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A CLASS OF ISOTROPIC COVARIANCE FUNCTIONS

YASHASWINI MITTAL

Let {f(x),x ^ 0 } be nonnegative such that I f(x)dx = 1.

Jo
Define g(x) = f(\x\/s{xUiΓ) for x G Rπ. The n-dimensional Eu-
clidean space is denoted by Rn, \x\ is the length of the vector
x G R n and 5r,„. = surface area of the n-dimensional sphere with
radius r. Let W(dy) be the (n + 1)-dimensional Gaussian white
noise, i.e., for any Borel sets B and C in Rn+1, W(B) and W(C)
are mean zero Gaussian variables with variance of W(B) =
volume of B, and E(W(B)W(C)) = 0 if and only if JB Π C = 0 .
Construct the sets A, in Rn+1 as At =
{(*i •*„, z )GR n x [0, °°)\g(x + 0 > - 2 ' } Define an «-dimen-
sional isotropic Gaussian field as X(t) = [ W(dy); ί G Rn.

J

has mean zero and variance one. In addition, if it is
assumed that f(x)/xn~1 is nonincreasing, then the covariance
function of x(t) can be computed to be r(t) =

(21c) [ (\ sin""2ado) f(x)dx, where 111 = ί, c = f ' s i n ^ ^ d a
Jί/2 \Jθ / Jθ

and 0 = arcos(ί/2x). Let Vn denote the class of covariance
functions r(t) in Rn. Characterizing properties of the class Vn

are studied for the odd and even dimensional spaces.

The class V2 is the same as the one considered by Hajek and
Zubrzycki. Some examples and the iterative properties of Vn are also
considered. The classical Pόlya's criterion for characteristic functions is a
special case of Theorem 1.

A collection of real or complex valued random variables Z(ί), where
t ranges over a n-dimensional Euclidean space Rrt is called a "random
field". Assume throughout that E\Z(t)\2 is finite and that

(0.1) £ |Z(ί + δ)-Z(0 | 2 -*0 as δ^O.

Let Z*(t) denote the complex conjugate of Z(t). The functions EZ(t) -
m(t) and K(tu h) = E(Z(tλ)Z*(t2))- m{tλ)m*{t2) are called the "mean"
and the "covariance" functions of Z(ί) respectively.

The class of covariance functions K(Kn) is the same as that of the
nonnegative definite functions in Rn. The random field Z(ί) is called
"isotropic" if K(tu t2) depends only on the length | tλ - t2\ of the difference
ίi - t2. The Bochner-Khinchin theorem for nonnegative definite func-
tions gives the spectral representation for isotropic covariance functions
in Rπ. This leads to the following theorem (see [3] p. 39).
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THEOREM. For R(t) to be the covariance function of an isotropic
n-dimensional random field satisfying (0.1), it is necessary and sufficient
that

where G(λ) is bounded, nondecreasing function such that G(0) = 0;
G(oo)= R(O) and Jm{x) is the Bessel function of the first kind of order
m. Namely,

(x/2)2

= Σ (-

This paper considers a subclass Vn of the isotropic covariance
functions in Rn. The classes Vn arise naturally as the covariance
functions of the integrated (n 4- l)-dimensional Gaussian white
noise. Thus every covariance function given, comes with a representa-
tion of the associated isotropic Gaussian random field. Such representa-
tions can be used for simulation purposes.

Berman in his paper [1] gives a very interesting representation of
covariance functions in Rj with absolutely continuous (abs. cont.) spectral
distribution. The associated stationary Gaussian process is the integral of
a two dimensional Gaussian white noise over appropriate sets. His
techniques and results were used by Mittal and Ylvisaker [6] to generate
a class of covariance functions in R^ that is similar to Vn.

The next section contains the statements of the main results. The
proofs of these are achieved by a series of preliminary lemmas contained
in §2. Section 3 proves the main results and the corollaries. The special
case of n = 2 is looked at in the last short section.

