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SPECTRAL APPROXIMATION THEOREMS IN
LOCALLY CONVEX SPACES

VOLKER WROBEL

We present some results on collectively compact operator
approximation theory in locally convex Hausdorff spaces (l.c.s.).
The notion of a collectively compact family of operators acting
on a Banach space has been introduced by Anselone and Palmer
in connection with the numerical solution of integral equations.
Meanwhile collectively compact families of operators have been
studied in general topological vector spaces. In contrast to those
investigations dedicated to the characterization of collectively
compact families of operators the present paper focuses on
spectral approximation theorems in l.c.s. similar to those given
by Anselone and Palmer in the case of Banach spaces. In doing
this it turns out that the notion of the spectrum, which causes no
problems in Banach algebra theory, entails some difficulty. A
way out is indicated by using notions and tools of locally convex
algebra theory.

0. Notations. Throughout this paper let E denote a l.c.s. over
the field of complex numbers C. E is always assumed to be equipped
with a basis 9 of continuous seminorms p. By °lίp we denote the closed,
convex, and circled neighborhood of zero { x G £ : p ( x ) ^ 1} in E. Let
Ϊ£S{E), £C(E) and 5£b{E) denote the locally convex algebra of all
continuous linear operators on E equipped with the topology of uniform
convergence on finite, compact, and bounded subsets of E.

The formulation of spectral approximation theorems requires some
remarks on the notion of spectrum. In contrast to Banach algebra
theory there are different ways for introducing a spectrum for the
elements of a locally convex algebra, which in general lead to different
sets. For Γ 6 i ? ή ( £ ) a straightforward generalization from the theory of
Banach algebras would lead to the following notions: Denote by
pB(T): = {z E C: (z idE - T)"1 G g(E)} resp. σ f l(Γ): = C\pfl(Γ) the
Banach-resolvent set resp. the Banach-spectrum of T. These notions
which are of great importance for solving eigenvalue problems for the
linear operator T unfortunately are not suitable for involving such a
powerful tool as the analytic functional calculus for general l.c.s.
E. That is why we introduce the following notions current in locally
convex algebra theory (see [1]). For ΓG SBh{E\ the spectrum σ(T) of
T is the complement in the Riemann sphere C of the largest open set
p(T) in which z H» R(Z,T): = (Z idE - T)"1 is locally holomorphic (in the
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s e n s e of c o n v e r g e n c e i n ϊ£b{E)). R ( , T ) is c a l l e d resolvent, p ( T ) t h e
resolvent set of T. For zu z2£ pB(T) the resolvent equation is fulfilled:

R (z,, T)-R (z2, T) = (z2 - z,)Λ (zi, T)R (z2, Γ).

With these notions of spectrum and resolvent set an analytic
functional calculus can be established in the locally convex algebra
ϊ£b(E). If E is a Mackey complete l.c.s. and T a precompact or
bounded endomorphism on E it can be shown σ(T) = σB(T) and
p(T) = pB(T) U {OO}. In general these sets are different, indeed σB(T) may
be empty whereas σ(T) never is by Liouville's theorem. For further
notations concerning the theory of locally convex spaces the reader is
referred to Schaefer's monograph [7].

1. Introduction. In various important applications only ap-
proximate solutions of eigenvalue problems for linear operators are
computable, the accuracy of which has to be estimated. That is why
perturbation theory and spectral approximation theorems entering the
scene quite naturally are of particular importance in this field. To begin
with we shall give an easy spectral approximation theorem. Although it is
less useful in applications, it illustrates the difference between Banach
algebra theory and the theory of locally convex algebras so much the
better. The proof of the following theorem is easily done by means of
Neumann's series and is therefore omitted.

THEOREM 1.1. (Uniform Spectral Approximation Theorem) Let E
denote a Banach space and Γ, Tn E «5?(JE}, n = 1,2, . Assume Tn->T
in ϊ£h (E). Then for all open subsets ΩCC containing σ(T) there exists n0

such that
(i) σ(Tn)CΩ resp. p(Γn)DC\Ω for n ^ n0.
(ii) R(z, Tn)-+R(z, T) in ϊ£b{E) uniformly for z E C\Ω.
(iii) The resolvents R(-, Tn), n ^ n0, are equicontinuous on C\Ω.

These statements no longer remain true for general l.c.s. E. This is
demonstrated by the following easy

Counterexample. Let E denote the (FN)-space Π^C equipped with
the usual product topology. Denote by en the nth unit vector of E. By
Tn, n = 1,2, denote the operator (xm)mGN ••> xnen- Now one immediately
demonstrates Tn—>ΰ uniformly on £, hence we have Tn-^0 in ££b{E)
especially. On the other hand 1 E σB(Tn) = σ(Tn) for all n E N.

