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ON EXTENDING REGULAR HOLOMORPHIC MAPS
FROM STEIN MANIFOLDS

CHESTER C. SEABURY

In this paper the following results are proved. THEOREM,
Let S, M be complex manifolds, S a Stein manifold, and
f:S— M a holomorphic embedding. Let K c S be compact,
and let N, be the normal bundle of f. We identify S with
the zero section of N;. Then in N,, there is a neighborhood
U of K, and a helomorphic embedding F: U — M such that
FIUNn S=f. If f above is an immersion, then there is an
immersion F' as above. There is also an analogous result for
holomorphic maps f which are regular at some point p in S.

The idea of the proof is to construct a function ¢ on a
neighborhood of f(K) < M such that ¢ is strictly plurisub-
harmonic and ¢ *((—co, ¢]) is compact for all ¢ in R. Then
a result of Forster and Ramspott is applied to get the final
results. To construct ¢, special coordinates are obtained
near f(S) in M.

1. Introduction. The central result of this paper is an analogue,
in the category of complex manifolds and holomorphic maps, of the
tubular neighborhood theorem. One result which extends the tubular
neighborhood theorem to this category is due to Forster and
Rampsott and goes as follows. Let S and M be Stein manifolds,
f:8— M a holomorphic embedding, and identify S with the zero-
section of the normal bundle of f. Then there is a neighborhood
U of S in the normal bundle, and a biholomorphic map f: U— M
such that f|S = f.

Results of the type mentioned above are sometimes needed when
M is not assumed to be a Stein manifold. For instance, a result of
this type is needed in order to prove the upper semi-continuity of
the differential form of the Kobayashi metric as done by Royden in
[4].

It will be shown that if f: S— M is a holomorphic embedding
(resp., immersion) S is a Stein manifold, and K C S is compact, then
there is a neighborhood U of K, where K is considered as a subset
of the normal bundle of f, and a biholomorphic map (resp., holomor-
phic immersion) f: U— M such that f|SNU=f|SNU. Also, with
S, M, K as above and f:S— M a holomorphic map regular at a
point p,e S (i.eN. af: T,,S— T;, M is injective), then there is a
trivial bundle A over S, dim¢A = dim; M, a neighborhood U of K
in A, and a holomorphic map 7: U— M such that 7|SN U= f and
f is regular at p, (that is, in this case df: (TA),,— (TM);,, is an
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isomorphism). The key ingredient in the proofs of these results is
the construction of an appropriate strictly plurisubharmonic function
defined on a neighborhood of f(K) in M, which reduces things to the
result of Forster and Ramspott.

These results are contained in a thesis done at Stanford Univer-
sity, and were announced in [6]. The author would like to thank
Professor Halsey Royden for his helpful advice.

REMARKS. For standard terminology and results in several com-
plex variables we refer to the books of Gunning and Rossi [2] and
Hormander [3].

2. To construct the desired strictly plurisubharmonic function
on M, we need to obtain coordinate systems which are related to
each other in a special way. This section will contain the needed
results. The main fact used here is that S is a Stain manifold and
hence the one-dimensional cohomology of S with coefficients in a
coherent analytic sheaf vanishes.

NoteE. (a) All coordinate neighborhoods mentioned in the
remainder of this paper are assumed to be polydiscs with compact
closure.

(b) A point on a manifold will be identified its with coordinates
with respect to a given coordinate system under consideration unless
some confusion arises from doing so.

Let S be a Stein manifold, dim S = m, M is a complex manifold,
dimM =n, m <mn, and let f: S— M be a holomorphic embedding.
By the implicit function theorem, for any p € S, there is a coordinate
system (Q,, 2) in M near f(p) such that SN @, = {ge®,|2:(¢) =0,
m < 7 < n}. Ineverything below, all coordinate systems in M near
f(S) will be assumed to be of this type.

NoTE. Throughout the rest of this section we assume we are
given a Stein manifold S, dim¢;S = m, a complex manifold M,
dim¢ M = » > m, and a holomorphic embedding f: S— M. We let N;
denote the normal bundle of f and we let T'S denote the bundle of
holomorphic tangent vectors to S.

We now take the first step towards getting a collection of ap-
propriately related coordinate systems.

