o)
(1.20) |15, 1, 0, 2 d2| < Mi(a, + o

where the integrals in (1.19) and (1.20) are along the line I(a, + o).

2. The Greens function. In this section we shall obtain in
Theorem 2.1 a representation result for the Greens function associated
with equation (1.2). The proof of Theorem 2.1 consists of treating
equation (1.2) as a perturbation of (1.1) and solving by successive
approximations. To facilitate this discussion we introduce the
following notation. Let G(¢, s), called the Greens function, denote
the function which vanishes for ¢ < s, satisfies (1.2) as a function
of ¢ for t > s, G"V(s*, s) — G"V(s7, s) = 1 and G'(¢, s) is continuous
intforallj <n — 2. Here fY9(¢, s) denotes the j* partial derivative
of f(t, s) with respect to t. The j** partial derivative of f(¢, s) with
respect to s will be denoted by £ (¢, s). We shall denote by G(0, ¢, s)
the Greens function for equation (1.1). Associated with G(0, ¢, s) we
have

2.1) G0, ¢t s, r, 1) = S exp [z(¢t — s)]4(z)dz for all values of ¢,

2.2) G0, ¢, s, 7, 2) = S exp [2(t — s)]4(z)dz for t > s,

where 4(z) = 1/P(z) and the integrals are defined as follows. The
symbol S denotes the line integral 1/(277) gammf and Sa_ denotes the
negative agf this integral. The symbol S aé;;Btes ther sum of the
two integrals S_ and S where the a; are defined as in §1. Since
Z contains only;, finite aéet of points to the right of l(a,) it follows
easily [1] that

(2.3) G(0, ¢, s) = G(0, &, s, v, 1) + G(0, t, s, 7, 2)
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for all values of ¢. Here G(O0, ¢, s, 7, 1) satisfies equation (1.1) for
all values of ¢ and G(0, ¢, s, r, 2) satisfies equation (1.1) for all ¢ > s.
It also follows [1] that for any k= 0 and 7 sufficiently large that
there exist constants M(k, ») such that for j <n»n — 1

[G9(0, t, s, 7, 1) | = M(k, r) exp [b(t — s)]
for t=s and bela +k o + k& + 1]

|G9(0, t, s, 7, 1)| = M(k, r) exp [Y(t — s)]
for ¢t < s and 7 €a,

| G0, ¢, s, 7, 2)| < M(k, r) exp [a(t — s)]
for t=s and aca,.

(2.4)

Since G(0, ¢, s, », 1) and G(0,, ¢, s, r, 2) satisfy equation (1.1) for ¢
and s in appropriate domains it follows that except for a finite set
of points in [0, (n + 1)4,] the derivatives of order j < 2n will exist
and the constants M(k, ») may be chosen so that one has for these
higher derivatives the estimates (2.4) for the indicated values of ¢
and s.

We now establish, in Theorem 2.1, a similar representation result
for G(t, 0). For 7 =1,2 we define G(0, ¢, », 1) = G(0, ¢, 0, », ©). For
j =1 we define for all values of ¢

G, t, 7, 1) = S_w DGG — 1, w, 7, 1)GO, t — w, 7, 2)dw
2.5) + S DGG — 1, w, 7, 1)G(O, ¢ — w, 7, Ldw
+ g“’ DGG — 1, w, 7, 2)GO, ¢ — w, 7, Ddw
and for ¢ > 0
G, 1, r, 2) = gw D(GG — 1, w, 7, 2))G(0, t — w, 7, T)dw
(2.6) + S“ DGG — 1, w, 7, )G, t — w, 7, 2)duw
+§ DGG — 1, w, 7, 2)G(O0, ¢ — w, 7, 2)dw .
For t <0, 5 =1 we set G(j, ¢, r,2) = —G(j, t, r, 1). We then set
G(t, 7, 1) = 5'_% GG, t, 7, 1)

2.7) -
Git, 7, 2) = 3,GG, ¢, 7, 2) -

THEOREM 2.1. If equation (1.1) satisfies I, and FEquation (1.8)
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satisfies I, then there exists an H, > 0 such that for any r = H,
the function G(t, 0) can be written for all values of t

(2.8) G(t, 0) = G(t, r, 1) + G(¢, r, 2) .