Putting this into a more general context we cite a result due to
Vladimirskii [9] showing that the locally convex algebra ££b{E) is rather
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pathological and that the counterexample does represent the rule for
nonnormable l.c.s. E.

THEOREM 1.2. Let E denote any given l.c.s. Then the following two
statements are equivalent

(i) E is a nonnormable l.c.s.
(ii) For every neighborhood W of zero in ϊ£b{E) there exists T GW

such that id£ + T is not infective.
A reformulation of (ii) yields

(ii)' For every neighborhood W of zero in ϊ£b{E) there exists T (ΞW
such that (-1) is an eigenvalue of T.

As already mentioned Theorem 1.1 is less useful in practice. First,
checking whether a sequence of operators Tn converges in ϊ£b{E) is very
difficult in general if possible at all. Second, in many applications this is
not even true. In practice one checks whether a sequence Tn converges
pointwise. Then of course additional assumptions have to be made to
ensure results similar to the statements of Theorem 1.1. In important
applications (see [3]) {T - Tn: n E N} is collectively compact in the sense
of the following

DEFINITION. A family fflCJ£(E) is collectively compact if there
exists a neighborhood °UP of zero in E such that UTG^T(°llp) is a
relatively compact subset of E. For further characterizations and prop-
erties of collectively compact sets of linear operators in topological vector
spaces the reader is referred to [4], [5], Finally we mention that the
statements 3.1, 3.2, and 3.3 of [4] are in general not true as our
counterexample following Theorem 1.1 demonstrates.

2. Spectral approximation theorems. For the proof of
our main theorem the following easy lemma is needed.

LEMMA. Let E, F, and G denote three l.c.s., B any bounded subset of
E, °UP and Tq neighborhoods of zero in F and G. For T E Ϊ£(E, F) and
S E i?(F, G) we have the following inequality

sup q(S ° Tx) ^ sup p(Tx) sup q(Sy)
xEB xEB vE%

Proof For all λ > 0 such that TB Cλ% the following inequality is

true

^ sup q(Sy)=\λ\supq(Sy).
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Hence for λo: = inf{λ > 0: TB Cλ%}=: supxeBp(Tx). The right hand
side may be + °o.

For the rest of this section let £ be a barreled, sequentially complete
l.c.s. These assumptions on E form a natural limit to which one can hope
to generalize the theorems of Anselone and Palmer without rather
artificial conditions. First, the Banach-Steinhaus theorem plays a vital
role in the demonstration of the spectral approximation theorems.
Second, in dealing with resolvents mostly Cauchy series are involved and
the given assumption on E ensures that 5£b(E) is sequentially complete.
Third, holomorphic functions with values in ϊ£b{E) can be handled easily:

A function H from a domain G of the Riemann sphere with values
in £ίb(E) is holomorphic iff for all x E E and φ E E' the complex valued
function z »-» (φ,H{z)x) is holomorphic in G. This, too, is a conse-
quence of the Banach-Steinhaus theorem.

The following theorem is a locally convex version of a spectral
approximation theorem due to Anselone and Palmer [2] in the case of
Banach spaces.

THEOREM 2.1. Let Γ, Tn E i?(J5), n = 1,2, . Assume Tn-^T in
i£s{E) and {Tn - T nGN) collectively compact. Then the following is
true:

For every open subset ΩCC containing σ{T) there exists n()E N such
that

(i) σ(Tn)Ctt resp. p(Tn)DC\Ω for n ^ n0.
(ii) R(z, Tn)-^R(zy T) in ^S(E) uniformly for z E C\Ω.
(iii) {R(z, Tn)- R(z, T): n ^ n()y z E C\Ω} is collectively compact
(iv) The resolvents R ( , Tn) are equicontinuous on C\Ω for n ^ n0.

Proof. For an abbreviation let Sπ(z, T):= R(z, T)(Tn- T). Since
JR( , Γ) is locally holomorphic on C\Ω the set {R(z, T): z E C\Ω} is
compact in <£h{E). By [4], Prop. 2.3, 3ίf := {Sn(z, T): n E N, z E C\Ω} is
collectively compact. Hence we find a neighborhood %p of zero such that
ffl°UPt) is relatively compact. Now by the Banach-Steinhaus theorem we
can find n{) such that

( * ) ( S n ( z , T ) ) 2 ^ P o C R ( z , T ) ( T n - T W % P r C \ m P i ) for n ^ n 0

uniformly for z E C\Ω.
Now for any given bounded set B C E and neighborhood of zero °U p

of £, / E N and i ^ 2 we get the following inequality by means of the
above lemma