NOTATION. In the following, interpret Σ?""1 to be zero and the
products 2 4 (n - 3) or 2 4 (n - 2) to be 1 if n = 3 or n = 2
respectively. A function h(x) is o(l,°°) means h(x)->0 as x -^™ and it is
o(l,0) means h(x)-^0 as x—>0. h(k) is the fcth derivative of h with

1. S t a t e m e n t s of r e s u l t s . Let {/(*), x^O} be a density

function, that i s , / ( x ) ^ 0 and | f(x)dx = 1. Then g(x) = f(\x \)/S]xl7Γ is
Jo

a density function in Rn where SM,β = surface area of a sphere with radius
u intersected by a right circular cone of angle θ in Rn. Let W(dy) be the
(n + l)-dimensional Gaussian white noise, that is, for any Borel sets B
and C in Rπ+1, W(B) and W(C) are mean zero Gaussian variables with
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variance of W(B) = volume of B and E(W(B)W(C)) = volume of
(B Π C). Define the sets A, as {(*,-• x π , z ) E R π x[0,^)|g(jc + ί ) > z }
where x = (xu , xn) and ί E Rπ. Define

(1.1) X ( ί ) = ί W(dy).
J A,

X(t) is an isotropic Gaussian field in Rn. In addition, assume that
f(x)/xn~ι is nonincreasing or that g(x) is nonincreasing in |JC| . The
covariance function of X(t) can be computed as follows. Let 11 \ = t.

r(t) = E(X(0)X(t)) = volume of (A, Π Ao).

Let L be the n-dimensional plane orthogonal to the line joining t to the
origin. The volume of A, Π Ao is symmetrically divided into halves by
L. For computation of the volume on the side of L that contains t,
notice that it is bounded by Rn and the function g. Now g takes
constant values f(\x\)S\x\tΊr on n-dimensional spheres of radius |JC|
centered at the origin. The surface area of the part of this sphere on the
side of L that contains t is S]x^θ where θ = arcos (t/2 \x | ) . Thus

r(/) = 2 Γ f^f(\
Jt/2 d\x\,π

Put I JC I = JC and change to polar coordinates to evaluate SXtθ. Thus

(1.2) r(t) = - Γ (Γ ύnn-2adaf{x)dx
C Jt/2 \Jθ

where c = sin" 2ada. The following theorem gives necessary and
Jo

sufficient conditions for (1.2) to be an isotropic covariance function in odd
dimensional spaces.

THEOREM 1. Let n ^ 3 be an odd integer.
(A) For every density function f on [0,o°) such that f(x)/xn~ι is

nonincreasing, r(t) given by (1.2) is an isotropic covariance function in
Rn. It satisfies

(a) r(t) is continuous, convex such thatr(t) = o(l,°°) and r(0) = 1.
(b) r(k)(ί) are abs. cont. on [ e , ^ ) V 6 > 0 and tkr{k\t) is o(l,oo) and

o(l,0) for k = l ,2 , , ( n - l ) / 2 .

(C) An-\)I2 ] ^j \i r ' ( 0 r (0 ί

is nonnegative and nonincreasing in t.
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(B) Let r(t) satisfy (a), (b) and (c) above. Then f(t) given by

n-3)/2 n (n + l)/2 r(((n + l)/2)-i)/*\

Σ ^—^—ω-'(("+i

is a density function on [0, oo) such that f(x)/xn ι is nonincreasing and r(t)
is an isotropic covariance function in Rn given by (1.2) for this f.

The constants ak are defined as

^ ai-2 = ( - l ) f c l l 3 5 (21k - 5 ) , and

( 1 4 ) ίfc + ί - 2 V
(2i)! (fc — i — 2)! v '

for k = 3,4, and # f = 0 otherwise.
The following theorem of Pόlya can be viewed as a special case for

n = 1 of Theorem 1 with suitable changes in the notation.

THEOREM (Pόlya). Let r(t) be a real-valued and continuous func-
tion which is defined for all real t and which satisfies the following
conditions:

(i) r ( 0 ) = l ,

(ii) r(-ί)=r(0,
(iii) r(t) convex for t > 0 ,
(iv) lt^x r(t) = 0.

Then r(t) is the characteristic function of an absolutely continuous
distribution F(x).