The function G(t, r, 1) satisfies equation (1.2) for all values of t
and G(t, r, 2) satisfies (1.2) for all t > 0. Furthermore there exists
a constant k and constants N(k, r) for r = H, such that

|G9(t, r, 1)| < N(k, ) exp (bt)
for t =0, bela, + k, a, + k + 1]

2.9) |G, r, 1)| < N(k, r) exp (7t)
for t £0,7¢ela, —0,/2, a, + 0,/2] = B,
|GY(t, r, 2)| < N(k, r)exp (at) for t=0,acp,.

Proof. For any function f we denote by [f]* the function which
equals f for ¢t = 0 and is zero for t < 0. We denote by [f] the
function f— [f]*. We denote by || f]|, and || f|, the L}(— o, )
L — oo, ) norms of f. We also introduce the functions

f(ly, m, h’; g9, 7, j; t) = exp (_'Yt)G(g)(m’ t— Oy Ty .7) .

Then using (2.4), (2.9), and (1.17) it follows for 7 ep,, r sufficiently
large, and any pair (g, h)e B

II [f('y’ O, h’ 9,7, 1; _)]_ Hl < k_ﬂlz(a’r)

(2.10) 1LF0, 0, By g, 7, 2 =) I < K~#%(a,)

and the L[— oo, «o] norms of the above functions are bounded by
k=#*%¥q,). Similarly using (1.19) in place of (1.17) for any k > 0,
(9, k)€ B and bela, + k, a, + k + 1] it follows that

(2.11) LA, 0, Ay g, L, —)]F |, < M]la, + K]
and its LY — oo, o] norm is bounded by MY*/(a, + k)*®. Next we
note that if feL—co, o], g€ L’[—co, =] then

ww) = | + Dg@a
belongs to L — oo, ] and
(2.12) th) | = ([ 1l 1T gll:

(2.13) Nhlle = 1A 111 glle -

For k =1,2 let C(k, m, 7, b) denote max (||[f (7, m, h, g, 7, 2, )" ls,
ILf(7, m, b, g, 7, 1, )" |l [LF(b, m, By g, 7, 1, -)]" ||, Where the max is
over all pairs (g, ) € B, and 7 €g,.
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Then from (2.5), (2.6), (2.10), (2.13) we have for all (g, &)< B,
m = 1 that
Hs®, m, kg, 71, )] = 2Mw(n — 3)C2, m — 1,7, b)
[~#%a,) + M/la, + K]
LA, my hyg,7, 1 ] Ll
< 3Mwn — 3)C2, m — 1, r, bk **a,)
WLf(r, m, by g, 7,2, )]l
< 3Mw(n — 3)C2, m — 1, 7, bk **(a,) .
Thus for m = 1 one has
2, m, v, b) = Mv(n — 8)[8k~"*(a,)
+ 2M/a, + K]JC2, m — 1, 7, b) .
Similarly from (2.12) we obtain the estimates for all values of ¢
1f(by w, hr g, r, 19 t)]+t é Mﬂ)(’n - 3)0(2’ m — 1’ '77 b)
X [3k~—§/2‘—3/2(a7) _l_ 2M1/2/[a0 + b]3/2]
r¢, m, kg, 7, 1, 0]
é 3M17J(/n - 3)0(27 m — 1: 7’ b)k_ﬁ/zualz(ar)

[Lf(v, m, h, g, 7, 2, )] |
< 3Ma(n — 3)C(2, n — 1, 7, B#*"a,) .

