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EXISTENCE OF OSCILLATORY SOLUTIONS
AND ASYMPTOTIC BEHAVIOR FOR A CLASS OF
THIRD ORDER LINEAR DIFFERENTIAL EQUATIONS

L. ERrRBE

Criteria are obtained for the existence of oscillatory solu-
tions to the third order differential equation y"” + p(t)y"+
q(t)y'+r(t)y =0. The asymptotic behavior of nonoscillatory
solutions is also discussed, under the assumption that the equa-
tion has oscillatory solutions. Of primary concern are the cases
when p(t) does not change sign and q(t) =0, r(¢) > 0, for which
fewer criteria exist.

1. Introduction. Concerning the coefficients of

(1.1) y"+p@)y"+q@)y' +r(t)y =0

we assume p”, q', r continuous real valued functions on [a, ®) and we are
interested in establishing effective criteria for the existence of an
oscillatory solution of (1.1) i.e., a solution which changes sign on each
half-line [t,, + ©). We also discuss the asymptotic behavior of nonoscilla-
tory solutions under the assumption that an oscillatory solution exists.
Equation (1.1) is said to be oscillatory in case there exists at least one
oscillatory solution; (1.1) is said to be disconjugate on [t,, + ®), t, = a, in
case no nontrivial solution of (1.1) has more than two zeros on [#,, +®).
Disconjugacy, oscillation, and nonoscillation for (1.1) have been exten-
sively studied by numerous authors; we refer the reader to Barrett [1],
Hanan [10], Lazer [17], Kim [16], Etgen and Shih [4], [5], [6], Jones [14],
[15], and the references therein.

If p(t)=0 and q(¢) =0, then the oscillatory behavior of (1.1) is much
easier to determine and various well known integral and Kneser-type
tests exist. For example, if r(¢)= 0 and y"” + r(t)y = 0 is disconjugate,
then ([10]) (see also [1], Lemma 2.6),

(1.2) r tr(t)dt < + oo,
If, on the other hand,

(1.3) fw 2r(t)dt < + o,
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then y” + r(t)y = 0 is disconjugate ([9], see [1], p. 461). A corollary of a
result of Lazer ([17], Theorem 3.1) implies that (1.1) is oscillatory in case

(1.4) J'x t"r(t)dt = +©, some 0<§<1.
Finally, comparison with the Euler equation shows that

(1.5)  limsup £’r(t) < —= \/3 => y"+r(t)y =0 is disconjugate

t—x

and

(1.6) liminf £r(t) > —= \/3 > y"+r(t)y =0 is oscillatory.

—x

The above remarks hold also for the case r(t) =0 if r(t) is replaced
by |r(¢)] in (1.2)~(1.6) since y"” + r(t)y = 0 is disconjugate iff its adjoint is
disconjugate, provided r(t) does not change sign (see [10], Theorem 4.7).

If p(t)=0, q(t)= 0, r(t)>0, t = a, then various criteria have been
obtained for the existence or nonexistence of oscillatory solutions of (1.1)
(see [17], Theorem 3.1 and [1], [5], [6], [7], [12], [16]). However, in the
case p(t)=0, q(t)=0, r(¢t) >0, much less is known; the author is aware
of only the result of Lazer ([17], Theorem 1.3) which shows that (1.1) is
oscillatory if p(¢t)=0, q(t)=0, r(t)>0 and

(17) | [ro- 335 (a2 ar =+

This result is sharp, in a certain sense, in that it is both necessary and
sufficient if q(¢), r(¢) are constants. We shall obtain below in §2 criteria
for the existence of oscillatory solutions for this class of equations when
(1.7) may not hold (e.g., for the case when r(t) is integrable). We actually
shall consider the larger class of equations (1.1) in which q(t)=0,
r(t)>0, and p(t) does not change sign on [a, + ©). We shall relate the
oscillatory behavior of (1.1) to the oscillatory behavior of a related third
order equation of the form y”+ R(t)y =0 where R(t)=0 so that
oscillation criteria of the type (1.4) or (1.6) may be applied. These criteria
may then be extended by standard techniques to a class of equations
which includes the case p(t)=0, q(t)=0, r(t)<0 and thereby supple-
ment the criteria of Heidel [12] and Lazer [17].