N PrROPOSITION 1. There is a collection & of coordinate systems
(Q., 2) of the above type which cover f(S), is as ﬁlw as we like, and
satisfies the following property: if (Q., 2) and (Q,, w) are in %,
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then the Jacobian of the change of coordinates in @, N @, is of the
form

awi] = (L] 0 A sw — O(Wy ** 2y W)
[az,- < 0 ng> on f(S), where J; e 2

Proof. By the way we have chosen our coordinates, it is clear
that the Jacobian [0w,/0z;], when restricted to f(S), is of the form

()
0|J5 /-

We can consider A** as a holomorphic section of the bundle
Hom (N;, TS) over @Q,N Q,, by considering it as the matrix of a
bundle map N,lq,ne, — T'Slo,ne, With respect to the basis {0/02,..,

-, 0/0z,} in N, and the basis {0/ow,, ---, 0/ow,} in TS. Thus the
collection {4} determines a 1-cocycle {A**} on S, with respect to the
covering {Q,}, with coefficients in the sheaf, Hom (N, T'S), of germs
of holomorphic sections of Hom (N,, T'S) (see [2] p. 256).

We have H'(S, Yom (N;, TS)) = 0 since S is a Stein manifold.
Because we have taken all the @,’s to be polydiscs, the covering {Q.}
is a Leray covering and hence there is a 0O-cochain {B"} on S, with
respect to the covering {Q.}, whose coboundary is {A*}, i.e. A =
B” — B, Let B"(z, w) be the matrix of B* with respect to z-
coordinates in N, and w-corrdinates in TS etc. We now modify
our old corrdinates z, w to get new coordinates { in @, and @ in
Q. defined by

& 2
= (I,,,|—B"(z, ZNzy, o, zm)> .

0 I,
- | 2,

and

@

o I w w,
) G

n

Then on f(S) we have

EARE~ b
_ (6,,{ —BI”;(Z, w)) J"’”l B¥(z, w) — B*(z, w) )(Ié,.i B;iz—,mz)>

= () - <"§’!J‘§w> -

zw
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Let & be the collection of all coordinate systems (Q,, {) as just
obtained. Clearly & satisfies the properties stated in the proposition..

NoTE. From now on we work within the collection & of
coordinate systems obtained above.

Next we want coordinate systems around f(S) which are related
to each other by the Jacobian of the change of coordinates on f(S),
up to terms “third order” and higher in the variables z,., ***, Zn
This is done inductively, so we start with an easy special case, and
eliminate the details in the general case.

NoTATION. Let N; be the normal bundle of f and let TS be
the holomorphic tangent bundle of S; let .#" and 7S be the cor-
reponding sheaves of holomorphic sections, and let _#* be the dual
of N7

CocYCLE LEMMA S. Let A4; A47*, T8 be as above. Associate to
each ordered imtersection Q, N Q, the section of 4" X N* R N *
(resp. TS X A R A7*) given by

Z o, 0

dw, @ dw, = A"
ml=me QWLOW, OU, ® dw, @ dow,

m n 2, \

<resp. o U 0 o g, @ dw, = B”) .
=1k, {=m+1 QWL0W; 0,

Then the collection {A**} (resp. {B**}) determines a I-cocyice on S with

respect to the covering {Q.}, with coefficients in 4" Q N"* R AN"*

(resp. TS R A7* @ A7*). ' ‘

Proof; StepNa. Suppose m < k, | = n and consider coordinate
systems (Q.,%), (@), and (Q.,2). It is clear that on §,N @, N 4. NAS)
we have

32’wj — 2 Bzwj Bu,, =0
oW 0w, ’ =1 oW 0w, ow; ’

and by calculating using the chain rule we get

o*u u 0*2, 0w, 0uU,ou
(S-a) 0= T+ L %a TR 7 0%
oW,0W,; i,il,za':l ou,0u; ow, 0w, 0z,

o Ows 0z, 0z, Ju,
a,b,j=1 azaazb awk awl awj )

Step b. Notice now that on f(S) we have dw,dz, =0 for
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a=m<borb=m<a Using this with (S.a) we now get that

z ‘w; ou, 0
0= —d d dw
l,r,kz='m+1 oW oW, OW; 0u, & dw, @ duw,

u o’u, 0
Lk, r=m+1 0OW,0W; OU,
(S.b) + 3 I 9 g @ds,
irab=m+1 02,08, OW;
" 02, 0
@,k i=m+1 QU 0U; 07,
= A" 4+ A™ + A*,

& dw, @ dw,

& duy, @ du;

It is now evident that the collection {A”*} determines a 1l-cocycle
on S with respect to the covering {Q.}, with coefficients in
N QNFR N

The proof for the case 7S ® .+ * ® +#"* is exactly the same,
except that the » index varies between 1 and m, instead of between
m + 1 and » as above, and A“* is replaced by B*“.

PRrOPOSITION 28. There is a subcollection =2, of & such that the
coordinate polydiscs of =, cover f(S), the covering is as fine as we
like, and for (Q,, 2) and (Q,, w) in =, we have &*w,[0202, = 0 on
J(S) for k, 1 > m.

