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RELATIONS BETWEEN CONVERGENCE OF SERIES
AND CONVERGENCE OF SEQUENCES

D. LANDERS AND L. ROGGE

Let A = (α )̂neN be a sequence of real numbers. For ξ E
(0, 1) define

S n ( ξ , A ) : = Σ a k , n G N
k=[nξ)+\

where [x] is the greatest integer less than or equal to x. If no
ambiguity can arise we write Sn(ξ) instead of Sn(ξ,A). In the
theory of regularly varying sequences the problem arose of
concluding from the convergence of the sequence Sn(ξ), n EN,
for all ξ in an appropriate set K C (0, 1) of real numbers, that the
sequence αn, n E N , converges to zero. In this paper we gvve some
positive results for the case that K consists of two elements.

In [3] it was shown that such a conclusion is not possible if K consists
only of a single rational number and that the conclusion is possible if
K = {ξ, 1 - ξ} with ξ E (0, 1) irrational. The question whether such a
conclusion is possible if K consists of one irrational or all rational
numbers was answered negatively in [4].

DEFINITION 1. If an E {0, 1}, n E N , and an = 1 for infinitely many

n E N , then we call A: = (an)nEN a 0-1 sequence.

Let A = (α n) n G N be a sequence of real numbers such that Sn(ξuA),
n E N , and Sn(ξ2, A), n E N , are convergent for different ξu ξ2 E (0, 1).
Let a = liminfnGNαn and β = limsupn G Nαn. Since a = β implies
limnGN an = 0 — as otherwise limnGN | Sn (ξu A) j = ^ — the Lemma below
shows that only the following three cases are possible:

(I) limnGN an = 0

(II) a < β and each γE(a,β) is an accumulation point of am

n E N

(III) a < β and there exists a 0-1 sequence B such that Sn(ξh B),

n E N converges for / = 1,2.

LEMMA 2. Let A = (an)n(ΞN be a sequence of real numbers such that

not every point between a: = liminfn G Nαn and β: = limsupn G Nαn is an

accumulation point of the sequence an, n E N . // ξt E (0, 1), i = 1, , /c,

and Sn(ξnA), n E N , is convergent for i = 1, , k, then there exists a 0-1

sequence B = (bn)nEN, such that Sn(ξιyB), n E N , is convergent for i =

1, •••,*.
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Proof. Since not every point between a and β is an accumulation
point of the sequence am n E N, there exist γ, δ with a < γ < 8 < β such
that αng: (γ, δ) for all n E N. Since we can consider the sequence (α n ) π G N

or the sequence ( - an)n(ΞN, we may w.l.g. assume that γ ̂ 0 .
Let bn = 0 if αM g γ and 6Λ = 1 if αn g δ. Then £ = (6n)Λ e N is a 0-1

sequence. According to our assumption there exists n0 E N such that

( + ) \Sn+ι(ξhA)-Sn(ξi9A)\<8-γ if n ̂  n0, / = l, ,fc.

Since

rαn + 1, if [n6] = [(n
S n + 1 (6,A)-S π (f i ,A) =

I απ+1 - α[nί(]+1, otherwise

we obtain from ( + ) that Sπ+1(£ , £ ) = Sn(ξh B) for all n g n0, i = 1, , fc,
whence 5n(^, β ) , n G N , converges for i = 1, , λ:.

Now we shall prove that for most pairs of real numbers — more
exactly for all ξu ξ2 E (0, 1) with ξ\ ̂  ξl for all r, 5 E N — case (III) cannot
occur.

THEOREM 3. Let am n E N, fee α sequence of real numbers and
ξu ξ2 E (0, 1) 5wc/ι ί/iαί Sn(ξi), n E N, /5 convergent for i = 1,2.

Assume that:

(*) £ ϊ ^ # /or α// r , s G N .

αn, n E N, converges to zero or every real number between
lim infπeN an and lim supnGN an is an accumulation point of an, n E N.

Proof Assume that the assertion is false.
Hence according to Lemma 2 we may assume that an, n E N, is a 0-1

sequence. Let ξx < ξ2 and put ηr. = l/£ .
Then there exists z > 1 with ηx = ηl We have to prove that z is

rational. Since S n(£), n £ N , converges for / = 1,2 and αn, n E N, is a 0-1
sequence, there exists n0 E N with

(1) S. (6 )=£•,(£) for n i ^ 0 (/ = 1,2)

(2) n o ( l - τ ? 2

1 / 3 0 > 2 / ( τ / 2 - l )

where /: = limπ e N 5n(^2) E N.
Let Nλ: = {n E N: π > n0 and αn = 1} and let (α): = min{n E N: a g

n} for n ^ l .
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Since (t-η) = inf{n E N: [n 1/η] = ί}, ί £ N , η > 1, we have

{t'η) \η) " S(t'η)~ι \η) = a < i '1»>~ f l i TJ

and hence we obtain from (1) that

(3) t E Nλ implies (t TJ. ) E Ni for i = 1,2.