The next theorem gives characterization of the class Vn of
covariance functions given by (1.2) for n = 2fc, fc = 1,2, .

THEOREM 2. Let n ^ 2 be an even integer.

(A) For every density function f on [0,oo) such that f(x)/xn~ι is
nonincreasing, r(t) given by (1.2) is an isotropic covariance function in
Rn. It satisfies

(a) r(t) is continuous convex such thatr(t) = o(l,o°) andr(0) - 1.
(b) r{k\t) is abs. cont. on [6,°°) V e > 0 and r{k)(t)tk is o(l,oo) a n d

c) (-ly^i^
V ' dtdt\ it un'2Vu2-t2

is nonnegative and nonincreasing in t where



A CLASS OF ISOTROPIC COVARIANCE FUNCTIONS 521

(- l)"/2]8(tι) = ( - 1)"/2
 (Γ(Π/2>(M) - ' "If ^V r^n-'Xu

is nonnegative.
(B) Let r(t) satisfy (a), (b) and (c). Then f(t) given by

PC) .
2 4 (n - 2)

is a density function on [0, <*>) such thatf(x)/x π~1 /s nonincreasing and r(t)
is an isotropic covariance function in Rn given by (1.2) for this f

Corollary 1 gives a recursive property of the classes Vn similar to
that of Kn given in Matern ([5]; 2.3.12). Corollary 2 shows that Vn is
nonincreasing in n and Corollary 3 proves that Vn are closed under
mixtures. The exact statements are as follows.

COROLLARY 1. // r(t) is in the class Vn for the associated density
function /, then ρ(t) defined as

n - 3 cn_2

belongs to the class Vn_2 for the same density function f and n ^ 4.

cn = sin" αdα.
Jo

COROLLARY 2. (1) Lei r(t) be in Vm n ^ 3 and / fee the associated
density function. Then r E Vn-λ and the associated density function is
given by

(1.7) g(r/2) = 2 η ( n ) ^ - ' tίίl.

where η(n) = 3 5 (n - 2)/(2 4 (n - 3)) i/ n ί5 odd and η(n) =
3 5 (n - 3)/(2 4 (n - 4)) if n is even.

(2) // r /s in K for n ^ 4 and / is f/ie associated density function then
r belongs to Vn-2 for the density function g such that

(1-8) g(t/2) = - ^ r - f"
Z J t/2

Λc.

COROLLARY 3. Let F be a distribution function with F(0+) = 0 and r

belongs to Vn then w(t) = r(t/a)dF(a) is a covariance function in Vnfor
Jo
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Γ oo

the density function g(x)= f(x/a)- a~ιdF(a); f being the density
Jo

function of r.

The class V2 is given particular attention, especially its relation with
the class $F of Hajek and Zubrzycki [2]. p E & if and only if there exists
a distribution function G with G(0+) = 0 such that

(1.9)

where

(1.10) γ(α) = - [ a r c o s κ - u ( l - w 2 ) 1 / 2 ] O i u ^ l

= 0 u > l .

Thus

(l.ii) y » - ^ ' ( 1 _ ^ Γ o ^ w < i

- 0 K > 1 .

The following is Theorem 5,1 in [2].

THEOREM (Hajek, Zubrzycki). The correlation functions ρ(t) given
by (1.9) are characterized by the following properties

(i) ρ(t) is continuous, convex with p(^) = 0
(1.12) (ii) p'(t) is abs. cont.

(iii) I (1/u2)y"(t /u)ρ"(u)du is a nonincreasing function of t.
Jo

In the last section the following proposition is proved.

PROPOSITION. (1) The covariance function y(u) given by (1.10)
belongs to V2 for the associated density function f(x) = 8x 0 ̂  x ^ 1/2.

(2) Every covariance function belonging to Vn satisfies (iii) of the
above theorem.

Thus V2 = &.

