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ON EXTENDING REGULAR HOLOMORPHIC MAPS
FROM STEIN MANIFOLDS

CHESTER C. SEABURY

In this paper the following results are proved. THEOREM.
Let S9 M be complex manifolds, 5 a Stein manifold, and
/: S-» M a holomorphic embedding. Let Ka S be compact,
and let Nf be the normal bundle of /. We identify S with
the zero section of Nf. Then in N/f there is a neighborhood
U of K, and a holomorphic embedding F:U->M such that
F\UΠ S = /. If / above is an immersion, then there is an
immersion F as above. There is also an analogous result for
holomorphic maps / which are regular at some point p in S

The idea of the proof is to construct a function φ on a
neighborhood of f(K) c M such that φ is strictly plurisub-
harmonic and φ'1^—oo, c\) is compact for all c in /£. Then
a result of Forster and Ramspott is applied to get the final
results. To construct φ, special coordinates are obtained
near f(S) in M.

l Introduction* The central result of this paper is an analogue,
in the category of complex manifolds and holomorphic maps, of the
tubular neighborhood theorem. One result which extends the tubular
neighborhood theorem to this category is due to Forster and
Rampsott and goes as follows. Let S and M be Stein manifolds,
f: S —+M a holomorphic embedding, and identify S with the zero-
section of the normal bundle of /. Then there is a neighborhood
U of S in the normal bundle, and a biholomorphic map /: U—>M
such that f\S = /.

Results of the type mentioned above are sometimes needed when
M is not assumed to be a Stein manifold. For instance, a result of
this type is needed in order to prove the upper semi-continuity of
the differential form of the Kobayashi metric as done by Royden in
[4].

It will be shown that if f:S-+M is a holomorphic embedding
(resp., immersion) S is a Stein manifold, and K c S is compact, then
there is a neighborhood U of K, where K is considered as a subset
of the normal bundle of /, and a biholomorphic map (resp., holomor-
phic immersion) /: U~> M such that f\ S Π U = f\ S Π U. Also, with
S, M, K as above and f: S—+M a holomorphic map regular at a
point poeS (i.e. df: TPQS—>TfiPo)M is injective), then there is a
trivial bundle A over S, dimc A = dimc M, a neighborhood U of K
in Ά9 and a holomorphic map f: U—>M such that f\Sf] U = f and
/ is regular at p0 (that is, in this case df:(TΆ)Po~-+(TM)fiPo) is an

499



500 CHESTER C. SEABURY

isomorphism). The key ingredient in the proofs of these results is
the construction of an appropriate strictly plurisubharmonic function
defined on a neighborhood of f(K) in M> which reduces things to the
result of Forster and Ramspott.

These results are contained in a thesis done at Stanford Univer-
sity, and were announced in [6J. The author would like to thank
Professor Halsey Royden for his helpful advice.

REMARKS. For standard terminology and results in several com-
plex variables we refer to the books of Gunning and Rossi [2] and
Hδrmander [3].

2* To construct the desired strictly plurisubharmonic function
on M, we need to obtain coordinate systems which are related to
each other in a special way. This section will contain the needed
results. The main fact used here is that S is a Stain manifold and
hence the one-dimensional cohomology of S with coefficients in a
coherent analytic sheaf vanishes.

NOTE. ( a ) All coordinate neighborhoods mentioned in the
remainder of this paper are assumed to be polydiscs with compact
closure.

(b) A point on a manifold will be identified its with coordinates
with respect to a given coordinate system under consideration unless
some confusion arises from doing so.

Let S be a Stein manifold, dim S — m, M is a complex manifold,
dim M = n, m < n, and let f: S—+M be a holomorphic embedding.
By the implicit function theorem, for any pe S, there is a coordinate
system (Qt, z) in M near f(p) such that S Π Qz = {q e Qz \ z,{q) = 0,
m < j ^ n). In everything below, all coordinate systems in M near
f(S) will be assumed to be of this type.

NOTE. Throughout the rest of this section we assume we are
given a Stein manifold S, dimc S = m, a complex manifold M,
dimc M = n > m, and a holomorphic embedding f: S~+M. We let Nf

denote the normal bundle of / and we let TS denote the bundle of
holomorphic tangent vectors to S.

We now take the first step towards getting a collection of ap-
propriately related coordinate systems.