Define inductively for ί E N b TJ > 1

and

According to (3) we directly obtain that

(4) t E Ni implies τπ(ί, η,-) E ^ for n E N and i = 1,2.

Since / = Sn(£2)E N for all n^ n0 according to (1), there exist exactly /
elements tx E N1? i = 1, •,/ with

(5) n0 < ίi < ί2 < < ίy ^ <n0 τj2).

Since τ/ 2 >l, (5) implies

(6) τ"(n0, τj2) < τ"(ί 1 ? η2) < < τ"(ίy, τ/2) ^ τ n + 1 (n 0 ? η2)

for all n E N . Now we obtain from relations (1), (4), (5) and (6) that

(7) Nx = {τ"(fe r/2): / = 1, •,/, n E N U{0}}.

As by (4) τπ(ί 1 ? rfi)GNi, according to (7) for each n E N there exist
/c(n)EN, /(n).E{l, •••,/} with

(8) τ-(ί1,τ ϊ l)=τk<»>(ί i ( l l ),i ? 2).

By induction it is easily proved that

(9) I T- (ί, η ) - tη - I ̂  1 + η + + η - 1 = (η » - l)/(η - 1)

for ί E N and n > 1.

Since /, < τ/2/i for / = !,•• •,/ (see (5)) there exist x-% E [0,1] with
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ti = t^x

2\ Then jt! = 0 < x2 < < Xj < 1 = : xi+ί. Hence there exists
/£{1, •••,/} with

(10) J C / + . - X I ^ T .

Let us now assume that z is irrational. According to ([2], p. 69) there
exists an element m E N with

1 2
(11) Xι + XT < mz - [mz] < jt, 4- r : .

Since τ/i = 7/2 we obtain from (8) and (9) that

and hence

2
\t~~rnz_t ^k(m)\ < max(mz,k(m).

Now we distinguish four cases
(i) If mz < k(m) then mz - /c(m)g - 1/3/ according to (10) and

(11). Hence we obtain from (5) and (2) that

(i-τί2-1/30>-rτ172 1

which contradicts (12).
In the following three cases we assume that mz > k(m).
(ii) Let i(m)^ I: As mz -k(m)^xι

Jt 1/3/ by (11) we obtain from
(5) and (2) that

which contradicts (12).
(iii) Let i(m)>l and [mz] = fc(m): Then mz - fc(m)S x/+1 - 1/3/

by (10) and (11), and we obtain from (5) and (2) that

U - U{ V2-I

which contradicts (12).
(iv) If i(m)>l and [mz]>fc(w), then mz - Jk(w)§ 1 + 1/3/ by

(11), and we obtain from (5) and (2)
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\h- w / ^ — |§= u-

which contradicts (12).
Thus we have shown that the assumption of z being irrational leads

to a contradiction.
If r, s E N denote by (r, s) the greatest common divisor of r and s.
The following remark shows that for two rational numbers condition

(*) of Theorem 3 is nearly always fulfilled.

REMARK 4. If ξuξ2ε(0,l) are rational numbers and ξ[= ξ2 for
r, 5 E N with (r, s) = 1 then there exist ί, w E N such that ξx = (t/u)s and

Proof. Let w.l.g. ξi = li/mi where lh mx E N and (/,, m, ) = l for
/ = 1,2. If £5= ̂ 2 i.e. / ; m | = /^m;, then l\ = ls

2 and m[= ms

2.
We may choose r and 5 such that (r, 5) = 1. Then by representation

of /f, m, as a product of prime numbers we obtain ί , « E N with

ts = lu V = /2 and us = mu ur = m2.

According to Theorem 3 Cases I and II can occur. According to
Example 2 of [4] it is not possible to exclude Case II. Even if Sn(ξ,A),
MEN, converges for each rational number ξ E (0,1) the sequence
αn, n E N, need not converge to zero.

We remark that the following questions remain unsolved:
(1) If ξx and ξ2 are two different irrational numbers, does the

convergence of Sn(ξhA), n E N, (for i = l,2) imply that α«,nEN,
converges to zero?

(2) Give an exact characterization of those pairs of rational num-
bers ξuξ2 for which only Case I or II is possible; is for instance the
condition (*) of Theorem 3 such an exact characterization?
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