2. Preliminary l emmas . The following lemmas will help to
avoid repetitions in the proofs of the Theorems 1 and 2.

LEMMA 1. Let f(x) be a density function on [0,°°) such that
f(x)/xn~ι is nonincreasing. Define the functions for K — 1,2, , [n/2] and
ί > 0 ,
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l)κί*-'(n - 3)(n - 5) - (n - 2K + 1)

X

and Iκ (0) = lt,^0 Iκ (ί). The product (n - 3) (n - 2K + 1) is interpreted to
be 1 for either K = 1 or n -2,3. Then Iκ (t) is bounded o n [ ί , » ) V e > 0 ,

(2-2) JtIκ(t

/orK = l,2, ,[(n-2)/2],

(2.3) ί" Iκ (u )du = - JK_,(u ) - (K - 2) Γ ^ f ^

/or iC = 2,3, , [n/2] and

(2.4) tκlκ(t) is o(l, oo) and o(l,0)

/or K = 1,2, , [n/2]. Noί/ce α/so Λαί /κ(ί) has alternate signs for values
ofK, with I{(t) being negative.

Proof. The uniform convergence on [e, <») of the integral in the
R.H.S. of (2.1) is obvious for all K such that n - 2K - 1 > - 1. Suppose
n - 2K -1= - 1, i.e., i ί = n/2, then the integral is

Γ f(χ) .Λ_dx= ί<1/

J,/2 Vx2-(ί/2)2 x"-2 J,n
VJC - ί/2 Vx + ί/2 X""2

,/2)+1 χ- 2 Vx 2 -( ί/2) 2

The second integral in the R.H.S. above is uniformly convergent since
n ^ 2. Now, / cannot be unbounded on [ί/2, (ί/2) + 1] since f(x)/xn~' is
nonincreasing. Hence the first part is uniformly convergent. By taking the
derivatives under the integral sign, (2.2) follows.
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The interchange of the order of the integration is justified by Fubini's
theorem. The R.H.S. above is equal to

u Λ V Λ T ) ) ) \ d x
2 M

apart from a constant provided Kj4 1 and (n + l)/2> K. The above is

The order of the integration in the second term is changed again by
Fubini's theorem. Notice that for K = 2, the second term is taken to be
zero. Substituting values, (2.3) is obtained.

Lastly, notice that f(x)/xn~1 nonincreasing implies that

xf2

and xf(x) = 0(1,0) and 0(1,00). For proving (2.4), we use the fact that

tκlκ(t)^\ f(x)dx for all t and K^(n-l)/2. Thus tκlκ(t) is
it 12

0 (1,00). For t small, choose λ > t /2 so small that xf{x ) ^ β V 0 < J c < λ .
Then

{n-2K-\)l2

" €t2K λ Jf/2 x2K-Wx2-(t/2f + A2*-Vλ2-(ί/2? Jλ

 / ( X ) ^ '

Substituting x = (ί/2) sec ^ in the first integral in the R.H.S. above

ί*/*(0 = o(l,0).

LEMMA 2. Let f be a density function on [0,oo) such that f(x)/xn~ι is
nonincreasing and

(2.5) r(t) = - Γ (Γ sinn2ada) f(x)dx
C Jf/2 \ Jo /

where c and θ are defined at (1.2). Then



A CLASS OF ISOTROPIC COVARIANCE FUNCTIONS 525

(2.6)

for K = 1,2, , [n/2]. The constants af satisfy the recursive relations

(i) af+x = af+K-l

(2.7) (ii) af+ι = af-(K + i-2)af-ί for i = 2,3, , ( K - 2 )

(iii) α £ { = - ( 2 X - 3 ) a £ _ 2

/or X = 3,4, ,[n/2] and a\ = a] = 0; a\=l.

Proof f(x)lxn~λ nonincreasing implies that f(x) is bounded on
[ί/2;(ί/2)+l]. Hence the integral in the R.H.S. of (2.5) is uniformly
convergent for K = 1,2, , [n/2]. Differentiating under the integral sign
would verify (2.6). Thus

The constants αf+1 for i = 1,2, ,(K - 1) are defined such that the
R.H.S. above is

Some algebra will give (2.7).

LEMMA 3. The constants af of Lemma 2 are given by

ft) a f = ( * - i > 2 ( * - 2 >

(2.8) (ii) α^_2 = ( - l ) κ - l 3 5 (2K-5)=-αί[ .3

for K = 3,4,-•• .