(2.14)

(2.15)

(2.16)

Thus it follows that if & and » are chosen so that
(2.17) Ma(n — 3)[3k*a,) + 2M/[a, + k] | <—;—

then the series in (3.7) will converge uniformly and absolutely in
every finite interval and for j = 0 and 7 = « one has the estimates
(2.9). For m =0, 7=1,2 and » > H, we note that the functions
G(m, t, v, 7) are independent of the choice of ¥€g,. By induction
this then holds for m = 1. Thus we have the estimates in (2.9) for
the case 5 = 0. It also follows that G(¢, 7, 2) and G(¢, 7, 1) satisfy
the equations

Gt 7, 1) = S D(G(w, 7, 1)G(0, t — w, r, 2)dw

+ StD(G(w, )G, £ — w, 7, 1)dw+g;’° D(G(w, r,2)
0
x G0, t — w, r, 1)dw for all values of ¢
(2.18) G{t, r, 2) = S D(G(w, 7, 2)G(0, t — w, 7, 2)dw
+ S_OQ D(G(w, r, 1))G(0, t — w, 7, 2)dw

+ r D(G(w, 7, 2)G(O0, t — w, 7, dw for t=0.
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Now using the estimates (2.4) it follows from (2.18) that G(¢, r, 1)
satisfies equation (1.2) for all values of ¢ and G(¢, r, 2) satisfies
equation (1.2) for ¢t > 0. It also follows from (2.18), the estimates
for the terms D(G(w, r, 1)) above, and (2.17) that the estimates given
in (2.9) hold for j < — 1 with N(k, r) = 2M(k, r). This completes
the proof of Theorem 2.1.

Associated with equations (1.1) and (1.2) we have the adjoint
equations (2.19) and (2.20) given below. These equations are adjoint
relative to the inner product given by (3.1) in the next section.

@19 Li@e) = 17 + S5 (~ 1oy (s + 4)
(2:20) Li@®) = D*@e) = 53 (~ 17 lgnls + oy + o] -

Now in place of the equations (3.5) and (3.6) we have for 7 =1 and
all value of ¢

GG, b, 8,1 1) =\ DGG—1,ws, 7, 1)GO, t, w, r, 2)dw

—o0

2.21) + S‘ DGG — 1, w, s, 7, 1))G(O, t, w, 7, 1)dw
+ S“’ DGG — 1, w, s, 7, 2)G(O, t, w, r, L)dw
and for t =s
GG, t, s, 7, 2) = S; DGG — 1, w, s, 7, 2))G(O, t, w, r, L)dw
(2.22) + S_w DGG — 1, w, s, 7, )G, ¢, w, 7, 2)dw

+ S' DGG — 1, w, s, 7, 2))G(O, £, w, 7, 2)dw .

For t<s and =1 we set G(j,¢t, s, 7,2) = —G(j, t, s, 7, 1). Then
defining

Gt 5,7 1) =3 GG, ¢, s, 7, 1)
(2.23) ~
G, s, 1, 2) = 3,(GU, ¢, 8, 7, 2)

we have the following theorem.

THEOREM 2.2. If equation (1.1) satisfies I, and equation (1.3)
satisfies II,., for some a then there exists H, > 0 such that for any
r = H, the function G(t, s) can be written for all value of t, s in
the form
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(2.24) G(t, s) = G, s, v, 1) + G@&, s, 7, 2) .

The function G(t, s, r, 1) satisfies equation (1.2) as a function of t
and equation (2.20) as @ function of s for all values of s and t.
The function G(t, s, r, 2) satisfies (1.2) as a function of t and (2.20) as a
function of s for all t >s. The mized partials 0" G(t, s, v, 1)/0t'0s?
are continuous and independent of order for all i1 <n—1,7<n —1,
and all values of t and s. Furthermore these partials satisfy estimates
of the form (2.9) with appropriate constants N*(k, r) and t replaced
by t — s on the right side of the inequalities.

Proof. We first note that the change of variable ¢, =¢ —s
converts the equations (2.21), (2.22) into equations of the form (2.18)
where the coefficients used in defining D have been shifted. Since
the estimates on the coefficients were uniform in ¢ we have from
Theorem 2.1 the assertions that G(¢, s, r,1) and G(¢, s, r, 2) are
solutions as functions of ¢, of equation (1.2) and satisfy equations
(2.25), (2.26) for the appropriate values of ¢.

