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RELATIONS BETWEEN CONVERGENCE OF SERIES
AND CONVERGENCE OF SEQUENCES

D. LANDERS AND L. ROGGE

Let A = (a.).ex be a sequence of real numbers. For ¢ €
(0, 1) define

S.(&EA):= D a, n€N
k=[n£]+1
where [x] is the greatest integer less than or equal to x. If no
ambiguity can arise we write S,(¢) instead of S.({ A). In the
theory of regularly varying sequences the problem arose of
concluding from the convergence of the sequence S.(¢), n €N,
for all £ in an appropriate set K C (0, 1) of real numbers, that the
sequence a,, n € N, converges {o zero. In this paper we give some
positive results for the case that K consists of two elements.

In [3] it was shown that such a conclusion is not possible if K consists
only of a single rational number and that the conclusion is possible if
K ={¢1—- ¢} with £ €(0, 1) irrational. The question whether such a
conclusion is possible if K consists of one irrational or all rational
numbers was answered negatively in [4].

DeriNiTioN 1. If a, €{0, 1}, n €N, and a, = 1 for infinitely many
n €N, then we call A: = (a,).ex a 01 sequence.

Let A = (a,).ex be a sequence of real numbers such that S,(¢;, A),
n €N, and S,(&, A), n €N, are convergent for different &, & € (0, 1).
Let « =liminf,cya, and B =limsup,ena, Since a = implies
lim,en a, = 0 — as otherwise lim,ex| S, (£, A)| = ®* — the Lemma below
shows that only the following three cases are possible:

I lim,ena, =0

(II) a<pB and each y € (e, B) is an accumulation point of a,,
neN

(II1) a < B and there exists a 0-1 sequence B such that S, (&, B),
n € N converges fori = 1,2.

LEMMA 2. Let A = (a,).en be a sequence of real numbers such that
not every point between a:=liminf,exa, and B: =limsup,exa, is an
accumulation point of the sequence a,n EN. If £ €(0,1), i=1,---,k,
and S, (&, A), n EN, is convergent fori = 1, - -, k, then there exists a 0-1
sequence B = (b,),cx, Such that S,(£,B), n €N, is convergent for i =
1, - k.
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Proof. Since not every point between a and B is an accumulation
point of the sequence a,, n € N, there exist y, § with @ <y <& < 8 such
that a, & (v, 8) for all n € N. Since we can consider the sequence (a, ).en
or the sequence (— a,),en, Wwe may w.l.g. assume that y = 0.

Let b, =0if a, =y and b, =1if a,= 6. Then B = (b,).cnis a 0-1
sequence. According to our assumption there exists n, € N such that

(+) S.i(é,A)— S, (£, A)|<é—-y if nzn, i=1,---k

Since

Aniy, If ["fi] = [(” + l)gi]
Sn+1(§i7A)— Sn(§i7 A) = {

Qi1 — Qpugr1,  Otherwise

we obtain from (+ ) that S, (&, B)= S.(& B)foralln=zn, i=1, -k,
whence S, (&, B), n €N, converges for i =1, - k.

Now we shall prove that for most pairs of real numbers — more
exactly for all ¢,, & € (0, 1) with &} # &; for all r, s € N — case (I1I) cannot
occur.

THEOREM 3. Let a,n €N, be a sequence of real numbers and
&,6€(0,1) such that S,(&), n €N, is convergent for i = 1,2.

Assume that:

(*) £ #¢& forall rsEN.

Then a, n €N, converges to zero or every real number between
liminf,cn a, and limsup,en a, is an accumulation point of a,,n € N.

Proof. Assume that the assertion is false.

Hence according to Lemma 2 we may assume that a,, n €N, is a 0-1
sequence. Let & < ¢, and put n: = 1/¢&.

Then there exists z >1 with n, = n3. We have to prove that z is
rational. Since S, (&), n €N, converges for i = 1,2 and a,, n EN, isa 0-1
sequence, there exists n, € N with

(1) S, (&)=S.,(&) for n=z=n, (i=1,2)
@) no(l = 2" >2/(n.— 1)
where j: = lim,en S, (&) EN.

Let Ni:={n €EN: n>n, and a, =1} and let (a):=min{n EN: a =
n} for n=1.
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Since (t-n)=inf{n EN: [n-1/n]=1t}, t EN, n >1, we have

1 1
S (;) - S<r~n>-1 (;) = Qe Q& (teEN, n> 1)

and hence we obtain from (1) that
3) tEN, implies (t-m)EN, for i=12.
Define inductively for t EN;, n >1

Tt m):=t
and

T"(t, n):——_(T"_I(tv 7’) : TI>
According to (3) we directly obtain that
4) teN, implies 7"(t,mn)EN, for n€EN and i=1,2.