(**) sup p,(5M(z, Γ)'JC) ^ sup po(Sn(z9 T)l~2z) sup p,(Sn(z, Γ)2y).
B B %
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As {5π(z, Tf: n G N, z G C\Ω}%Po is a relatively compact subset of £
(**) together with (*) implies that Σ7=2Sn(z, T)1 is Cauchy and hence
convergent in £b(E) uniformly for z G C\Ω and n ^ n0. Hence the limit
function z » (idE - Sn (z, Γ ) ) 1 = R (z, Γn) (z idE - T) is locally
holomorphic on C\Ω as a function with values in ^£h{E). But then
JR( , Tn) is locally holomorphic too, considered as a function with values
in ££h(E). Thus (i) has been shown. Furthermore Σ"=2Sn(z, T)1-»0 in
ϊ£b{E) uniformly for z G C\Ω by (*) and (**). So we get

= (idE + Sn(z, T) + Σ Sn(z, T)') K(z, T)-> i?(z, Γ)
=2

in ££S(E) uniformly for z G C\Ω, and hence (ii).
Because of (ii) given x E E and a neighborhood of zero °lίp in

there exists nx such that

zGC\Ω, n^nλ} C{R{z,T)x:

Hence {i?(z, Γn): z G C\Ω, n ^ nx) is equicontinuous by the Banach-
Steinhaus theorem. Now an easy calculation gives R (z, T) - R (z, Tn) =
JR(z, T)(T-Tn)R(zy Tn). Using this we get (iii), because {JR(z,T)
( T - T n ) : zGC\Ω, n G N} is collectively compact.

As equicontinuous sets of ϊ£b{E) are bounded in 5£b{E) (see [7], p.
83) (iv) will yield from the following inequality by means of the resolvent
equation for jR( ,T n ) and the lemma: Let B be any given bounded
subset of E and pλ a continuous seminorm of E and p2 such that
{JR(z,ΓΛ): z EC\Ω, n ^ n^^C^^. Then

sup p,((K(z,, Tn)-R(z2, Tn))x) = Iz, - z 2 | sup p,(l?(z1, Tn)R(z2, Tn)x)
xEB

^\Z]-z2\ sup p2(R(z27Tn)x) sup p,(/?(z1, Tn)y).
xEB yGV

As {i?(z, Tn): z G C\Ω, n ^ nx) is bounded in ϊ£h(E) we are done.
The rest of this section is devoted to an adaptation of Theorem 2.1 to

practical applications. Of course the most important question has to be
answered how eigenvalues and eigenmanifolds of T can be obtained
from their approximations defined in terms of the approximating se-
quence (Tn)n G N. The main tool for doing this is the analytic functional
calculus.
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But first we shall give a result following at once from Theorem 2.1.

COROLLARY 2.2. Let the hypotheses of 2.1 be fulfilled. Then the
following is true

(i) // z 0 E C is a cluster point of {zn: n E N, znEσ(Γn)} then

(ii) // z0 is an isolated point of σ(Γ), then there exists a sequence
(̂ n)nGN, zn E <x(Tn), such that zn -> z0.

Now we shall sketch some notions from the analytic functional
calculus in locally convex algebras (see Allan [1] for details). Roughly
speaking it turns out that the functional calculus for closed endomor-
phisms on Banach spaces due to Taylor (see [8]) admits a generalization
for continuous linear operators on a locally convex space.

DEFINITION 2.3. By a Cauchy domain we denote an open subset Δ
of C such that Δ consist of a finite number of components the closures of
which are pairwise disjoint, the boundary <9Δ of Δ consists of a finite
number of closed rectifiable Jordan curves contained in C, no two of
which intersect.

For Γ E ^ , ( £ ) let 3ίfx(T) denote the set of all germs of functions
being locally holomorphic on σ(T)U{°°}. For every / E $f«»(T) there
exists a Cauchy domain Δr such that σ(T)CΔ / CΔf CD(f) (we do not
distinguish between the germ / and a function / representing the germ,
thus D(f) denotes the domain of a representing function being locally
holomorphic on D(f)). The mapping

I
J dAf

f(z)R(z,T)dz

defines an algebra homomorphism from fflx(T) into Xb{E) (being
continuous if 2ΐx(T) is equipped with the usual inductive limit topology).
With these notions the following theorem can be derived from Theorem
2.1 by similar arguments used by Anselone [3] for the derivation of his
Theorem 4.15. The proof is therefore omitted.

THEOREM 2.4. Let the hypotheses of 2.1 be fulfilled. Then for every
f E Sίfx(T) we find n() E N suck that for n ^*n0 we have

(i) feχx(τn).
(ii) f(Tn)-+f(T)in^(E).
(iii) {/(Γ)-/(TΠ): n ^ n0} is collectively compact.