In §3 we generalize and extend results of Jones [15] and Lazer [17]
which gives sufficient conditions under which nonoscillatory solutions of
(1.1) tend to zero as ¢ tends to infinity, under the assumption that an
oscillatory solution exists.



EXISTENCE OF OSCILLATORY SOLUTIONS AND ASYMPTOTIC BEHAVIOR 371

Therefore, the oscillation criteria of §2 are also sufficient conditions
which guarantee that all nonoscillatory solutions tend to zero (with
perhaps mild additional assumptions on the coefficients).

2. We begin with several results which will be needed subse-
quently.

LEmMA 2.1. ([2]). Equation (1.1) is disconjugate on the interval I
iff there exists a, B € C*(I) with a(t)<pB(t) on I and such that

a"(t)+ f(t,a(t),a’'(t))=0
B"(1)+f(t,B(), B' (1) =0

where f(t,u,u’)=3uu’+p(t)u'+u’+p)u*+q(t)u +r(t).

A proof of this result may be found in [2], for example. Functions
a(t),B(t) as in Lemma 2.1 are called lower and upper solutions,
respectively, of the Riccati equation corresponding to (1.1).

The next two results are elementary generalizations of results of
Lazer [17]; for completeness, we include the proofs.

LEmMA 2.2. If q(t)=0, r(t)>0 and y(t) #0 is a solution of (1.1)
with y(t) = 0 or y(t) = 0 eventually, then there exists ¢ € [a, + ) such that
either

(2.1 y()y'(t)=0, t=c
or
(2.2) y(t)y'(t1)= 0, t=zc¢, and y(t)>0 for t=c

Furthermore, if (2.1) holds, then
23)  y(@)y'(t)y"(t)#0, sgny(r)=sgny"(t)#sgny'(t), t=a and
(2.4) lim y(r) = lim y"(1) =0, lim y(1)= k# =e=.

Proof. To be specific, assume y(t) = 0. We show first that y(¢)>0
eventually. If not, choose consecutive double zeros t, < t, so that y(¢) >0

on (t, t,) and let t; € (1., t,) be such that y"(;)=0 and y"(t)>0 y'(t)<0
on (t;, t,). Then the function

w(t)=y()y'(t)y"(t)P(t)
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satisfies w'(t)>0 on (t;,t,), where P(t)=exp ([ pds). Since w(t;) =

w(t,) = 0, we have a contradiction. Therefore y(¢) >0 for all large . We
observe next that y'(t) can change sign at most two times. For if
y'(t,)=y'(t;) =0 then it follows that y'(¢)>0 on (t,t,). Otherwise, if
y'(t1)<0 on (¢, 1), then v(t)= — y'(t)>0 satisfies v"+ pv'+qv =0 on
(1, t,) and this implies the existence of a solution z(t) of z"+ pz'+qz =0
with z(t,)=z(t,)=0 and 0<ov(t)=z(t) on (t,t) (cf. [13]). But this
contradicts the fact that z”"+ pz'+ qz = 0 is disconjugate (i.e., q(t) =0,
cf. [11]). Hence, either y’(¢)= 0 or y'(¢) <O for all large ¢. In the latter
case, since (Py")'= — Pqy’'— Pry <0, we see that the function w =
yy'y"P satisfies w'>0 on any interval on which y”>0. Since y"=0
cannot hold for all large ¢, it follows that y"(t) > 0 for all large t, say t = T.
Furthermore, in this case, one can show as in the first part of the proof
that w(t) # 0 for a =t < T. The fact that y'(t)— 0 and y"(t)— 0 is clear.
This completes the proof.