Proof. Step A. Let {A**} and {B**} be the cocycles in the
lemma above. Since S is Stein, we have that

HS, 4 Q@A *Q A4"*) = HESQ +4"*Q 47*)=0.

Each member of the covering {Q,}, which consists of all coordinate
polydiscs in &, is a Stein manifold, hence there is a 0-cochain {/°(z)}
with respect to the covering and with coefficients in (zSH #7) X
A"*Q A%, whose coboundary is {B*} {4}, i.e. B P A" =
I'(w) — I'(s). Let {7;(%)(z)} denote the components of I'(z) with
respect to the basis {0/ou, Q dw, ® dw,}, that is

0

ou,

@ dw, @ dw,

I'z)y=2 > Y0)?)
r=1k,l=m+1
in Q,NQ,NA, In this notation we of course allow u = w = z ete.

Step B. In each coordinate polydisc @, we define the functions
£, =2, — Sticmr T0()(@)22;. Since 2, =0 on f(S) for k=m + 1, it
is clear that d¢,/0z, = 07 on f(S), so[dl,/0z,] = I,, the identity matrix.
It is now clear that if the functions {, are restricted to a sufficiently
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small polydise Q. @, (whose center is the same as that of @,), they
give a set of coordinates there. Let < be the collection of all
coordinate systems {(Q., {)}, where the (@, {) are obtained from the
(@.,2) in & as described above. If (@, ) and (Q., ®) are in =,

then we have on f(S)
-2
az,’ az]'

EanbEA A
aci ac: aC]
and hence &, is a subcollection of &. Also &, is as fine as we like
and clearly its coordinate polydises cover f(S).

Step C. Now we need only show that if (Q., {) and (Q., w) are
in &, them for k,1>m we have 0*w,/0(,0(, =0 on f(S). We
consider only 7 > m, since the r < m case differs only by changing
the range of r index below.

Using the chain rule, the fact that terms of the form ow,/0z, = 0
on f(S) for a < m < b or b £ m < a, the definition of 77,(*)(z), and
expressing derivatives of the form 0%°2,/0(,0, (b > m) in terms of
things like 0%C,/67,02; using (S.a), we have on f(S) that

L B ]

(S.0) + a,b,czi'mﬂ g(zzz gz; 3_2[7:'(%:)(10) B 72b<?>(2)]

$ 000 % 0L o o i)
b=m+1 0%, i,ho=m+1 02,07, ack ¢, o¢,

It is clear that ¢*w,/0C,0(, = 0 on f(S) for all k, 1 > m if and only

if

z ‘w,
rk,l=m+1 aCkaCl

Kd=0.

By the preceding, and using the facts that ow,/0w, =0, and
d/ow, = d/ow, on f(S), we have then
Z o*w,
d
S s agkaglaa) @ de,

n ow, 0w,
= a0k, Er ma ack acl[ ( )(w)J ® de ® dCl

” 00, 0z, 0% a
+ a,b,c,k%r:m%—lawa aCk aCl[ ( )(W) 7“( )(z)]

” 0w, 0z, 02; o

+ b,h,1 k%.—m+l az,, ack ac ( )(z)aw ® de ® dCZ —_— 0

® 4l ® dL,
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This last equality is obtained after expressing in everything in terms
of the basis {0/0z, ® dz, ® dz,}. We have now finished the proof.

We now clear away higher order terms from the change of
coordinates w(z) on @, N @,. The proofs are much the same as in
the lemma and Proposition 2.2S above, but the calculations become
a bit longer. We will not carry out all the detail.

We have constructed the collection &,. We now assume that
we have constructed collections &,_,C &, ,C --- C &, such that if
(Q., 2) and (Q,, w) are in =, ,, then for 2=k <¢t—1 we have
o*w,[0z;, ++ - 02;, = 0 on f(S) for j, -+, j, >m. We now continue
the induction.

CocycLE LEMMA G. Associate to each ordered intersection
Q. N Q, of coordinates in Z,_,, the section of N~ QR A* R +++ QR AN*
(resp. TS QR AF R - -+ Q A7*)—with t factors of A" *—given by

A = zn: 0", 0 A R d
= S S— & dw,, X dwy,
rkpeSE=mil QW+ r OWy, 0,

(resp. B** = {same sum with 1 < » < m instead}). Then the collection
{A**} (resp. {B“*}) determines a 1-cocycle on S with respect to the cover-
ing {Q.}, with coefficients in A QR AFR -+ QR A"* (resp. SR
ATERQ e Q ATF)

Proof. Step a. As in Step a of the previous cocycle lemma,

we start with the fact that for %, ---, k, > m we have on f(S)
t n A
(G.a) 0w g3 0w O
OWy, * * + Wy, 3= 0wy, - OWy, OW;

Calculating using the chain rule we get a formula analogous to (S.a),
but very much messier to write down, so we don’t write it here
but refer to it as (G.a).