Proof. Direct computations give a\- a\ = 0 and a\=\. Using (2.7)
(i) and (iii), (2.8) (i) and (ii) are obtained. Now first (2.8) (iii) for i = 2 is
verified, that is,

( 2 .9)

Since a\= - 3 . By (2.7) (iii),
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= -3α?-4αl (K-l)αf"1.

Substituting the values for a{, the R.H.S. becomes

-1/2 2 /(/ + l)(/ + 2)
1 = 1

-2)2 , 3(K-3)(K-2)(2K-5)

, 2(K-3)(K-2))

Simplifying, (2.9) is verified. Now, assume that (2.8, iii) is true for
/ = 2,3, , (j - 1). To show it for /, i.e.,

(2.10) af = ' J ' "J 2

By (2.7 ii)

= αf "2αf "2 -(K + j - 4)αf_l2 - (/C + / - 3)αf-l'.

= - (2/ - l ) f l # - 2/αjί? (K + j - 3)αf_l

Using (2.8 iii) for i = / - 1,

(2/ -2)!/!

(See e.g., [4], 0. 151). Simple substitution verifies α£_2= - α ^

LEMMA 4. Lei r(t) be as in Lemma 2. Then (1) r(κ)(t) are abs.
cont. on [6, oo) V e > 0 /or K = 0,1, , [n/2] and

(2) rV*>(ί) is o(l,oo) and o(l,0) for K = 1,2, , [n/2].
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Proof.

Interchanging the order of integration by Fubini's theorem and substitut-
ing u/(2x) = cosα, the R.H.S. above is seen to be equal to - r{t). The
abs. continuity of r{t) follows by definition. Suppose r(κ)(t) is abs. cont.
for K = 0,1, •••,(/-!)• Then rO)(ί) will be if ru+1\t) exists and is
integrable. Looking at (2.6) for K = j + 1, it is true if Ij+ί(t) is integrable.
Lemma 1, (2.3) gives the result for y + l^[n/2] . If n is odd then
[n/2] = (n- l)/2 and

r((n-l)/2)^ _ ^ &Z_ r (n-l-2, )/2^

)tl2 X

The first part in the R.H.S. above involves r(K\t) for K =
1,2, , (n - 3)/2 and the second part is abs. cont. by definition. If n is
even then [n/2] = n/2. By (2.6) for K = n/2,

(n/2)-2 _ nil ( — Λ \n/l-l)n/2 2-4 (n-2)
)n-2

ϊ
J tr

)t/2 xn-Wx2-(t/2)2

and it only needs to be shown that

faίΛ = ^(π/2)-l

is abs. cont. Define

f(χ) i
,/2 Vjc 2 (ί/2) 2

r/2 Γ 1

4 JI/2 Vx2-(ί/2)2

It will be shown that I h'(u)du = - /ι(ί) for all t >0. Consider first

2x W12
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by Fubini's theorem. The R.H.S. above is equal to

(i/2)2 + (f - l ) j*V/2)-2Vx2-(u/2)2

= r<"'2>- Γ V * 2 -
J ί/2

using Fubini's theorem again. (If n = 2, the second term above is taken
to be zero.) Finally, integrating by parts and noticing xf(x) = o{\, °°), the
result is obtained.

Now, r\t) = J,(f) and (2) follows for K = 1 by (2.4). Suppose (2)
holds for K = ί,2, •-,(j - 1). Then

and (2) follows for K = j by the above assumption and (2.4) provided

LEMMA 5. Let r(t) be as in Lemma 2. Then

(2.11) Γ uκ-χ iΣ ^7 r{K~ι)(u)- r(K\u)\ du = - aκl\
Jo I ϊ = i U )

for K = 2,3, , [(n + l)/2]. The constants a? are given in Lemma 2 and
3.