PROPOSITION 1. There is a collection ^ of coordinate systems
(Qβ, z) of the above type which cover f(S), is as fine as we like, and
satisfies the following property: if (Qβ, z) and (Qw, w) are in ^



ON EXTENDING REGULAR HOLOMORPHIC MAPS 501

then the Jacobian of the change of coordinates in Qz Π Qw is of the
form

τzw _ d(wl9 " , Wm)

Proof. By the way we have chosen our coordinates, it is clear
that the Jacobian [dwjdzj], when restricted to /(S), is of the form

(JΓ
0

AZW

Jlw

We can consider Azw as a holomorphic section of the bundle
Horn (JV>, TS) over Qz Π Qw, by considering it as the matrix of a
bundle map Np\Qzf]Qw-+TS\QznQw with respect to the basis {d/dzm+1,
• , d/dzn} in Nf and the basis {d/dwlf , d/dwj in TS. Thus the
collection {Azw} determines a 1-cocycle {Azw} on S, with respect to the
covering {QJ, with coefficients in the sheaf, $om(Nf, TS), of germs
of holomorphic sections of Horn (Nf, TS) (see [2] p. 256).

We have H\Sf £om (Nf, TS)) = 0 since S is a Stein manifold.
Because we have taken all the Q/s to be polydiscs, the covering {QJ
is a Leray covering and hence there is a 0-cochain {Bz} on S, with
respect to the covering {Qz}, whose coboundary is {Άzw}, i.e. Azw =
ΰ w - Bz. Let βw(2;, w) be the matrix of Bw with respect to z-
coordinates in Nf and ^-corrdinates in TS etc. We now modify
our old corrdinates z, w to get new coordinates ζ in Qz and ω in
Qw defined by

zs
-Bz(z,z)(zlf --,zm)\l :f^!;

and

-Bw(wy w)(w19

Then on /(S) we have

-Bw{w,w)

I.-.
Tzw

ί/2

ί|JL
0 Jjj
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Let ^ be the collection of all coordinate systems (Qz, ζ) as just
obtained. Clearly <g* satisfies the properties stated in the proposition.

NOTE. From now on we work within the collection ^ of
coordinate systems obtained above.

Next we want coordinate systems around f(S) which are related
to each other by the Jacobian of the change of coordinates on /(S),
up to terms "third order" and higher in the variables zm+ι, -*-,zn.
This is done inductively, so we start with an easy special case, and
eliminate the details in the general case.

NOTATION. Let Nf be the normal bundle of / and let TS be
the holomorphic tangent bundle of S; let \>V and τS be the cor-
reponding sheaves of holomorphic sections, and let Λ"* be the dual
of

COCYCLE LEMMA S. Let Λr> ^f*, τS be as above. Associate to
each ordered intersection Quf]Qw the section of
(resp. τS (x) ̂ T * (x) ̂ r *) given by

^ 3 ^ 3 ^ ^Wk 0 dWι _
r)fe,z=m+i dwkdWι dur

resp.Σ, Σ. ^-4r

Then the collection {A™} (resp. {i?*™}) determines a 1-cocylce on S with
respect to the covering {Qz}, with coefficients in
(resp. τS (g) ̂ Γ* (x) ^T*).

Proof. Step a. Suppose m < k, I ^ n and consider coordinate
systems (Qu,u), (Qw,w), and (Qe,z). It is clear that on Qu f] Qw n Qz ΓiftS)
we have

= Q s o ^ d2wj dur ^ Q

dwkdwι ' i=i dwkdwι dwj

and by calculating using the chain rule we get

(S.a) 0 = dWh

ι duhdUi dwk dw} dza

dza dzb dur

a,b,j=i dzadzb dwk dWi dWj '

Step b. Notice now that on f(S) we have dwjdzb = 0 for
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<α <; m < δ or b ^ m < a. Using this with (S.a) we now get that

<S.b)

Σ
a,h,i=m+l

= Awu + Azw + Auz .

It is now evident that the collection {Awu} determines a 1-cocycle
on S with respect to the covering {QJ, with coefficients in

The proof for the case τS®Λr*®Λr* is exactly the same,
except that the r index varies between 1 and m, instead of between
m + 1 and n as above, and Awu is replaced by Bwu.

PROPOSITION 2S. There is a subcollection &2 of ^ such that the
coordinate poly discs of ϋ% cover f(S), the covering is as fine as we
like, and for (Qz, z) and (Qw, w) in 3t2 we have d2wrjdzhdzι = 0 on
f(S) for k, I > m.