Step b. Using (G.a) and the fact that our coordinate systems
are in &,_,, after calculating with the chain rule we get that

uJ o'w; ou, 0
0= 2 A — Rdw, ® - Q dw,,
ke S Eg=mtl QW+ 0 0Wy, OW; 0U,
" o'u 0
= > _— rﬁ = ®dwk1®”'®dwkt
r'kl"“’ktsz-‘] Owkl DECIRY owkt Our
@ o'w 0
(G.b) + ) 2 —_—r -—®de1® o ®dzj't
Tyipsce jg=mlL szx LI szt 6w,
N ” 0z, 0

T

®duh1® ®duht

r,hl,~~,ht=m+1(’)’/I,Lh1 “ee au’ht az'r

= A"+ A+ A%
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Thus, {A“*} is a cocycle. The tSQR A4"*®:+- X .4"* case is handled
as before.

ProposITION 2G. For all t = 3, there is a subcollection =, of
Z;_, such that the coordinate polydiscs of 2, cover f(S), the covering
is as fine as we like, and for (@, z) and (Q., w) in <, we have
0'w,[0%4, + - 02, = 0 on f(S) for ki, «++, k; > m.

Proof. Step A. Starting with the cocycles {4**} and {B*“} of
the preceding lemma, we obtain the 0-cochain {/"(z)} with components

{7,:1.‘.%(%)(@} exactly as in Step A of Proposition 2S.

Step B. Exactly as in Step B of Proposition 2S we get now
coordinate systems (Q., ) in & from (Q,2) in <,_, by setting

z
Cr =2, — ZZU'“h:m-H 71&10,;( 2 >(z)zk1 e zkt’

Step C. (i) Next we must show that the coordinate systems
obtained in Step B form a subcollection of ;.. Suppose
2=<g¢=<t—1 and consider §'®,/oC;, --- 3L, where k, -+, k, > m.
Using the chain rule we express 6°w,/0C;, «-- aqu in terms of

W, o'w, 0°C,
ow;, +++ aqu ’ 0%, = ** ath ’ 02y, *++ az,q

’

and various lower order derivatives. From the definition of {;, w,,
and the fact that the z and w coordinates are in &,_,, all these
terms (and hence 6'®,/6C,, - -+ 9%, ) will be 0. So our new coordinates
are in &,_,.

(ii) It only remains now to show that for k&, ---, &k, > m we
have 0'®,[0C;, -+ 3C,, = 0 on f(S). We use the method of paragraph
(i) above to get an expression for 0‘®,/0(; --- 0(,,. Using the fact
that the @ and { coordinates are in =,_,, we get an f(S)

0w, Z‘"‘ owiy ., 0Ws 0'w
aCki o ath Fyreergg=mEl aCkl ath 6w,~1 L aw,-t
n t . .
(G.0) i 0w, o'w,  0%iy 0%

u,jl---,zj:;=m+l 37»0@ azjl o az]‘t 8Ck1 ath
2 50), azb 52:‘1 azit 6tca

wbirhmmis 02, 00, 0C,,  0Cy, 077, -+ 025,

We now proceed exactly as in (S.C) and following in Step C of
Proposition 23 to conclude the proof.

3. Throughout this section, unless stated to the contrary, we as-
sume we are given complex manifolds S, M, m = dim; S <n = dim.; M,
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S is a Stein manifold, K< S is compact, and f: S— M is a holo-
morphic embedding.

Having obtained all the special collections of coordinate systems
we need in the previous section, we now proceed to construct a
strictly pluri-subharmonic function ¢, such that ¢35 ([—o,a]) is
compact for all ae€ R and ¢, is defined on a neighborhood of f(K).
We will thus have f(K) contained in a Stein submanifold of M.
The desired strictly pluri-subharmonic function will be gotten by
using a certain strictly pluri-subharmonic function on N;, and trans-
ferring it to an open subset of M by means of the maps 4., defined

below.

NOTE. Sometimes below for clarity we will use the notation
p.(2) = (2, *-+,2,) to mean the point ¢ on M such that ¢ has
coordinates (2, - -, #z,) With respect to the coordinate system (@,, z).

Also if we are given a point pe@, with coordinates z(p) =
(z(p), <+, 2,(p)), then we let 2= 2(p) = (&, ***, Zp, 0, - -+, 0) denote
the point ¢ on f(S) N @, such that z,(g) = 2z:(p) for 1 < i < m and
2:(g) =0 for m <1 < m.