Let σ C σ ( T ) denote a spectral set, that means σ is both open and
closed relatively σ(Γ). Let τrσ(-)E WX(T) such that π σ (z) = 1 for z E σ
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and τrσ(z) = 0 for zEiσ(T)\σ. Then πσ(T) is a projection by the
functional calculus, called the spectral projection belonging to σ. For the
further discussion let us assume the hypotheses of 2.1 are fulfilled.
Denote by U an open neighborhood of σ being disjoint from
σ(T)\σ. Then σn: = {z E °lί: z E σ(Tn)} is a spectral set of σ(Tn) for n
sufficiently large by Theorem 2.1 (i). Let πσ(Tn): = πσn(Tn). By Theorem
2.4. (iii) {πσ(T)~ πσ(Tn): n ^ n) is collectively compact. If one of the
spectral projections is compact then all are compact mappings by [4]
Prop. 2.2. Hence dim πσ(Tn)E <°o for n ^ n0. By transition to a
suitable Banach space the spectral projections factoring through this
space, we are allowed to apply Theorem 4.13 of Anselone [3] to
{πσ(Tn): n ^ no}U{πσ(T)}. Identifying all infinite cardinals additionally
we get the following

THEOREM 2.5. Let πσ(Tn)-+ πσ(T) in ί£s{E) and {τrσ(Tn)- πσ(T):
n ^ n0} collectively compact. Then dim πσ(Tn)E = dim πσ(T)E for n
sufficiently large.

If z0 is a pole of the resolvent z H» R(Z, T) and the spectral
projection π { z o }(Γ) is of finite rank then z0 is called a pole of finite
multiplicity. It can be shown that if z0 is an isolated point of σ{T) and
7r{2o}(T) of finite rank then z0 is a pole of finite multiplicity.

For example all eigenvalues of a compact operator being different
from 0 are poles of finite multiplicity. After this remarks the following
theorem is quite clear.

THEOREM 2.6. Assume the hypotheses of 2.1 are fulfilled. Then
(i) // z0 is a pole of finite multiplicity for z » R(z, T) then there

exists a sequence (zn)M e N, zn being a pole of finite multiplicity for
z *-* R(z,Tn) such that zn —> z0.

(ii) Assume z0 is an isolated point of σ(T). Let zn —> z0, zn E σ(Tn)
being a pole of finite multiplicity for z H> R(z,Tn) (n sufficiently large of
course!). Then z0 is a pole of finite multiplicity for z ^ i?(z, T).

Finally we shall discuss the approximation of eigenmanifolds. We
begin with a rather simple case, also discussed by Anselone [3].

THEOREM 2.7. Assume the hypotheses of 2.1 are fulfilled. Let
z0Eσ(T) be an isolated point and dim π{zo}(T)E = 1. Then there exists
x E E such that Tx - zQx, π{zo}(T)E = spanjx}, π{zo}(T)x = x.

For each n sufficiently large there exists zn such thatσn = {zn}, zn —> z0.
Let xn:= τr{Z0}(Tn)x. Then xn->x and Tnxn = znxn.
For n sufficiently large we have xn^ 0 and π{zo}(Tn)E - span{xΠ}.
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Proof. All we have to do is showing Tnxn = znxn. As xn =
π{zo}(Tn)x-> π{zo}(T)x = x by Theorem 2.4 (iii) we have x n ^ 0 for n
sufficiently large. Hence by Theorem 2.5 π{zo)(Tn)E = span{jcn} and
therefore Tnxn = znxn.

A more general situation is considered in the following.

THEOREM 2.8. Assume the hypotheses of 2.1 are fulfilled. Let σ
denote a spectral set of σ(T) and dim ττσ{T)E < oo. By % denote a
neighborhood of zero in E such that {ττσ(Tn)\ n ^ no}

ύlίp = : K is a relatively
compact subset of E.

For xn E πσ(Tn)E and p ( x n ) ^ l , n sufficiently large we have
xn - ττσ{T)xn —»0 in E for n->™.

Proof. Since πσ(T)- ττσ(Tn) converging pointwise by Theorem 2.4
(ii) to zero also converges to zero in Ϊ£C{E) by the Banach-Steinhaus
theorem, the theorem is an immediate consequence of the following
identity, since K is relatively compact:

xn - πσ(T)xn = πσ(Tn)xn - πσ(T)° πσ(Tn)xn

= (πσ(Tn)- τrσ(Γ))o πσ(Tn)xn.

REMARK. If T is a bounded operator on a Mackey complete l.c.s.
and {T-Tn: nEN} collectively compact then all Tn are bounded
operators too. Then by transition to a suitable Banach space one gets
the whole theory of Anselone and Palmer without tools of locally convex
algebra theory. How the spectral theory of bounded operators on a
Mackey complete l.c.s. is reduced to the classical case of continuous
operators on Banach spaces can be deduced for example from Pietsch [6].
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