LEMMA 2.3. Letq(t)=0, r(t)>0. A necessary and sufficient condi-
tion for (1.1) to have oscillatory solutions is that for any nontrivial
nonoscillatory solution (2.3) and (2.4) hold.

Proof. Clearly, if (2.3) and (2.4) hold for any nontrivial nonoscilla-
tory solution, then any solution which vanishes once is oscillatory. Now if
y(t) is a nontrivial nonoscillatory solution for which (2.3) and (2.4) do not
hold, then y (¢) satisfies (2.2). Hence, with u(t) = y'(t)/y(¢), t = ¢, we find
that the functions a(t)=0 and B(t)= u(t) satisfy the hypotheses of
Lemma 2.1. (Since solutions to initial value problems for the Riccati
equation are unique and since r(t) >0, it follows that u(t)>0, t > c.)
This completes the proof.

ReEMARK. If q(t) =0, r(t) >0, there will always exist a solution of
(1.1) satisfying (2.3), (2.4). This follows either from an easy generalization
of a result of Lazer ([17], Theorem 1.1) or by a result of Hartman and
Wintner (see [10], p. 510).

We may now state and prove our first existence theorem for
oscillatory solutions of (1.1).

THEOREM 2.4. Let p(t)=0, q(t)=0, r(¢)>0, q(¢t)—p'(t)=0 and
2r(t)—q'(t)+ p"(t)= 0. Assume further that for each A >0 there exists
Iy Z a such that t = t, implies

otAr)=0
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where Q(t,A)=r(t)+ Aq(t)+ip(t)(A*=2Ap(t)—q(t)+ p'(t)) and such
that the equation

(2.5) y"+Q(tA)y =0
is oscillatory. Finally assume

[ @=p-prar>-
(2.6) -
f ?*QRr(t)—q'(t)+ p"(t))dt = + .

Then (1.1) has an oscillatory solution.

Proof. If not, then (2.2) holds for some nonoscillatory solution y(t),
which we assume satisfies y(¢)>0, y'(¢)=0, t=c. If we define the
energy function

(2.7) G(y(t))=2yy"+2yy'p+(q—py’—y”
then a calculation shows
(2.8) G'(y(t))=2y"p+(q'—p"—2r)y*=0, t=c

We consider three cases:

(1) Suppose y”(t) has arbitrarily large zeros at f, — + . Then
G(y(t))=0 and with u = y'/y, we have

2ytu'=2yy" =2y =G(y(t)—y*=2yy'p—(q—p)y’
=-y"-2yy'p-(q-py’, 1=t

Thus,
(2.9) u'+pu+iu+i(q—-pH)=0
which implies

(2.10) u'+i(q—-p' - pH=0, 1=t

Since f (q—p'—pHdt> —», (2.10) implies that u(t)=A, t=1t for

some A >0. Now rewriting (1.1) as

(2.11) (Py"Y + Pqy' + Pry =0, P = exp f pds,
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we obtain
(2.12) (Py"Y + P(r+1Aq)y =0, t=t,.

Let t, = 1t,. Integrating (2.12) between ¢, and f,.. and taking the
limit as k — o we get

f P(t)(r(1)+ Aq(1)y (1) = 0.

This contradicts the fact that r(¢)+ Aq(¢)>0 for t = ¢,

(i) Next, suppose y(t)>0, y'(t)>0, y"(t)>0, t = t,= a. In this
case, since y(t) = mt for m > 0 sufficiently small, we have from (2.7) and
(2.8)

Q1) Gu)=Guw)+ [ @yp+@=-p'=2)y)ds

and therefore G(y(t))— — « by (2.6). Therefore, as in part (i), we have
u(t)= A, t=t, for some A >0. Also, from (2.9) we get

(2.14) pu'z —p’u—ipu’—ip(q—p’)
so that
(2.15) p(u'+u?)=ip(A*—2pr —q +p’).