G, s, 7, 1) = St D(G(w, s, r, 1))G(0, t, w, r, 2)dw

(2.25) -Fgfp«xw,&qg1»G«Lt,w,r,ndw

+rpwmﬂnmwmumnnm

G@&nm:YDGW@nmﬁ&ameMW
(2.26) —4%D@W&nnﬂﬂamnmm

+y0@m&nmﬁ&amnmm.

The results of Theorem 2.1 also justify integrating the equations
(2.21) and (2.22) by parts, obtaining

G(j’ t’ 8’ T’ 1)
= S566-1,w—0,5 7, Dga@)GO ¢, w, 7, 2]7dw
+

s

o

[ =366 - 1,w = 0,57, Diga@GO, ¢, w, 7, D) dw
+ | E566 -1, w =0, 57, au@EO, t, w, 7, D]7dw

and
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GG, ¢ s, 7, 2)
t
= | 366 -1,w -0, 57, 2leaWGO, 1, w, 7, D]Vdw
£ g

(2.28) . g—w SSGE -1, w— 0, s, 7, Dgam@)GQO, t, w, r, 2)]°dw

s gk

+ g 536G — 1w — 0y, 5, 7, 2[auw)G0, 1, w, 7, D] dw

where [ ] denotes the g¢'® derivative with respect to w. But then
it follows from (2.27) and (2.28) for 7 = 1 that

(2.29) LiG(i, t, s, 7,1, ) = D' (G — 1, ¢, s, 1, 1))
for all values of ¢t and s, and for ¢ = s that
(2.30) L{G(@, t, s, 1, 2) = DY G(E — 1, ¢, 8, 7,2) .

Then assuming the relations (2.29) and (2.30) hold for 7 = n one
extends them to ¢+ = n + 1. This is done by noting that due to the
smoothness properties of G(n, t, s, r, k), k = 1, 2, and its derivatives
for n = 1 and the identity G(n, t, s, 7, 2) = —G(n, t, s, r, 1) for t <s
one may commute the operator L; with the integral and summation
signs in equations (2.27) and (2.28). Then by the induction hypothe-
sis one obtains D*G(n — 2, w — 0, s, r, k) inside the integral as k=1
or 2 in the given integral. But then, for the reasons mentioned
above, one is able to commute D" with the integral and summation
signs to obtain D*G(n — 1, w — 0, s, , 1) in (2.27) and D*G(n — 1,
w — ay, S, 1, 2) in (2.28). This completes the desired induction. The
uniform convergence results of Theorem 2.1 now establish the asser-
tions that G(t, s, r, 1) and G(¢, s, 7, 2) satisfy equation (2.20) for ¢ and
s in the appropriate domains. The assertions concerning the mixed
partial derivatives of G(¢, s, r, 1) are obtained from the identity

G(t’ s’ 7" 1)

= | 556w -0, 5 7, Diga@)GO, ¢, w, 7, 2 "dw

(2°31) + gt Ehz“ G(w — O 8§, 1, 1)[qgh(w)G(0’ t, w, 1, 1)](y>d,w

T Sw thl Gw — gy, s, 1, 2)(Qqh(w)G(t, w, r, D]9dw .

In light of the existence of the partials of G(¢, s, r, k) and G(0, ¢, s, 7, k)
with respect to s and ¢ and the fact that they satisfy bounds of the
form (2.4), (2.9), the mixed partials d'+7/ot'0s’ are obtained by taking
these partials inside the integrals along with the additional terms due
to the simple discontinuities of G '*¥(0, ¢, w, r, 2) at the finite set
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of isolated points t,; in the interval [0, (® + 1)4,]. These terms are
of the form G“(¢t,; — o}, s, r, 1) multiplied by appropriate constants
where l=g+ 7+ 57— (nm — 1+ k). Thus the mixed partials possess
the stated properties. This completes the proof of Theorem 2.2.