Also below we will sometimes implicitly identify a point se S
with f(s)e M, and we will often identify a point p € M with its set
of coordinates (2,(p), « - -, 2,(p)) With respect to a given system (@, z).

DEFINITION. Let (§,, 2) and (Q,, w) be in = and let (Q,, 2) and
(Q., w) be the associated coordinate systems on S. Let (T7; %, 0/02)
denote the coordinate system in 7. = N,|Q, determined by the co-
ordinates (z, **-, 2,) in Q,CSCN, and the basis 9/02,,, -+, 0/0z, in
the fibers of N; over @,. Let T,CT. be the coordinate polydisc given
by T, = {veT. (zv), +++, 2a(¥), Crsr(¥), *++, @, (v)) €2(Q,) = (image of
Q,C M in C* by the coordinate functions)}, where v has coordinates

(=), + -, 2,(¥), C®pi (), -+, a,(v) with respect to (T7%;z, 0/0z). We
then define
Lyt T.NT,— T, NT,
by
n a - n ‘ a ~
Azw<j=§7:n‘1+l a’faz—j(zlr ’ zm)) - Azw<j=zmla+l @; sz (Z)>
= 3 Wiy oo 2)(WR), e WD) = Dy w22 (D(2)) -
j=m+1 aw]' j=m+1 ow;

We now describe some properties of the maps 4,,.

PROPOSITION 3. Let (Q,, 2) and (Q,, w) be in 2,_,. Then we
have
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L 0 /a n PN
do( 3 22®) = 3[4+ 0@ D-R@E)
jsmt1 " 07 jEm1 0%;
where 0(zh,.;) means of order at least t in the variables z,., **+, 2,
Also wi(z) = w;(2) + 02y, for 1< 5 < m.

Proof. Considering what we are trying to prove, we need to
express 4,, solely in terms of the basis 6/02,.,, * -+, 0/0z, for N, over
Q,N Q,. By the definition of 4,, we have

1.3 2

j=n+1

A>=Zw

gj;j(w<z>)£—k<ﬁ(w(z)>> :

It is easily seen that

3 e @E) |0 = 3 SR @)

6za j=m+1

+ Z w;(z
j=m-+1

ai,, [a%kj(@(z’))](z) :

Thus on S (where we consider S as the zero section of N,), that is
when 2 = 2 = (zlv By O’ "'70)’

3 g @) () = 3 S @)

0%,

+ 3 wi(?) 3

j=m+1

O %% (i) () = ok + 0 =3t

o LOW;

since all the coordinate systems involved are in <,_, and w;(2) =0
for m < j £ n.

From this it is clear that tangential derivatives (i.e. derivatives
involving only 0/0z,’s with 1 <a <m) of >\, wi(2)(02,/0w;)(10(z)) of
all orders vanish on S. It is also clear that any derivative of the
form 0"/oz,, - -+ 0z,, With k, > m say and k; = m for j 1 vanishes
on S.

To complete the proof we need only show that normal deriva-
tives (i.e. derivatives involving only 9/0z,’s with @ > m) of order r,
with 2<r <t ~—1, vanish on S. Suppose 2=<r=<t—1 and
k, -+, k. > m. Using the product rule we see that

a—————Zkl a 5 [ ,(z)azJ (w(z))}

consists of terms of the form
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vu_ 0 Lomaqy)]
PR PR PR P

If ¢ = 0 the first factor is 0 on S since all coordinate systems are
in &,_,. Since

9 _ 5 0w; 9
azh j=m+1 32;, a’w,

on S(h > m), for ¢ = 1 the second factor is

0 I 0% (01 OWs( ]
z .
azlq oo 6z12 L& 0w ,0W; \w( )’azzl\Z)

Carrying out further differentiations we see that this factor is 0 on
S since our coordinates are in &,_,. This completes the proof of
the main part of the proposition.

The final statement of the proposition is clear since all coordinate
systems are in &,_,.

With Proposition 3 says in essence is that if we use the coordinate
system (Q,, 2) in S and the basis 3/02,4, - -+, 0/02, in N;|Q,NQ,, then
with respect to these coordinates 4,, differs from the identity map
(R * "y B Bty "y B) > (B ** %y 2} By * * *5 2,) ONIY bY terms which
are order t and higher in the variables z,.,, * -, 2,.

Construction of the function ¢;,.