Hence, from (2.15) we have in the Riccati equation corresponding to

(1.1),

(2.16) u"+3uu'+ut+ Q(LA)=0, t=t,.

Since u(t)>0 t=1t and since Q(t,A)=0, t=1, equation (2.5) is
disconjugate on [t,©) by Lemma 2.1, a contradiction.

(i) Finally, suppose y(¢)>0, y'(t)>0, y"(t)<0, t=t. In this
case, u = y'[y satisfies u’+ u><0, t=t,so that 0<u(t)=A, t=1t, and
hence
(2.17) u"+2uu'+u*+Aq+r=0, t=t,.

But since Aq(¢)+r(t)= Q(,A)=0, t = ¢, it follows ([10]) that
(2.18) y"+(Aq(t)+r(t))y =0

is oscillatory, a contradiction to (2.17) by Lemma 2.1.
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Therefore, we conclude that (1.1) has an oscillatory solution.

With slightly different hypotheses, one may obtain an additional
criterion for the existence of oscillatory solutions which may be easier to
check than that of Theorem 2.4.

THEOREM 2.5. Letp(t)=0,q(t)=0,r(t)>0,q(t)—p'(t)=0, and
2r(t)—q'(t)+ p"(t)= 0. Assume further that for each A >0 there exists
t\ Z a such that t = t, implies r(t)+ A(q(t)+ p(t)) =0 and such that the
equation

(2.19) y'+Ag()+p()+r()y =0

is oscillatory.  Finally assume that |p(¢)| < K and |q(¢)—p'(t)| <K for
some K >0 and that (2.6) holds. Then (1.1) has an oscillatory solution.

Proof. We argue as in Theorem 2.4. The proof there shows that
cases (i) and (iii) cannot occur. So suppose case (ii) holds and let
y()>0, y'(t)>0, y'(t)>0, t = t, = a.

We obtain again that u(¢t)= A, t = ¢t,, for some A >0. Then from
(2.9) and the boundedness of | p(¢)| and |q(¢) — p'(¢)] it follows that u' is
bounded above and hence instead of (2.15) we obtain

(2.20) p(u'+u*)=pup

for some w = A. Therefore, in the Riccati equation corresponding to
(1.1) we obtain

(2.21) u"+3uu'+ P+ u(p+q)+r@t)=0
so that equation (2.19) is disconjugate by Lemma 1.1, a contradiction. This
proves the theorem.

The next result gives an oscillation criterion for the case when
p(t)=0, q(t)=0, r(t)>0.

THEOREM 2.6. Let p(t)=0, q(t)=0, r(t)>0, 2r(t)—
q'(t)—p(t)q(t)=0 and assume for each A >0 there exists t, = a such
that r(t)+ Aq(t)= 0, t = t,, and such that the equation
(2.22) y"+(r+2aq)y =0

is oscillatory. Assume further that

(2.23)

qudt'+jmpdt<+oo

a
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and

(2.24) fw t*(2r—pq — q')dt = + .

a

Then (1.1) has an oscillatory solution.

Proof. We proceed as in the proofs of the two previous theorems.
Assume therefore that y(¢) is a nonoscillatory solution of (1.1) with
y()>0, y'(t)=0, t = c = a. We define

25 HOGM)= POy -y +ay),  PO=esp([ pds)

and a calculation shows that H(y(t)) is nonincreasing and

(2.26)  H(y(1)=H(y(t)) + f P(s){y*(pq + q'—2r) - py“}ds.

We again consider three cases:
@ Ify"(t.)=0, t,— +x, then since H(y(t,))=0 we have

(2.27) 2u'(t)ys — (@) —q@)< —q(), tZt

so that u(¢#) = A for some A >0 by (2.23), and the proof proceeds as in
Theorem 2.4 to obtain a contradiction.