Proof. Step A. Let {Azw} and {Bzw} be the cocycles in the
lemma above. Since S is Stein, we have that

= Hι(τS 0 ^T* ® Λf*) = 0 .

Each member of the covering {Qz}, which consists of all coordinate
polydiscs in ^ is a Stein manifold, hence there is a 0-cochain {Γ(z)}
with respect to the covering and with coefficients in (τS 0 ^/K) 0
. ^ * ( x ) ^ * , whose coboundary is {Bzw} 0 {Azw}> i.e. Bzw 0 Azw =
Γ(w) - Γ(z). Let {Tkι(l)(z)} denote the components of Γ(z) with
respect to the basis {d/dur (x) dwk 0 dwt}9 that is

r = i k,l = m + l OUr

in Qz Π Qu Π Qw. In this notation we of course allow u — w — z etc.

Step B. In each coordinate poly disc Qz we define the functions
C = «r - Σl i«+i TϊzCXΦΛ. Since 24 = 0on /(S) for fc ^ m + 1, it
is clear that dζf/dz3 — δζ on /(S), so[3ζr/3 ŝ] = In, the identity matrix.
It is now clear that if the functions ζr are restricted to a sufficiently
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small poly disc Qζ c Qz (whose center is the same as that of Q2), they
give a set of coordinates there. Let i^2 be the collection of all
coordinate systems {(Qζ, ζ)}, where the (Qc, ζ) are obtained from the
(Qz, z) in ^ as described above. If (Qc, ζ) and (Qω, (o) are in Ξflf

then we have on f(S)

and hence £^2 is a subcollection of ^ . Also i^2 is as fine as we like
and clearly its coordinate polydiscs cover f(S).

Step C. Now we need only show that if (Qζ, ζ) and (Qm w) are
in £&29 then for k,l> m we have d2wr/dζkdζι = 0 on f(S). We

consider only r > m, since the r ^ m case differs only by changing
the range of r index below.

Using the chain rule, the fact that terms of the form dwjdzb = 0
on f(S) for a ̂  m <b or b ̂  m < a, the definition of Tea(l)(z), and
expressing derivatives of the form d2zb/dζkdζt (b > m) in terms of
things like yζe/dzhdzt using (S.a), we have on f(S) that

υQkθQι a,e = m + l ^ ζ f c $(

(S.c) + Σ I

Γ- Σ

It is clear that d2α)r/dζfc3ζ, = 0 on f(S) for all k, I > m if and only
if

By the preceding, and using the facts that dωrfdwa = δr

a and
d/dWr = d/dωr on f(S), we have then

Σ 32ft)^ J _ 0 dζ, (g) dζ.

+ Σ
a,b,c,k,l,r =

- o
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This last equality is obtained after expressing in everything in terms
of the basis {d/dza (g) dzb (x) dzc}. We have now finished the proof.

We now clear away higher order terms from the change of
coordinates w(z) on Qz Π Qw. The proofs are much the same as in
the lemma and Proposition 2.2S above, but the calculations become
a bit longer. We will not carry out all the detail.

We have constructed the collection £%. We now assume that
we have constructed collections £^_i c ϋ%_2 c c ϋ% such that if
(Qz, z) and {Qw, w) are in 3?^, then for 2 ̂  k <^ t ~ 1 we have
dkwr/dzjl dzJIc = 0 on f(S) for j19 , j k > m. We now continue
the induction.

COCYCLE LEMMA G. Associate to each ordered intersection
Qu Π Qw of coordinates in ̂ _ i , the section of ̂ K (x) ̂ K* (x) (
(resp. τS®^V* (x) (x) Λ^*)—with t factors of <yί^*—given by

dwkl - - dwkt

(resp. Bwu = {same sum with 1 < r ^ m instead}). Then the collection
{Awu} (resp. {Bwu}) determines a 1-cocycle on S with respect to the cover-
ing {QJ, with coefficients in Λ^ (x) ̂ " * (x) (x) -^"* (resp. τS(x)

Proof. Step a. As in Step a of the previous cocycle lemma,
we start with the fact that for k19 , kt > m we have on f(S)

(G.a) d*Wj - 0 - Σ dtWj dUr

dwkl dwkt 3=ι dwkl δwkt dWj

Calculating using the chain rule we get a formula analogous to (S.a),
but very much messier to write down, so we don't write it here
but refer to it as (G.a).