NoTE. Throughout the rest of this section we use only coordinates
in =,

Since S is a Stein manifold, there is a strictly plurisubharmonic
function 0 on S such that g > 0 and for all ce R, {peS|f(p) < ¢}
is compact. It is clearly sufficient to assume that the set K is of the
form K = {pe S|p(p) < b}. Choose b, b,, b, such that b < b, < b, < b,
and set K, = {pe S|p(p) < b}

Consider the collection of open sets .o~ = {@,} where (§,, z) is in
<, For each Q, in .7 let R, be a polydise with compact closure
in @, (for instance if the image, by the coordinate functions z,, ---z,,
of Q. is the polydise 4, X +-- x 4, , let B, be the set whose image
by the coordinate functions is the polydisc 4, , X -+ X 4, ,). Since
K, is compact there is a finite subcollection <& = {Eza} of .7 such
that U. ﬁ,a covers f(K,). By very standard theorems there are C*
functions 7, such that 0 <7, <1, supp7, R, and 3,7, =1 on a
neighborhood T of f(K)).

I\£0TE.~For con~venience, from now on we use the notation @,
fOI' Qzay Ra fOI' Rza’ and pa(dly M) dn) for pza(dli *t Y dn)‘ AISO
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ACC B means A has compact closure in B.

Since B,cc@, we have R, NE,cc@,nQ, and thus by
elementary calculus there is a constant D > 1 (since we are dealing
with only a finite number of R,’s) such that for pe . R, we have
|205(D)| < DSUD,<icnom | 202(®)| for all L<j<m —m if peR,NE,,

For each point pe S there are m global (holomorphic) sections
of N} whose values at p form a basis for the vector space (N7),
(see [3], p. 138). Thus there are global (holomorphic) sections of
N#, call them o, ---, 0,, such that for all pe f(T) some m of these
sections form a basis for (N¥),. Now consider the function ¢ on
N; given by p(®) = i, 0,(v)o(v). Since each function c/(v) is a
holomorphic function on N;, clearly g is plurisubharmonic on N;
and vanishes on the zero section SC N,. Let w:N,— S be the
projection map of the bundle N; over S and define p = pox. It is
now easy to see that for all » = 0 the function v, = p + (M + )¢
is strictly plurisubharmonic on N;.

Throughout the remainder of this section we use (Q., w) to
denote one of the coordinate systems (Q,, z%). Also we express the
forms o, in local coordinates by 6.p) = S\ . ¢%(p)dz? in @, and by
0(D) = Xi-mr ¢} (p)dw; in Q,. ~

Now in U.R. (or in fact in UJ,Q. we define the function
¢:(n = 0) by

5:0) = 3B @) = I 7P duee | 3 wi(2)
CRVES RGOV CI O
+ (v + D) 5 700)

0
ow;

(pw@))))

0
0%

o 3 2@ o) -
j=m+1 i /
Above we have written o(p.2%(x))) where, strictly speaking, we mean
o(f(pL2%(x)))), since p is a function on the zero section SC Nj.
We will not be so meticulous below and will write things like
0(2%(x)) where we mean o(f (p2%(x)))) or 0/0z;,2%(x)) where we mean
0/0z1(p.2(2))).

By Proposition 3 we have

P(27(@)) = o(P(B(@) + O Whsi))) = O(W()) + Ol Winssy Wiia) 5

where O(wt,,,, 0%.,) means terms which are at least fourth order in
the variables w, ., **+, W,, Wy, =+, W,, and

o 3 A0 @)
= of( 3 o) + 0wt )2 (@) + 0.(1t-))]

j=m+
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= ,ZH a((x) + O Whsp))w; + Olwinys)] -
J=m
Therefore

5i@) = 8@) TN 3 o (@)l (@),
+ NO(Wh s, Tis)

(3.2)

From this formula it is easy to see that on f(S) we have

o°o | 0
I: az¢1 :l — awaaﬁ)b
0W,0W,

Thus [o*®,/0w,0w,] is positive definite on f(S) and hence ¢,i s strictly
plurisubharmonic on some neighborhood of f(K,). In particular ¢, is
strictly plurisubharmonic on a neighborhood E’ of f(K,). Let
EcCcE NT be another neighborhood of f(K,).

We now need to make some restrictions on the size of the last n—m
coordinates in each R, First we assume that ¢ > 0 is small enough
so that if |z;(x)] <e¢ for all m + 1 < 7 < n and p(2%(x)) € AK,), then
x e K. Second, we choose ¢ so small that, in addition to the above
property, if |23(x)] < ¢ for all m + 1< j < n and p(2%(x)) e B, N ﬁal,
then we have pJ(2%(), -+ -, 25(Z), Gray, =+ ) Cu) € Qu N Qal whenever
la;] < e for m +1 <4< n. Thirdly we choose ¢ small enough so
that also if for some a, p.(2*(x)) is outside f(K,) and [z5%(x)| < ¢
for m +1 < j < n, then for any other @ we have p,(2%(x)) ¢ f(K,,).