(i) 'If y(£)>0, y'(¢)>0, y"(t)>0, t = c 2 a, then by (2.26) and
(2.24) we see that H(y(t))— — « and hence u(t) = A for some A >0 asin
case (i) above. Therefore, from (1.1) and py”=0, we obtain

(2.28) y"+(Aq+r)y=0, (=t

But (2.28) implies (with u = y’/y) that equation (2.21) is disconjugate by
Lemma 2.1, a contradiction.

(i) Ify(r)>0, y'(¢)>0, y"(t)<0, t = c = a, then clearly u(t)= A
for some A >0, t = ¢, and this implies that (2.12) holds. Therefore,
(2.29) (P(t)y"(t)y =0, t=c
so that
(2.30) y'(t)= P '(t)P(t)y"(t,) = k P(t)y"(t,) <0, t=t

where

= 1{133 P7'(t)>0.
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Integrating (2.30) shows that y'(t)— — %, a contradiction. This completes
the proof of the theorem.

In ([3], Theorem 4.2) it was shown that if p(¢)=0, 2r—q'+p">0
(p=20,2r—q'+ p"<0) then equation (1.1) is of class C; (Cy), generaliz-
ing a result of Hanan ([10], Theorem 2.2). (Recall that (1.1) is said to be of
class C; (Cy) ([10]) if no nontrivial solution of (1.1) satisfies y (t,) = y () =
y'(t)=0 (y(t)=y'(t)= y(t,)=0) for any a =t,<t < +x.) Further-
more, it was shown in [10], that if (1.1) is of class C; (Cy) then it is
oscillatory iff its adjoint is oscillatory. In view of these results one may
easily obtain criteria for the existence of oscillatory solutions for the case
where p(t) does not change sign and q(¢t)=0, r(t)<0. We state the
following two results, which are corollaries of Theorems 2.4 and 2.6,
respectively. In both, the adjoint equation of (1.1) satisfies the hypothesis
of Theorem 2.4 or 2.6. Similar results may be obtained from Theorem 2.5
and we leave the statement of these to the interested reader.

CoROLLARY 2.7. Let p(t)=0, q(t)=0, r(t)<0, q(¢t)—2p'(r)=0,

q'(t)—p"(t)—r(t)>0 and assume for each A >0 there exists t, such that
t = t, implies R(t,A)=0, where

R(tA)=q —p"—r+A(@—2p)—3ip(A*+2\p—q +p’)

and such that y"+ R(t,A)y =0 is oscillatory. Assume further that
f (q—p'—pHdt> —x and I t’(q'— p"—2r)dt = +x. Then (1.1) has
an oscillatory solution.

CoroLLARY 2.8. Letp=0,9=0,r<0,q-2p'=0,q'—p"—r>
0 and q'—2r+ p(q —2p')= 0. Assume for each A >0 there exists t, such
that t = t, implies

S(t,A)=q'-p"—r+A(q—-2p)=0,

and such that y" + S(t,A)y = 0 is oscillatory. Assume further that

Jm (q -—2p’)dt‘ +

detl <+

a

and

fx t’(q'—2r+p(q —2p'))dt = + .

a

Then (1.1) has an oscillatory solution.
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REMARK. It is interesting to compare the previous results with
known disconjugacy criteria. For example, if p(¢)=0, q(¢)=0. r(t)>0,
q—p'=0, and r —q'+ p”"=0, then equation (1.1) is disconjugate ([5],
Theorem 1). It is therefore easy to give an example of equation (1.1)
which is disconjugate but which satisfies all of the hypotheses of Theorem
2.4 or 2.5 except for the assumption that equation (2.5) or (2.19) is
oscillatory. This indicates sharpness, in a certain sense. As an example of
a class of equations which possess oscillatory solutions but for which
known oscillation criteria fail, let

p(t)=—kts,  q(t)=-—mt?,  kt*=r(t)= kit

where m, k,, k, are >0, k =0, and

2 )
-3=6,=06,< —1, a, B <8, and k1>~375 if 6,=-3.