Step b. Using (G.a) and the fact that our coordinate systems
are in ϋ%_!, after calculating with the chain rule we get that

0 =

=

r,klt

rk ,

+
•j

+

_Σ

= m-

„

Σ
n

Σ

~ ® dwkl (X) . . . (x) dwkt

(G.b) + Σ dVr d^dz h®. .(g)dzjt

j dzh 3ZJt 3Wr

T d*Z\ ~®duhy®'-®du
ldUhl ' OUht OZr
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Thus, {Awu} is a cocycle. The τ S ® ^ * ( g > - ( x ) ^ * case is handled
as before.

PROPOSITION 2G. For all t ^ 3, there is a subcollection &t of
ϋ%_! such that the coordinate polydiscs of ϋ% cover f(S), the covering
is as fine as we like, and for (Qz, z) and (Qw, w) in &t we hava
dιwr\dzkl dzh — 0 on f(S) for kίf , kt > m.

Proof. Step A. Starting with the cocycles {Azw} and {Bzw} of
the preceding lemma, we obtain the 0-cochain {Γ(z)} with components

e x a c t ^ y a s * n Step ^ °̂  Proposition 2S.

Step B. Exactly as in Step B of Proposition 2S we get now
coordinate systems (Qζ, ζ) in ^ from (Q2, z) in 3ft_x by setting

Cr = Sr - Σ ϊ -.* -«+l % ".* ( ^ ) ( « K •••«*.
i» ί l ty % J i t

Sίep C. ( i ) Next we must show that the coordinate systems
obtained in Step B form a subcollection of &t-v Suppose
2 ^ q ^ t — 1 and consider dqωr/dζkί 3ζfcg where kί9 - ,kq> m+
Using the chain rule we express dqcor/dζkl dζkq in terms of

dqωr dqwa daζh

dwh dwjq dzhl - dzhq dzlχ dzlq

and various lower order derivatives. From the definition of ζ6, ωrf

and the fact that the z and w coordinates are in 3ft-» all these
terms (and hence dqωr/dζkl dζkq) will be 0. So our new coordinates
are in £2ίt^

( i i) It only remains now to show that for klf , kt> m we
have dtωr/dζkl 3ζfc. = 0 on f(S). We use the method of paragraph
(i) above to get an expression for d^Jdζ^ 3 ζ v Using the fact
that the ω and ζ coordinates are in ϋ ^ , we get an f(S)

— Σ
dw3\

lib ^J fΛ\ ^ ^ / ) 1 ^ /J/^

,jt=m+i dwa dzh dZjt dζkl

A dωr dzb dz3\ dZjt

...,jt=m+ι 3zb dζa dζkl dζkt dz
h

We now proceed exactly as in (S.C) and following in Step C of
Proposition 2S to conclude the proof.

3* Throughout this section, unless stated to the contrary, we as-
sume we are given complex manifolds S, M, m — d i m c S < n = dimcM,
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S is a Stein manifold, Kc S is compact, and f: S—+ M is a holo-
morphic embedding.

Having obtained all the special collections of coordinate systems
we need in the previous section, we now proceed to construct a
strictly pluri-subharmonic function φλo such that φ^([ — oo f a]) is
compact for all a e R and φλo is defined on a neighborhood of f(K).
We will thus have f(K) contained in a Stein submanifold of M.
The desired strictly pluri-subharmonic function will be gotten by
using a certain strictly pluri-subharmonic function on Nff and trans-
ferring it to an open subset of M by means of the maps Δzw defined
below.

NOTE. Sometimes below for clarity we will use the notation
pz(z) = pz(z19 , zn) to mean the point q on M such that q has
coordinates (zlf •••, zn) with respect to the coordinate system (Qz, z).

Also if we are given a point peQz with coordinates z(p) =
(z^p), , zn(p)), then we let z = z(p) = (zlf , zm, 0, , 0) denote
the point q on f(S) Π Qz such that zt(q) — zt{p) for 1 <£ ΐ ̂  m and
^i(ί) = 0 for m < i g w.

Also below we will sometimes implicitly identify a point s e S
with /(s) e M, and we will often identify a point p e i l ί with its set
of coordinates (z^p), , £»(}>)) with respect to a given system (Qz, z).