Since j = S,(&:) EN for all n = n, according to (1), there exist exactly j
elements t, EN;, i =1,---,j with

) N < H<hL<--<t=(nym).

Since 7,>1, (5) implies

(6) T (Mo, M2) < T7(1, M) <o <77 (8 M) = 77 (R0, M2)

for all n EN. Now we obtain from relations (1), (4), (5) and (6) that
(7) Nio={r"(t,m):i=1,---,j,n ENU{0}}.

As by (4) 7"(t,, ) EN,, according to (7) for each n €N there exist
k(n)eEN, i(n)E{1,---,j} with

(8) 7."(tlv 7’1) = Tk(")(ti(")y 772)
By induction it is easily proved that
©) 7" (k) —m[=1+n 4+ ="~ Di(n-1)

for teNand n >1.
Since t; < m,t, for i=1,---,j (see (5)) there exist x; € [0, 1] with
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t=tmy Then x,=0<x,<---<x;<1=:x.,. Hence there exists
le{t, -, j} with

| =

(10) Xiv1— X ==,

~

Let us now assume that z is irrational. According to ([2], p. 69) there
exists an element m € N with

1 2
(11) x,+§7<mz—[mz]<x,+3]..

Since 7, = nj we obtain from (8) and (9) that

1 m 1 m
ltm?z—tummé“” = m—1 n+ n.—1 n3™
1
and hence
m 2 max(maz, m
(12) [t — timms ™| = 1M (mak(m),

Now we distinguish four cases
(i) If mz <k(m)then mz — k(m)= — 1/3j according to (10) and
(11). Hence we obtain from (5) and (2) that

l tlngxz~k(m)_ ti(m)l\ = t— tlnEnZ'k(M) = tl(l _ 7’;]/3’) > __.2t.i
UM
which contradicts (12).
In the following three cases we assume that mz > k(m).
(i) Leti(m)=1: Asmz —k(m)= x; +1/3j by (11) we obtain from
(5) and (2) that

|t = by ™7™ 2 1y — tymgetkomme = 4 (7 — 7,7 > 2

which contradicts (12).
(iii) Let i(m)>1 and [mz]=k(m): Then mz — k(m)= x,., — 1/3j
by (10) and (11), and we obtain from (5) and (2) that

. A 2
[t — LM 5™ Z B — 1 = (Y= 1) >;?—'"__1
2

which contradicts (12).
(iv) If i(m)>1 and [mz]>k(m), then mz —k(m)=1+1/3j by
(11), and we obtain from (5) and (2)
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l t— ti(m)ng(m)—mz, =t - tn 2~(1+1/3,’)§ t— 117751/31 - t1(1 _ n2—1/3/) > ;’2%1
which contradicts (12).

Thus we have shown that the assumption of z being irrational leads
to a contradiction.

If r, s € N denote by (r, s) the greatest common divisor of r and s.

The following remark shows that for two rational numbers condition
(*) of Theorem 3 is nearly always fulfilled.

REMARK 4. If £, &€ (0,1) are rational numbers and ;= ¢ for
r,s € N with (r,s) = 1 then there exist t,u € N such that & = (t/u)* and

&= (t/u).

Proof. Let w.lg. & =1I/m, where [,m;EN and (l,m))=1 for
i=1,2. If (=& ie. I'mi=UIm/, then I{=15 and m|= m3.

We may choose r and s such that (r,s) = 1. Then by representation
of I, m; as a product of prime numbers we obtain t,u €N with

=1, t'=1 and u‘*=m,, u =m,.

According to Theorem 3 Cases I and II can occur. According to
Example 2 of [4] it is not possible to exclude Case II. Even if S,(¢ A),
n €N, converges for each rational number ¢ € (0,1) the sequence
a., n €N, need not converge to zero.

We remark that the following questions remain unsolved:

(1) If & and &, are two different irrational numbers, does the
convergence of S,(§,A), n€N, (for i =1,2) imply that a,n €N,
converges to zero?

(2) Give an exact characterization of those pairs of rational num-
bers ¢, & for which only Case I or II is possible; is for instance the
condition (*) of Theorem 3 such an exact characterization?
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