Then all hypotheses of Theorem 2.5 hold. Equation (2.19) is oscillatory
by comparison with the Euler equation (see (1.6)). Since f r(t)dt < + oo,

a

the criterion of Lazer does not apply. Similar examples may be given
using integral criteria of the type (1.4). As an example using Corollary
2.7 or 2.8 for the case p(t) =0, consider q(t) = — mt”, r(t) = — kt°, where
m,k>0,6= —3,y< -1,y <8 Then it is easily verified that all of the
hypotheses of Corollary 2.7 or 2.8 hold. (Here if § = —3, we need
k >2/3V/3.) Again this oscillatory behavior may not be obtained from
the criterion of Lazer ([17], Theorem 2.6) or from the result of Heidel
([12], Corollary 2.9), if for example y > — 2.

3. In this section we discuss the behavior of the nonoscillatory
solutions of (1.1) under the assumption that (1.1) is oscillatory. We begin
with a slight generalization of a result of Lazer ([17], Theorem 3.4; see
also [10], [12]). In these first few results, no assumption on the sign of g (t)
is made.

LeEmma 3.1. If r(t)>0 and the equation
(31) y"+ (q -22->y:0

is disconjugate and if equation (1.1) has an oscillatory solution, then any
nonoscillatory solution y(t) of (1.1) satisfies y(t)y'(t) <0 eventually.

Proof. Suppose y >0, t= T and assume ¢, <¢, are consecutive
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zeros of y’, ;= T. Then multiplying (1.1) by y’ and integrating by parts
between ¢, and ¢, gives

(3.2) [Fry = [Fompar- [ (a-8) oya

Now the right hand side of (3.2) is positive as one notes by expanding
z(y”—y’v’/v)zdt>0, where v is a solution of (3.1) with v(¢#,)=0,

v'(t;)>0, v>0 on (¢, +=). Hence, it follows that y’>0 between
consecutive zeros. But this means that u = y'/y satisfies u =20, t=1t,
therefore u(t,) = u'(t,) = 0. Since solutions of initial value problems for
the Riccati equation are unique, we would have u =0, a contradiction.
Thus, it follows that y'>0 or y'<0, t=¢. If y'>0, then u >0, t=1¢,
and now with a =0, B = u(t), we find that (1.1) is disconjugate by
Lemma 2.1. Therefore, y' <0, t = t,.

REMARK. Nonoscillatory solutions satisfying the conclusion of
Lemma 3.1 exist (cf. [3]).

THEOREM 3.2. Let the hypotheses of Lemma 3.1 hold and, in
addition, assume thatq —p'=0, p =0, p'= 0 and that there exists M >0
with tp(t)> — M and t*q(t) < M. Finally, let

(3.3) lim inf £3r(¢) > 0
or
(3.4) liminf(tp(¢) — t’q()) > 2.

Then every nonoscillatory solution y(t) of (1.1) satisfies
(3.5) lim y (1) = lim y'(t) = lim y'() = 0.

Proof. Suppose y(t) is a nonoscillatory solution which does not
tend to zero, y(t)>0. From Lemma 1.1, y(t)— ¢ >0 and y'(t) <0,
t Z T. Since y"(t) = 0 cannot hold for all large ¢, suppose there exist t, < ¢,
with y"(t,)=y"(t)=0, y">0 on (t,,t,), T =t,. Then an integration of
(1.1) yields

66 py'@)-pe)yw) + [ @=pydi+ [rvai=o0

t

and since the sum of the two integrals is positive, (3.6) implies p(t,) <
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p(t), a contradiction. Therefore, it follows that y”> 0 for all large ¢, say
t= T. Then from the Mean Value Theorem and the fact that y(t)— ¢
>0, we find that given & >0 there exists t, = t,(8)= T with

_y@® o =8
(3.7) u(t) 0 > . t >t
With s =t — tyand a(t) = — 8s ' a calculation shows that
(3.8) a"+3aa’+ pa’+a’+pa’tqa+r

= —s(8°+38°+28)+sp(t)(6 + &)
—57'8q (1) + r(¢).