Proof Using Lemma 3, first it will be verified that

(2.12) (K-i- l)α?+1 = (K + i - l)af

for i = 1,2, , (K - 2) and K = 2,3, , [(n + l)/2]. When i = 1, (2.12)
states that (K - 2)αf+1 = Kaf, which is true in view of (2.7 i). By (2.8 iii),
(2.12) becomes

(K-i-:
i)! (X - i - 1)! ( K + ' 1 } (2/)! (K-i- 2)!

for i =2,3, ,(K - 2), which is an identity.
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Write Si(u) = Σ?jjιa?uκ-1-ir<κ-iXu). Then the L.H.S. in (2.11) is

Γ uκ-ιr™{u)du + [* Sx(μ)du
Jo Jo

= (aϊ+K-l)Γ r(K-ι\u)uκ-2du + Γ S2(u)du.
Jo Jo

Notice r(K)(u) are abs. cont. and tκr(K)(u) = o (1, oo) and 0 (1,0) by part (2) of
the last lemma for K = 0,1, , [(n - l)/2]. Successive integrations and
use of (2.12) would evaluate the above to be

Jo

Hence the result.

3. Proof of the theorems and related results. The
functions being considered are of the type

(3.1) r(t) = - Γ ((' sinn-2ada) f(x)dx
C Jt/2 \Jθ I

where θ = arcos(ί/2x) and c = I sinn"2αdo:.
Jo

Proof of Theorem 1. Note that n g 3 is an odd integer.

Part A. f(x) is a density function on [0,°°) such that f(x)/xn~1 is
nonincreasing and xf(x) = 0(1,0). (a), (b) and (c) in the statement of
Theorem 1 from the last section must be proved.

Since n ̂  3, the first two derivatives always exist, the first is negative
and the second positive on [β, α>) V e > 0. Also n odd implies [(n - l)/2] =
(n - l)/2. Lemma 4 and the following will show (b). Differentiating (2.6)
for K ={n - l)/2,

(π-3V2 (π + l)/2 r(n + l-2i)f2(t\
fJ O\ r((n + l)/2)(f\ — V ί ί i — \LL

yό.l) ru \ί j - 2lf Ji

/ ( - l ) ( n l ) / 2 r ( n - 3 ) / 2 (n - 3) (n - 5) - - - 4 - 2

V c 4(π-3)/2

„ /q/2) 1
2 2
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Thus t<n+mr«n+ι™(t) is o ( l , 0) if rin+ι-2i)/2(t)tin^-2i)/2 are for / =

l,2, ,(n-3)/2 andίf(ί)=o(l,0).
Lastly, the fact that the transform r(t) is invertible is obvious from

(3.2). It is equivalent to

(3-3) f(t/2) = {
-3)/2 (π + l)/2 r(n + l-2i)

Σ ^ '-γ,

The quantity in (c) is in fact f(t/2)/tn~ι apart from a positive constant and
hence nonnegative and nonincreasing by assumption.

Part B. r satisfies (a), (b) and (c). It needs to be shown that r is
given by (3.1) for / given by (3.3) and / is a density function on [0, °o) such
that f(x)/xn~ι is nonincreasing.

Since (3.3) is equivalent to (3.2) and r(κ)(t) are abs. cont. for
X = 0,1,2, , (n - l)/2, successive integrations will reduce (3.2) to (3.1).
f(x)/xn~ι nonincreasing follows easily from (c). It remains to be shown
that / is a density function.

r /__ iVn + l

= ™2 4 ( n - 3 )

c ( - l ) w + 1 l - 3 5-- ( n - 2 )
2 4 ( n - 3 )

((n + l)/2)/ \ I J
Γ \U ) ί *̂̂ *

(2.11) of Lemma 5

by Lemma 3

= 2

since n is odd and

c = 2 ί sin"-Wα = 2 (2 4 (n - 3))/(3 5 (n - 2)).

This completes the proof of Theorem 1.

Proof of Theorem 2. Now n ^ 2 is an even integer.