DEFINITION. Let (Qz, z) and (Qw, w) be in 3rt and let (Q2, 2) and

(Qw> w) be the associated coordinate systems on S. Let (T'z; z, d/dz)
denote the coordinate system in T[ = Nf \ Qz determined by the co-
ordinates (zlf •••, zm) in QzczSczNf and the basis d/dzm+1, •••, 3/3^ in
the fibers of iV/ over Qz. Let Tz(zTs be the coordinate polydisc given
by Γz = {v e T[ \ {zjy), , zjy), am+1(v), , ajy)) e z(Qz) - (image of
QzaM in Cπ by the coordinate functions)}, where v has coordinates
(z^v), "'fzjv)fam+ι(v)f '"9an(v) with respect to (Tz; z, d/dz). We
then define

ΔZW: τz n τw — > τz n τw

by

v,ίAfe,...,,.))=Wt^(Σ

= Σi = m+l 3^^- j=m + l dWj

We now describe some properties of the maps Δxw.

PROPOSITION 3. Let (Qg, z) and (Qw, w) be in ^ _ t . Then we
have
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ΔΛ Σ **£-{$)) = Σ [z} + o(2i.+1)]^-(2(<ί>(«))),

where 0 ( » » + ΐ ) means of order at least t in the variables zm+ί, •••, 2 Λ .
^s) = ^ ( z ) + O(zL+ί) /or 1 ^ i ^ m.

Proof. Considering what we are trying to prove, we need to
express Azw solely in terms of the basis d/dzm+1, , d/dzn for Nf over
Qz Π Qw. By the definition of Azw we have

Σ *nU*)) = Σ
+i d̂  / i +

= Σ

It is easily seen that

= Σ

Σ

Thus on S (where we consider S as the zero section of iV/), that is
when z = z = (z19 , zm, 0, , 0),

Σ

0 =

since all the coordinate systems involved are in 2$t_x and wά(z) = 0
for m < j ^ n.

From this it is clear that tangential derivatives (i.e. derivatives
involving only d/dza'$ with 1 <; α ̂  m) of Σ ; = m + i Wj(z)(dzk/dws)(w(z)) of
all orders vanish on S. It is also clear that any derivative of the
form dr/dzkl dzkr with kλ> m say and k5 <£ m for i ^ 1 vanishes
on S.

To complete the proof we need only show that normal deriva-
tives (i.e. derivatives involving only d/dza's with a > m) of order r,
with 2 <; r <; t — 1, vanish on S. Suppose 2 <; r ^ ί — 1 and
kίf —, kr > m. Using the product rule we see that

dzkι dz

consists of terms of the form
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32^ dzJ8 dzlq dzhldw5

If g = 0 the first factor is 0 on S since all coordinate systems are

in ^t-i Since

J__ = y 9w/ _3_
3 ^ i=«+i 3zA 3 ^

on S(/& > m), for q ^ 1 the second factor is

Carrying out further differentiations we see that this factor is 0 on
S since our coordinates are in £^_!. This completes the proof of
the main part of the proposition.

The final statement of the proposition is clear since all coordinate
systems are in 3f%-x.

With Proposition 3 says in essence is that if we use the coordinate
system (Qz, z) in S and the basis d/dzm+1, , d/dzn in Nf\QzC)Qw, then
with respect to these coordinates Azw differs from the identity map
(zίf , zm; zm+ly , zn) ι-> (z19 , zm; zm+19 , zn) only by terms which
are order t and higher in the variables zm+1, * ,zn.

Construction of the function φλQ.

NOTE. Throughout the rest of this section we use only coordinates
in 3fz.

Since S is a Stein manifold, there is a strictly plurisubharmonic
function p on S such that p > 0 and for all ceR, {pe S\ p(p) <£ c}
is compact. It is clearly sufficient to assume that the set K is of the
f o r m K = {p eS\p(p) ^ b}. C h o o s e blf 62, 63 s u c h t h a t b <b2<b3<b1

and set Kt = {p e S\p(p) ^ 6J.
Consider the collection of open sets Szf — {Qz} where (Qz, z) is in

^ 3 . For each Qz in s-f let Rz be a polydisc with compact closure
in Qz (for instance if the image, by the coordinate functions zlf zn,
of Qz is the polydisc Ari x x J r %, let β 2 be the set whose image
by the coordinate functions is the polydisc Jril2 x x Λrn,2). Since
Kγ is compact there is a finite subcollection & — {Rza} of Ssf such
that \JaRza covers /(ZΊ). By very standard theorems there are C°*
functions ηa such that 0 <̂  ηa ^ 1, supp ^α c ^z«, and Σ * ?« = 1 on a
neighborhood Γ of

NOTE. For convenience, from now on we use the notation Qa

for Qzaf Ra for Rza, and pa(dlf - -, dn) for p , ^ , , dΛ). Also
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AddB means A has compact closure in B.
Since Rac.aQa we have £ α i ί l ^ 2 c c Q α i π 4 2 and thus by

elementary calculus there is a constant D > 1 (since we are dealing*
with only a finite number of RJs) such that for p e \Ja Ra we have
|C+;(p)| ^ ΰ s u p l g ί ^ _ m |Cκ(p)l for all 1 < i < *& - m if p e β β ι n S β 2 .