One can now verify that (3.3) or (3.4) implies that the right hand side
of (3.8) is nonnegative for sufficiently small 6 > 0. Therefore, by Lemma
2.1, equation (1.1) is disconjugate, a contradiction. This proves the
theorem.

REMARK. The assumptions g —p'=0, p =0, p’= 0 in the previous
theorem can be replaced by the assumption that ¢ — p'is bounded below,

t"'p(t) is bounded above and J (r—q'+p")dt = + . It then follows

from (3.6) by a routine integration by parts that y” >0 for all large t. Of
course, if g(¢) =0, then any nonoscillatory solution of (1.1) satisfies (2.3),
(2.4). Hence, one needs only tp(t)— t’q(t) bounded below and either
(3.3) or (3.4) holding to conclude (3.5) holds if (1.1) is oscillatory.

Now suppose that y(t) is a solution of (1.1) with y >0, y’' <0, y”" >0,
t 2 T, and assume also that u(t), v(¢) are linearly independent oscillatory
solutions of (1.1), and let W(t), W.(t), W,(t) denote the Wronskians of
the triple y, u, v, the pair y, u and the pair y, v, respectively. Then W,(t)
and W,(¢) are linearly independent oscillatory solutions of the adjoint
equation of (1.1) ([1])

(39) yll/_pyrr+(q_Zpr)yr+(qr_pu__r)y___0

and are also solutions of the second order equation

w, W, z
(3.10) w, W, Zz' = 0.
wi Wi z"

Since W(t) satisfies W'+ pW = 0 we obtain
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e |y Wil yowo-worio,  Po=-ewp [ pds
wi w; T
k =WwW(T)#0.
Therefore, differentiating (3.11) we get
r_ -1 — Wl WZ

and

"__ ' N 2 -1 — W; Wé W] W2 '
(G13) k(" =2py'=py+PVPTO = |y | wr |
By (3.9) and (3.11) we have

W, W, - ) '

(3.14) I W W7£'| = kP (t)(py'—p’y —(q = 2p")y)-

Therefore (3.10) is equivalent to

(3.15) yz"+z'(py =y )+ z(y"—3py'+ (2p*+q —3p’)y)
or
(3.16) @(@)zY+6()h(t)z=0
0(t)=P@)y (1),  h(1)=y ()(y"=3py'+(2p*+q—3p")y).
The change of variable z(t) = t*w(t) transforms (3.16) into
(3.17) (o()w'y +to(t)f(t)w =0,

where

1 ' 1
fO=h0)+5; (p %) - 3

Now one can easily verify that if y(¢) >0, y'(1) <0, y"(¢)>0,t =T,
then (cf. [15])

(3.18) I,LIE ty'(t)=0
and

(3.19) f " ty(t)dt < + oo,
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Therefore, if lim,.. y(t) = ¢ >0 and if

(320) 0<é6=P(t)=M< +x forall ¢t andsome 8 m >0, and
(3.21) —3py'+(2p*+q-3p)y =0

then (3.16) will be nonoscillatory by the Sturm Comparison Theorem,
since (3.19) and (3.20) imply

(3.22) (0(6)z'y + 0()y '(t)y"(t)z =0

is nonoscillatory ([11], [18]) and (3.21) is equivalent to h(t)=y"/y.
If instead of (3.16) we use (3.17), and if

(3.23) y"(t)=0, t=2T
holds, then ([15])

(3.24) lim t’y"(t)=0.
Thus, if lim,.. y(t)= ¢ >0 and

(3.25) liHLSmUP t’f(1)<0

then (3.17) will be nonoscillatory.
In this case, (3.25) is equivalent to

(3.26) lim sup (— 3pt2-§,—+ t*(2p*+q—3p’) +% tp) < 4-11 .