We now denote by K the maxg(h) for h =0, ---, v. We then
have the following result.

THEOREM 2.8. The conclusions of Theorem 2.2 remain valid if
the hypothesis that (1.3) satisfies II,., is replaced by the hypothesis
that (1.8) satisfies Il,.,, and the assumption that for all j <k and
pairs (9, h) € B one has that qf) are in L — oo, co].

Proof. Referring to the proof of Theorem 2.1 we note that in
obtaining the estimates (2.14) we used (2.13). The restriction II,,,
was used in obtaining a bound for the L! norm of the terms playing
the role of f. But now using the fact that the q,, € L'[— 0, ] one
can obtain for the terms playing the role of g, in Theorem 2.1, an
estimate on their L' norm. Thus one needs only an estimate on the
L? norm of the terms playing the role of fin the proof of Theorem
2.1. But for this it is sufficient to have (1.3) satisfy the condition
II,..,., Thus the results of Theorem 2.1 remain valid if the ¢,, ¢
L [—co, o] for all pairs (g, k)€ B. The additional hypothesis that
the ¢4 € L'[— oo, =] for j < k are needed in the proof of Theorem 2.2
where the adjoint equation is considered. In particular, they are
required for the representation given by equation (2.30). This com-
pletes the proof of Theorem 2.3.

3. Representation result. In this section we shall establish
the representation result given by equation (1.5) and described in
§1. This is done by showing that the function G(¢, s, r, 1), occurring
in Theorem 2.2 defines the finite dimensional subspace F'(—a,) described
in §1. This result is then used to establish Theorem 3.2.

Let C denote the space of functions having n — 1 continuous
derivatives on [—4,, 0] with the uniform norm || - || and C* denote
the space of functions having n — 1 continuous derivatives on [0, 4,]
along with the uniform norm. Then associated with equation (1.2)
and its adjoint equation (2.20) we have for every real number ¢ and
feC, deC* the following inner product

n

[/, d, o] = 2 (=17 f*77(0)d"“"(0)

=1

B Z;‘czz {SO_A,, SO E)end(E + 4)
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(3.1) + 3 (1) (0)eud H(4,)
+ S @ + &+ ode + o)z
+ 3 (1O + o)d@)] T}

Here we have written

dq,.(0 + o, + d(E + 6,)]
d&l

[9,1(0 + 0,)d(0,)]?  for

evaluated at £ = 0. If y denotes a solution of the adjoint equation
(2.20) for s < s,, then for any o < s, we define y, € C" by the equation
Y,(&) = y(o + &) for &¢€]0, 4,]. Similarly if « is a solution of (1.2)
for ¢t = t, we denote by xz,, 0 = ¢, the function x,eC defined by
2,(§) = x(oc + &) for £e[—4,,0]. For any », r = H, as given in
Theorem 2.2, we define the linear operator F(r) on C by setting

(3.2) E(r, £)¢) = [f, G(, -, 7, 1),0] for te[-—4,0].
We then have the following result.
THEOREM 3.1. For any r = H, the linear operator E(r) defines

a projection of Cinto C. The range of E(r) has the dimension n(a,)
as defined in § 1.

Proof. We first establish the identity
(3'3) G(tr s, 7, 1) = [GO('7 s, 7, 1)7 Go(ty 57, 1)’ 0]

for » = H, and all values of ¢ and s. Since the mixed partials of
G(t, s, r, 1) of order up to 2n are continuous and since G(¢, s, 7, 1)
is a solution of (1.2) and (2.20) it follows that the right side of (3.3)
is a solution of (1.2), as a function of ¢, and a solution of (2.20), as
a function of s for all values of s and t. We consider (3.3) for the
case in which ¢ > 4,. For these values of s and ¢ [4] one has the
identity

G(ty S, 7, 1) = [Go('y s, 7, 1)7 Go(t’ '); O]
(3‘4) = [GO(', S, T, l)y Go(ty 7T, 1)’ 0]
+ [GO('y Sr Ir’ 1)’ Go(t’ °y 'ry 2)! 0] .