Part A. r(t) is defined by (3.1) where / is a density function with
the usual assumptions. It will be shown that (a), (b) and (c) of the
statement of Theorem 2 in the last section are satisfied.
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The function r(t) is at least twice differentiable. r'(ί) = /,(ί) ̂  0. If
n ^ 4, r"(t) = I2(t) ^ 0. Also if n = 2

r»(t) = J- Γ r

Γ ( 0 4irJ l f l y/x>-

and r is convex. Lemma 4 implies (b). To show (c), again it is verified
that the transform r(t) is invertible and the quantity in (c) is
apart from a positive constant. (2.6) for K = n/2 gives

(π/2)-2 Λ π/2

(3.4) r<"'2>(f)= I ^ r r«"β™(ί)

+ ( - i r 2 4 ( n - 2 ) f - f(χ)

π2"-2 J,/2 jc'

This is equivalent to

ί 3 5 ) r ft*) , x = (-ir/2 2-2 ^1 ^ J u /Ju/2 x V x - ( « / 2 Γ 2 4 (n-2)

where

(n/2)-2 nil

Notice that (- 1)" / 2 /3(M)^0. By Fubini's theorem

Ί, u2V\-(ί/uγlul2 I /u"
\ \2x\

I °° f I Y ^ ^ Y I /7 JiI J yΛ J i-iΛ, I %Λ\Λ j

~ J,/2 X - J, uV"^"?V(2jt) 2-u 2 X

== τr/2 I M_i αX.

Jί/2 X

Thus

— ί I / αU — τr/2 I αX.
2 4 ( n - 2 ) J, M("/2)+'Vl-(ί/M

Taking derivatives and simplifying,
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Γ ί ( n ^ ~ 2 nn/2

Pα/ΐ R r satisfies (a), (b), (c) of the statement of Theorem 2 of last
section. It needs to be shown that r is given by (3.1) for / given by (3.6)
and / is a density function on [0,o°). The fact that f(x)/xn~ι is nonnega-
tive and nonincreasing is obvious from (c).

First,

The last equality follows in view of (c) and using (b) to show that

J, wn / 2vV-ί2

is 0(1,0) and 0(l,°o). Since (- l)n/2β(u) is nonnegative, by using
Fubini's theorem in the above the integral in the R.H.S. becomes

v ' I . . π / 2 . \ I \ / ij2 — t

since

n - 2 2f
Jo

dt = u
n-1 3

(interpret the R.H.S. to be u if n = 2). By (2.12) of Lemma 5,

β(u)u(n/2)ιdu = α^2)-ί Substituting in (3.7), the total mass of / is
Jo
observed to be one.

To show that r is given by (3.1), it is sufficient to establish the
equality (3.4), in view of the abs. continuity of r(K\ K = 0,1, , n/2. But
(3.4) is equivalent to (3.5). Hence (3.5) will be established from
(3.6). Write Wo = ( - l) ( n / 2 ) + 1 2 4 (n - 2)/2. Thus
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Get β(u) from (3.8) by the same inversion method used before.

) , u2λ/u2-t2 Ju JC"/

- « 2

, xnl2 J, uVu2- t2λ/x2- u dχ

2 J,
Thus

, u2Vu2-r

= - W( ϊ f(x/2)Vx2-t2

dx.

Taking derivatives on both sides and simplifying, (3.5)
follows. This completes the proof of Theorem 2.

Proof of Corollary 1. For r €Ξ Vm it needs to be shown that

(3.9) (

belongs to the class Vn_2 for all n ̂  4 ( cn = sin" 2ada) and that p and r
V Jo /

have the same associated density function.

(3.10) r{t) = — Γ f f si
Cn Jt/2 \Jθ

where θ = arcos(ί/2x). Thus

Now

sinn 2αdα: = sin""3α: sin ada
Jo Jo

= -cos0(l-cos 2 0) ( "- 3 ) / 2 +(n-3) Γ sinn~4ada- (n - 3) Γsin"-2mία.
Jo Jo
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Transferring the third term in the R.H.S. to L.H.S.,

in - 2) j o sin-'αiα = (π - 3) [ sin^ada - £ (l - (Yχ
)

Thus

r{t) =

Substituting,

(
r/2 \Jθ

The result follows from the definition of the classes Vn.