For each point p e S there are m global (holomorphic) sections
of Nf whose values at p form a basis for the vector space (N*)p.
(see [3], p. 138). Thus there are global (holomorphic) sections of
N*, call them σ19 , σr, such that for all p e f~~ι{T) some m of these
sections form a basis for (N*)p. Now consider the function μ on
iSΓ/ given by μ(v) = Σ*=i ^i(v)^t(v). Since each function a^v) is a
holomorphic function on Nf9 clearly μ is plurisubharmonic on Nf

and vanishes on the zero section S c Nf. Let π: Nf~* S be the
projection map of the bundle Nf over S and define p — poπ. It is
now easy to see that for all λ ^ 0 the function ψλ = p + (λ + 1)^
is strictly plurisubharmonic on Nf.

Throughout the remainder of this section we use (Qw w) to
denote one of the coordinate systems (Qa, z

a). Also we express the
forms tf* in local coordinates by σ^p) = Σ?=m+L af{p)dza

j in Qa and by

σip) = Σ3L.+1 ̂ ( ? ) ί w i in 0..
Now in U« ̂  (° r in fact in \Ja Qa) we define the function

&(λ ^ 0) by

a \ \j = m + l dWj

(3.1) = Σ VJ

Σ

Above we have written (̂2>α(̂ α(̂ ))) where, strictly speaking, we mean
p(f~ι(Poc(za(x)))), since p is a function on the zero section SaNf.
We will not be so meticulous below and will write things like
p(za(x)) where we mean pif'^Pai^i^)))) or dldzό{za(x)) where we mean
dldzβ{pa{z«(x))).

By Proposition 3 we have

ρ(za(x)) = ρ(pw(w(x) + Oa(wl+h))) = ρ(w(x)) + Oα(w4

w+A, w4

w+λ) ,

where O(w*m+h9 w
4

m+h) means terms which are at least fourth order in
the variables wm+lf , wu9 wm+1, , wn9 and

Σ
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= Σ α? Oa{wl+h))[wβ + Oa(wl+h)]

Therefore

(3.2) Σ
k

ijw(w(x))w3 wk

From this formula it is easy to see that on f(S) we have

d2p

Γ d*Φx
L dwadwh

dwadwh

0

0

(λ + 1) d2μ
dwadwb J

Thus [d2φλ/dwadwb] is positive definite on f(S) and hence ^ i s strictly
plurisubharmonic on some neighborhood of f{K^). In particular ψ0 is
strictly plurisubharmonic on a neighborhood Er of /(1Q. Let
EaaE' C)T be another neighborhood of f(Kx).

We now need to make some restrictions on the size of the last n — m
coordinates in each Ra. First we assume that c > 0 is small enough
so that if \z3 (x)\ < c for all m + 1 ^ j ^ n and pa(za(x)) ef(K^), then
x e E. Second, we choose c so small that, in addition to the above
property, if \z%x)\ < c for all m -\- 1 ^ j ^ n and pα(£*(#)) e jBα Γi £tαι9

then we have pα(zα(x), , ^ ̂ (x), αm + 1, , αn) e Qα Π Qβl whenever
I α, I < c for m + 1 ^ i ^ w. Thirdly we choose c small enough so
that also if for some αQ, pαo(zα°(x)) is outside f(Kb) and | zf{x) \ < c
for m + 1 ^ i ^ n, then for any other α we have pα(Sα(x)) gf(Kb2).