Before going further we remark that the forms o, determine a
hermitian metric in N; over f~Y(T) given by (v, w) = >\i_, 6(v)a(w).
Let ||.]| denote the norm determined by this metric. Then there is a
constant L<1 such that for all &, 1/L sup;.,. | 23| || 1w 25(0/025)]| <
L sup;s, |#7| since Q. is compact and there are only finitely Q,’s.

By (3.2) we have in F

[ 5, ]:[ 5, }L){_az_ 5 ima}cw(@(x))ﬁ)ij

oW, 01, oW, 0, WOy 5 k=m+1 i1
+ MO(Whtjy Wit j)] .

We have already noted that the first term [0°¢,/0w,0w,] is positive
definite in E. The second term is clearly positive semi-definite. Let
t > 0 be such that if |a,;| < ¢, then

[“‘éjﬂ)—“] + [a]

0w 0,
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is also positive definite in E. Clearly then

!: ¢y il + )\,[ o ZT“ i (L?"ij'wk] + [a;;]
oW 0, 0W 01, =1 j,k=m+1

is also positive definite in E. Now let N be such that the term
O(w, ., @, ;) above satisfies |O(w?, ., @S, ;)| < Nsup; | w?,;| on the B,’s.
Let d = b, — ming p. Now choose ¢ small enough so that in addition
to the three properties mentioned above, ¢ also satisfies 4D*dL%/c* <
t/N¢é*, that is, ¢ <t/4D'*dNL? and choose A, such that 4D'dL/c* <\, <
t/Nc¢®. Then clearly d < )\ /4D*L? = \(¢/2D?L)* and AN¢® < t. Thus
we now have that ¢, is strictly plurisubharmonic in G = E N {z|for
some &, |zq. ()| < ¢, for all j}. Let H = {x|for some a, p,(2%(%)) € K,,
and [2%(x)| < ¢/2D for m +1<j <n}cG. Note that Hc G and
that H is compact. It is also clear by the way our constants were
chosen that f(K)C E N ¢ ([— o0, b]) © H and thus E N g5 ((— <, by] is
compact.

THEOREM 1. If ¢ is strictly plurisubharmonic tn the open set
E and ¢7'([— oo, a]) ts a compact subset of E, then ¢ *((— =, a)) is a
Stein manifold.

Proof. See [3], p. 116.

Using this theorem and the strictly plurisubharmonic function
#;, constructed above, we see that we have now proved the following
theorem.

THEOREM 2. Iff:S— M is a holomorphic embedding and K S

a compact set, then there is an open Stein submanifold U of M
such that f(K)cC M.

4. We are now ready to prove our final results. First we need
the following lemma.

LEmMMA 8. Let X, Y be Stein mantfolds and f: X—Y a
holomorphic embedding. Then there is a nmeighborhood U of X in
the normal bundle of f (where X is identified with the zero section
of the normal bundle of f), and a holomorphic embedding F: U— Y
such that F|X = f.

Proof. See [1], p. 162, Hilfsatz 11.

Our main result now follows easily.
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THEOREM 3. Let f: S— M be a holomorphic embedding, where
S is a Stein manifold. Let K be a compact subset of S and let N,
be the normal bundle of f. Identify S with the zero section of N;.
Then there is o meighborhood U of K in N; and a holomorphic
embedding F: U— M such that FIUN S = f.

Proof. By Theorem 2 above there is a neighborhood X of K,
in S, such that X is a Stein submanifold of S, and there is a neigh-
borhood Y of f(K) in M such that Y is a Stein submanifold of M
and f(X)c Y. The conclusion of the theorem now follows directly
from Lemma 3 above.

REMARK. Note that Theorem 3 implies that we can extend
Proposition 3 to clear away all higher order terms at the same time.

A version of Theorem 3 above is also valid for immersions. To
derive this, however, we need the following well-known fact.

LEMMA 4. Let f:S— M be a holomorphic immersion, where
dim; S = m and dim; M = n. Then there is a complex manifold W
with dim¢ W =mn, a holomorphic embedding h:S— W, and a
holomorphic tmmersion g: W — M such that f = goh.

Proof. This follows easily from the tubular neighborhood
theorem for differentiable manifolds, because things can be given
the appropriate complex analytic structure since ¢ is a local
diffeomorphism and % is an embedding.

THEOREM 4. Let S be a Stein manifold and let f:S— M be a
holomorphic immersion. Let KC S be compact, let N; denote the
normal bundle of f, and identify S with the zero section of Nj.
Then there is a mneighborhood U of K im N; and a holomorphic
immersion F: U— M such that F|UN S = f.