Proof of Corollary 2. The objective is to show that Vn D Vn-λ D .
Let r be given by (3.10). Suppose n g 3 is odd; then by Theorem 1, part
A, the conditions (a) and (b) of Theorem 2 will be satisfied by r, for
m = n - 1. It remains to be proved that

(3.11) (- 1 }™ -̂  f, f" /W—- <*u)

is nonnegative and nonincreasing where

(m/2)-2 n mil

- £ ^ V r(m-2i)n(u)
i = \ M

is such that ( - l)ml2β(u)^0. By (2.6) for K = n - 1,

/ 3 ( M ) = Vy lM

("-3)/2 f"
Ju/2

where

WΊ =

Therefore

J, Mm / 2Vw

2-ί 2

= Wi I •^^2 arcos
J t/2 %

, uVu2-t2

2x~

= dx
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The quantity in (3.11) is thus

(3.12) 3 - 5 - - ( n - 3 ) Γ /(*) dx.
2 - 2 J,/

 n-2V(2)2t2

The derivative under the integral sign in the last step is valid because of
the uniform convergence of the integral in (3.12). Next it will be shown
that (3.12) is nonincreasing in t. Let δ >0,

f* /ω dx _ r
J,/2 χ-2V(2x)2-t2 J ( ( + δ ) / 2

/(*) dx

)2x"-2V(2x)2-(t

iίiί—*
jc"-2V(2x)2-ί2

J,,+8),2 x"-2 {V(2x)2-(t+Ίf ~ V(2jc)2-ί2) dX

But

In χ-W(2x)2-t2dX \,n x^d\ 4 )

Note that f(x)/xn~ι is nonincreasing. Also

J ( 1 + a ) / 2 j c - 2 l
[ 7V(2jc)2-(ί + δ)2 V(2x) 2 -ί 2

\3/2

(2ίδ

Substituting, (3.12) is nonincreasing. By part B of Theorem 2, r must
belong to Vn-X. The associated density function in Rn_! will be given by
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= 2LJH. 3-5 - - ( n - 2 ) Γ00

2n~2 2 4 ( n - 3 ) J f / 2 x n -

If n is even, then m = n - 1 is odd and by Theorem 2 part A, the
conditions (a) and (b) of Theorem 1 are satisfied for m. It remains to
verify that

— Λ\(m-l)/2 f(m-3)/2

t}lm { Σ
( Λ \ ( ) f ( m - 3 ) / 2

(3-13) < t}lm { Σ

is nonnegative and nonincreasing. But by (2.6) for K = n/2, the quan-
tity in (3.13) is

2 m (-l)n(n-(n-3) 5 3 f-

The rest of the proof is similar to the first part.

Proof of Corollary 3. Let F be a distribution function with F(0+) =
0 and let

7(0 = j [I \ (J sin-2αdα

Making the transformation xa = v,

-Πcί (I -

where θ = arcos(ί/2jc). Define g(x) = ί f(x/α)(l/α)dF(α). Then

g(x)^0,and

x"-1 Jo (jc/α)""1 α" α yα)

Also

is nonincreasing in JC.
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4. The two dimensional case. Let 9 be Hajek and Zub-
rzycki's class of planar covariance functions. The class is generated by the
covariance function

(4.1) γ ( u ) = — [ a r c o s u - u ( ί - u ψ 2 ] O ^ u ^ l

= 0 ii > 1 .

Proof of the Proposition. (1) γ(u) satisfies the requirements of part
B of Theorem 2. Hence γ E V2 and the associated density function / is
such that

„ m 8JC ίί ί Γ1 V I - M
/(x/2) = — \x\ —7==

π ax i J x M V M —

π dx 1 \2JC 2 / J — —

= 4x 0 ̂  x ^ 1.

(2) r G V2, hence

The proof will be complete if

< 4 2 >

is a nonincreasing function of ί, where γ"(u) is given by (1.11). The
quantity in (4.2) is

1 . _J_ Γ" du r d(-f(x)/x)
77 4 π J , uVu2-t2 h,2 Vx2-(u/2)2

2τr Jί/2 x J

Note that

(4.3) dF(a) = I{f {a 12) - (a/2) f (a/2)).
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Hajek and Zubrzycki [2] show that the covariance functions e~ct

and (2/V2ττ) ί e~u2/2du belong to & and hence to V2. They also have

example of an isotropic covariance function that does not belong to 3*.
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