Before going further we remark that the forms at determine a
hermitian metric in Nf over f~ι{T) given by (v, w) = Σ<=i ^ ( ^ i ί ^ ) -
Let | | . | | denote the norm determined by this metric. Then there is a
constant Lrgl such that for all α, 1/L sup i > w \z"\ ̂  | |Σi=m+i^(^/^i)ll =

%\z"\ since Qα is compact and there are only finitely Qα's.
By (3.2) we have in E

L dwadw
L_Ί = Γ dVo Ί
M)A J L dwαdwh J OWaOWh

Σ

We have already noted that the first term [d2φ0/dwadwb] is positive
definite in E. The second term is clearly positive semi-definite. Let
t > 0 be such that if \ai3 \ < t, then

dwaowb J
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is also positive definite in E. Clearly then

dwadwbJ \-dwadwb ^= Σ

is also positive definite in £7. Now let N be such that the term
O(wL+ί , ̂ m+i) above satisfies |O(w»+fc, wi+^I^JVsup,- | Wm+i I on the jRα's.
Let d = b2 — vamK p. Now choose c small enough so that in addition
to the three properties mentioned above, c also satisfies 4Z)4<iL2/c2 <
tjNc\ that is, c < t/AD'dNL2, and choose λ0 such that AD'dL/c? < λ0 <
t/Nc3. Then clearly d < λ0c

2/4D4L2 - X0(c/2D2Lf and λ0ΛΓc3 < ί. Thus
we now have that φiQ is strictly plurisubharmonic in G = E Γ\{x\for
some a, \z^+i(x)\ < c, for all i}. Let H = {x\for some α, ̂ α(^α(^)) € iί&3

and |^(a?)| < c/2Z? for m + 1 ̂  i ^ 72,} c G. Note that HcG and
that S" is compact. It is also clear by the way our constants were
chosen that f(K) c E Π ΦJ^([- ^ , &2]) c JH" and thus E n ̂ ( ί - °°, δ8] is
compact.

THEOREM 1. // ^ is strictly plurisubharmonic in the open set
E and φ'W—00, a]) is a compact subset of E, then φ~\(— °°, a)) is a
Stein manifold.

Proof. See [3], p. 116.

Using this theorem and the strictly plurisubharmonic function
φλo constructed above, we see that we have now proved the following
theorem.

THEOREM 2. ///: S-+Mis a holomorphic embedding and KaS
a compact set, then there is an open Stein submanίfold U of M
such that f{K) c M.

4* We are now ready to prove our final results. First we need
the following lemma.

LEMMA 3. Let X, Y be Stein manifolds and f:X—*Y a
holomorphic embedding. Then there is a neighborhood U of X in
the normal bundle of f (where X is identified with the zero section
of the normal bundle of / ) , and a holomorphic embedding F: U'—-• Y
such that F\X = /.

Proof. See [1], p. 162, Hilfsatz 11.

Our main result now follows easily.
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THEOREM 3, Let f: S—+M be a holomorphic embedding, where
S is a Stein manifold. Let K be a compact subset of S and let Nf

be the normal bundle of f. Identify S with the zero section of Nf.
Then there is a neighborhood U of K in Nf and a holomorphic
embedding F:U-+M such that F\UΓ)S = f.

Proof. By Theorem 2 above there is a neighborhood X of K,
in S, such that X is a Stein submanifold of S, and there is a neigh-
borhood Y of f(K) in M such that Y is a Stein submanifold of M
and f(X) c Y. The conclusion of the theorem now follows directly
from Lemma 3 above.

REMARK. Note that Theorem 3 implies that we can extend
Proposition 3 to clear away all higher order terms at the same time.

A version of Theorem 3 above is also valid for immersions. To
derive this, however, we need the following well-known fact.

LEMMA 4. Let f: S-+M be a holomorphic immersion, where
dimc S — m and dimc M = n. Then there is a complex manifold W
with dimc TF"= n, a holomorphic embedding h:S-~»W, and a
holomorphic immersion g: W-+M such that f = g°h.

Proof. This follows easily from the tubular neighborhood
theorem for differentiable manifolds, because things can be given
the appropriate complex analytic structure since g is a local
diffeomorphism and h is an embedding.

THEOREM 4. Let S be a Stein manifold and let f: S —• M be a
holomorphic immersion. Let KaS be compact, let Nf denote the
normal bundle of f, and identify S with the zero section of Nf.
Then there is a neighborhood U of K in Nf and a holomorphic
immersion F: U—+M such that F\UΠ S = /.

Proof. By Lemma 4 above there is a complex manifold W,
dimc W = dimc M, a holomorphic embedding h: S—* W, and a holomor-
poic immersion g: W—*M such that / = g°h. Since g is locally a
diffeomorphism, it is easy to see that the normal bundle of h is the
same as the normal bundle of /. The conclusion of the theorem now
follows easily from Theorem 3.