Now it is known [4] that for all values of ¢ <0
(3'5) [Go(', s, 7, 1)’ Go(t’ 7 2)7 0]

is a constant which is independent of ¢. From Theorem 2.2 it follows



ASYMPTOTIC BEHAVIOR OF SOLUTIONS 443

that there exists an M > 0 such that (8.5) is bounded by
Mexp [(a'r - 5r/2)(t - 0')] exp [(a'r + 3,.,2)(0' - 3)] .

Letting 6 — —c we have that the expression in (3.5) is zero and
so we obtain (8.3) for all ¢t > 4,. Using the fact that solutions of
(1.2) have unique backward continuations [5], [4], the identity (3.3)
follows for all values of ¢t. Using the continuity of the mixed
partials of G(¢, s, 7, 1) as given in Theorem 2.2 and Fubini’s theorem
one may carry out the interchanges in the orders of integrations and
differentiations [6] to obtain the identity

[[f! Go(ti 7 l)v 0], Go(av 7, 1)7 0]

= [f’ [GO('y S, 7T, 1)7 Go(ar 7, 1)’ 0]7 O]
where ¢ varies in [—4,, 0] and s in [0, 4,]. Thus we have that
E(r, E(r, f)) = E(r, f) and it follows that E(r) defines a projection

on C. In order to prove that the dimension of the range of FE(r)
is n(a,) one introduces the one parameter family of equations

3.7 Lyx(t)) = uD(x(t)) for 0=u=<1.

(3.6)

Then from Theorem 2.2 one again obtains a function G(i, s, 7, 1, )
which for v = 1 reduces to G(¢, s, r, 1). As in [6], the inner product
(3.1) is modified to [f, d, o, 4] by replacing the functions ¢,, by the
functions ugq,,. One again shows that

(3.8) E(r, f, w)(t) = [f, G2, +, 7, 1, u), 0, u]

defines a projection. It then follows from the proof of Theorems
2.1 and 2.2 that the mixed partials Gi(¢, s, 7, 1, u) are continuous
functions of w for |t| < 24, |s| £ 24,,, and j =< 2n. Thus it follows
that the norm of E(r, u) is a continuous function of w for 0 < u < 1.
Since the dimension of the range of E(r, 0) is n(a,) it then follows
by the usual arguments [6] that the dimension of the range of E(r, 1)
is also n(a,). This completes the proof of Theorem 3.1.

Let C(r) denote the range of FE(r). Then since C(r) has the
dimension n(a,) we may select a basis {,;, j =1, ---, n(a,) for C(r).
Thus for every f e€C(r) we have a unique representation of the
form

3.9) B, £) = S alf, s -

Now for ¢ > 0 we have [4] for any solution z of (1.2)

a(t, £, 0) =[S, G«¢, ), 0] = Lf, G2, -, 7, 1), 0]

(3.10) + [f, Got, -, 7, 2),0].
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Since G(t, s, r, 1) satisfies equation (1.2) for all values of ¢ it follows
that [f, G(¢, -, 7, 1), 0] has a unique backward extension to [—4,, 0].
Thus it follows from (3.9) and (3.10) that for all ¢ > 0

n{ap)

(3.11) x(, f, 0) = 2 olf, (e, Crp 0) + 2,(8) .

From the results of Theorem 2.2 we have that there exists a constant
k(r), depending only on 7, such that for all ¢t >0

(3.12) le,, || = k(r) || f || exp (a,t) .

Summarizing these results we have the following theorem.

THEOREM 3.2. Under the hypothesis of Theorem 2.2 or Theorem
2.3 one has for every r > H, and every solution x(f, f, 0) of (1.2) a
unique representation of the form (8.11) where the remainder term
x, satisfies the estimate (3.12).

We note finally that the hypothesis of Theorem 2.3 are more
restrictive than those of Hale [3] and Cooke [2]. Thus in this case
their results are applicable. These results assure us that each of the
solutions (¢, £, 0) is asymptotic as ¢t — o to a solution of (1.1).
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