We collect the above remarks in the following
THEOREM 3.3. Let (1.1) have a 2-dimensional subspace of oscilla-

tory solutions and let y(t) be a nonoscillatory solution of (1.1) with
y()>0, y'(t)<0, y"(t)>0, t = T. Then

(3.27) lim y(r) = lim y'(f) = lim y"(£) =0

provided
(a) (3.20) and (3.21) hold, or
(b) (3.20) and (3.26) hold.
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We conclude by discussing various classes of equations which satisfy
the hypotheses of Theorem 3.3.

ExampLE 3.4. If p(¢1)=0, q(¢t)=0, r(¢) >0, and if equation (1.1) is
oscillatory, then it has two independent oscillatory solutions (Lemma 2.3)
and (3.21) holds trivially so that any nonoscillatory solution satisfies
(3.27). This is a result of Jones [15].

ExampLe 3.5. If r(¢t) >0, q(¢t) =0 and if there exists M >0 with
tp(t)—t’q(t)= — M and either

(1) liminf_.2r(1)>0
or

@11) liminf_.(tp(t) = t?q())>2,
then any nonoscillatory solution of (1.1) satisfies (3.27), if (1.1) is
oscillatory. This follows from Lemma 2.3 and the proof of Theorem 3.2.
(Note that the additional assumptions of Theorem 3.2 are not required.)

ExampLE 3.6. If r(¢)>0, q(t) =0, if (3.20) holds, and if either
@) p@®)/t=M, limsup,..2p*—3p'+q)= -86<0
for some M >0, § >0, or
(i) wp(t)=M, limsup,..t’2p*—3p'+q) <}
and if (1.1) is oscillatory, then the hypotheses of Theorem 3.3 hold. To
see this, note that condition (i) and (3.18) imply that (3.21) holds if
y()>0,y'(t)<0,y"(t)>0,t= T and y(¢t)— ¢ > 0. Since (3.20) holds, if
y()>0, y'(t)<0, y"(t)>0, t = t,, it follows by (3.19) that

fx tP(t)y"(t)dt < + oo,

)

Hence, if t > T > t,, since (P(t)y"(t)) <0, we have

J sP(s)y"(s)ds = P(t)y'(t) f sds = P()y"(1) (£~ T2,

Therefore t*P(t)y"(¢t)— 0 which implies t*y"(t)— 0. Thus, condition (ii)
implies that (3.26) holds if y(t)— ¢ > 0.

ExampLe 3.7. If r(t) >0, q(t) =0 if ((3.20) holds, if
(i)
hypotheses of Theorem 3.3 hold.

This time we use the fact that the second order linear equation
u"+ ¢(t)u =0 is nonoscillatory if

j t(2p*—3p'+ q)dt' < + o, and if (1.1) is oscillatory, then the
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: t¢(:)dt} <+, (18])

and the fact that if y(1)>0, y'(¢£) <0, y"(t)>0 and y(¢)— ¢ >0, then in
equation (3.16) M > 6(t)= & > 0 by (3.20) so that H t0(t)h (t)dt‘ < 4o
by (3.19) and condition (i).

ExampLE 3.8. As an example for the case when r(t)> 0,.q (t)=0,
we use a special case of a result of Gera ([18], Satz 2 and [7]), whlgh states
that (1.1) is oscillatory (in fact, has two oscillatory solutions) if p =0,

rpdt > —o, and u”"+pu'+qu=0 is disconjugate and 0"+
pv'+ (g + Atr)v = 0 is oscillatory for some 0 < A <3. (This holds, if, for
example f tq(t)dt < + o, f t2*1r(t)dt = 4+ for some 0< & <1. (See

[11].) Therefore the conclusion of Theorem 3.3 will hold if, in addition,

@ q-p'=0,p'=0
or

f (r—q'+p"dt= tx
and
(i) 2p°*+tq-3p'=0.
The result of Gera implies that yy’' <0 for any nonoscillatory solution y
of (1.1) and conditions (i) or (i) imply that y'y” <0 eventually. Thus,
(3.19), (3.20), and (3.21) hold if y = ¢ >0.
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