Proof. By Lemma 4 above there is a complex manifold W,
dim; W = dim; M, a holomorphic embedding k: S — W, and a holomor-
poic immersion g: W — M such that f=goh. Since ¢ is locally a
diffeomorphism, it is easy to see that the normal bundle of A is the
same as the normal bundle of f. The conclusion of the theorem now
follows easily from Theorem 3.

Our last result involves extending a map (to an equi-dimensional
map) which is only assumed to be regular at a point. In general
there is no normal bundle to extend things to, so we must use



514 CHESTER C. SEABURY

some other object. It turns out that an appropriate extension can
be made to a trivial bundle in this case. We first prove, however,
the following intermediate lemma. '

LEMMA 5. Let E be a vector bundle over a Stein manifold S.
Then for any x,< S there is a trivial bundle A (dim.A = dim E), o
neighborhood U of the zero section of A, and a holomorphic map
F: U— E such that F(x) = x for x€S and F is regular at x, (here
we identify S with the zero section of A and E).

Proof. Let m = dim. S, n = dim. E. Thus the fibers of E are
of dimension n — m. Let f: S— E Dbe the embedding of S as the
zero section of E and let 4: E— C* be a holomorphic embedding (this
is possible since vector bundles over Stein manifolds are Stein
manifolds). By Theorem 8, p. 257 of [2] there is a neighborhood
W of i(E) in C° and a holomorphic retraction p: W—i(E). Let N,.;
be the normal bundle of 7of. By Lemma 3, since S is a Stein
manifold, there is a neighborhood U, of the zero section in N, , and
a holomorphic embedding a: U,— C? of U,.onto an open set in C.
By Lemma 3 above, there is a neighborhood U,c U, of S in N,.;
and a holomorphic embedding F,: U,— C? such that F,|S = isf.
Since the tangent bundle of C? (denoted TC?) is trivial, so is
(o fY*TC* = S x C* and (1o f)*TC? = N, ;D TS, where TS denotes
the tangent bundle of S. Let 7: N,;@ TS— N,, be the obvious
projection (that is, for ne N,; and se€ TS, n(n P s) =n). Let A be
an n — m dimensional subspace of (N,., @D TS),, = (S x C),, (that is,
the fiber over x,) such that i 'cpoF,o7|S X A is regular at z, and
let A be the trivial bundle A = Sx AcS x C*=N,,®TS. If we
set U=AnNz(U,na(W)) and F = iopoF,ox, then clearly A,
U, and F satisfy the conclusions of the lemma, that is, F: U— E is
regular at x,.

We now proceed to the general case. The proof of the following
theorem is contained, in essence, in the proof of the preceding lemma.

THEOREM 5. Let S a Stein manifold and let f: S— M be a
‘holomorphic map which is regular at x,€S. Let K C S be compact
with x,€ K. Then there is o trivial bundle A over S, dim; A = dim, M,
a mneighborhood U of K in A (here S is identified with the zero
section of A), and a holomorphic map F:U-—M such that
FISNU=fand F is regular at x,. ’

Proof. Let m =dim.S, n» =dim.M and let g: S—S X M be
defined by g(x) = (z, f(x)). Clearly g is an embedding. By Theorem
2 above there is an open Stein submanifold X< S with Kc X and
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there is an open Stein submanifold Y < S X M such that f(X)C Y.
There is a holomorphic embedding 4: Y — C? since Y is a Stein
manifold. By Theorem 8, p. 257 of [2] there is a neighborhood W
of #(Y) and a holomorphic retraction o: W—4(Y). Let N,., denote
the normal bundle (over X) of iog. By Lemma 3 above, since X
is a Stein manifold, there is a neighborhood U, of the zero section
of N,., and a holomorphic embedding a: U, — C? of U, onto an open
set in C?. By Lemma 3 above there is a neighborhood U,c U, of
X in N,, and a holomorphic embedding F,: U,— C? such that
F,|XNU,=10g. Since the tangent bundle TC? is trivial, so is
(1°9)*TC* = X X C* = N,.g @ TX whereTXis the tangent bundle of X.
Let 7,: N, , TX be the projection onto N,., along TX. Let 7m,:S X
M — M be the projection onto M. Now let 4 be an n — m dimen-
sional subspace of (X x C?), (that is, the fiber over ;) such that
Tyot topo Fyom, is regular at x, (there is such an A since all the
maps involved have rank at least #) and let A, be the trivial bundle
A =XXxAcCXxC' =N,,dTX. Set U= A4 nza(U,na (W),
set F=n,0i0opoF,om, and set A=Sx ADXx A=A, Then
clearly A, U, and F satisfy the conclusions of the theorem.
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