Our last result involves extending a map (to an equi-dimensional
map) which is only assumed to be regular at a point. In general
there is no normal bundle to extend things to, so we must use
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some other object. It turns out that an appropriate extension can
be made to a trivial bundle in this case. We first prove, however,
the following intermediate lemma.

LEMMA 5. Let E be a vector bundle over a Stein manifold S.
Then for any xQe S there is a trivial bundle A (dimc A = dimc E), a
neighborhood U of the zero section of Ά, and a holomorphic map
F: U-+E such that F(x) = x for xe S and F is regular at x0 (here
we identify S with the zero section of A and E).

Proof. Let m = dimc S, n = dimc E. Thus the fibers of E are
of dimension n — m. Let f: S—+E be the embedding of S as the
zero section of E and let i: E—+Cq be a holomorphic embedding (this
is possible since vector bundles over Stein manifolds are Stein
manifolds). By Theorem 8, p. 257 of [2] there is a neighborhood
Wof i(E).in Cq and a holomorphic retraction p:W~»i(E). Let Nt.f

be the normal bundle of iof. By Lemma 3, since S is a Stein
manifold, there is a neighborhood U1 of the zero section in Nt.f and
a holomorphic embedding a: Uί~+Cq of t^.onto an open set in Cq.
By Lemma 3 above, there is a neighborhood TJ% c UΛ of S in Nt.f

and a holomorphic embedding F2:U2—+Cq such that F2\S — i°f.
Since the tangent bundle of Cq (denoted TCq) is trivial, so is
(i°f)*TCq - S x Cq and {iof)*TCq = JV*./© TS, where TS denotes
the tangent bundle of S. Let π: Nt.f® TS—»Ni.f be the obvious
projection (that is, for n e Nt.f and s e TS, π(n 0 s) = n). Let A be
an n — m dimensional subspace of (Nt.f 0 TS)Xo = ( S x Cq)XQ (that is,
the fiber over x0) such that i~1°p°F2°π\S x A is regular at cc0, and
let A be the trivial bundle i = S x i c S x C ? = JV^ 0 TS. If we
set Z7= -An π~\U2Sλ cr\W)) and F = i~'opoF2oπ, then clearly A,
?7, and F satisfy the conclusions of the lemma, that is, F: U-+E is
regular at x0.

We now proceed to the general case. The proof of the following
theorem is contained, in essence, in the proof of the preceding lemma.

THEOREM 5. Let S a Stein manifold and let f:S—>M be a
holomorphic map which is regular at x0 e S. Let KaS be compact
with xQ e K. Then there is a trivial bundle A over S9 dimc A — dimc M,
a neighborhood U of K in A (here S is identified with the zero
section of A), and a holomorphic map F;U—+M such that
F\S n U = / and F is regular at x0.

Proof. Let m = dimc S, n~ dimcM and let g: S—> S x M be
defined by g(x) = (x, f(x)). Clearly g is an embedding. By Theorem
2 above there is an open Stein submanifold Xd S with KcX and
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there is an open Stein submanifold YdS x M such that f(X)a Y.
There is a holomorphic embedding i: Y—>Cq since 7 is a Stein
manifold. By Theorem 8, p. 257 of [2] there is a neighborhood W
of i(Y) and a holomorphic retraction p: W—>i(F). Let Nt.g denote
the normal bundle (over X) of i°g. By Lemma 3 above, since X
is a Stein manifold, there is a neighborhood Uι of the zero section
of Ni.g and a holomorphic embedding a: U1—*Cq of ϋΊ onto an open
set in Cq. By Lemma 3 above there is a neighborhood U2 c Z7X of
X in Nt.g and a holomorphic embedding F2: U2-+Cq such that
F2\X f]U2 = iog. Since the tangent bundle TCq is trivial, so is
{iog)*TCq = XχCq = N^.g0 TX whereTXis the tangent bundle of X.
Let π^Ni.gφ TX be the projection onto Nt.g along TX. Let πM\ S x
M —> ikf be the projection onto ikf. Now let A be an w — m dimen-
sional subspace of (X x Cq)Xo (that is, the fiber over x0) such that
πMoi~ιopoF2oπι is regular at x0 (there is such an A since all the
maps involved have rank at least n) and let Άx be the trivial bundle
A = Xx AaXx Cq = N^φTX. ^ Set U=ΆιΠ π~\U2 Q or\W)\
set F — πj^oi^opoF2oπlf and set Ά — SXA'DXXA^Ά^ Then
clearly A, U, and F satisfy the conclusions of the theorem.
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