ON EXTENDING REGULAR HOLOMORPHIC MAPS FROM STEIN MANIFOLDS

Chester C. Seabury

Abstract

In this paper the following results are proved. Theorem. Let S, M be complex manifolds, S a Stein manifold, and $f: S \rightarrow M$ a holomorphic embedding. Let $K \subset S$ be compact, and let N_{f} be the normal bundle of f. We identify S with the zero section of N_{f}. Then in N_{f}, there is a neighborhood U of K, and a holomorphic embedding $F: U \rightarrow M$ such that $F \mid U \cap S=f$. If f above is an immersion, then there is an immersion F as above. There is also an analogous result for holomorphic maps f which are regular at some point p in S.

The idea of the proof is to construct a function ϕ on a neighborhood of $f(K) \subset M$ such that ϕ is strictly plurisubharmonic and $\phi^{-1}((-\infty, c])$ is compact for all c in R. Then a result of Forster and Ramspott is applied to get the final results. To construct ϕ, special coordinates are obtained near $f(S)$ in M.

1. Introduction. The central result of this paper is an analogue, in the category of complex manifolds and holomorphic maps, of the tubular neighborhood theorem. One result which extends the tubular neighborhood theorem to this category is due to Forster and Rampsott and goes as follows. Let S and M be Stein manifolds, $f: S \rightarrow M$ a holomorphic embedding, and identify S with the zerosection of the normal bundle of f. Then there is a neighborhood U of S in the normal bundle, and a biholomorphic map $\widetilde{f}: U \rightarrow M$ such that $\widetilde{f} \mid S=f$.

Results of the type mentioned above are sometimes needed when M is not assumed to be a Stein manifold. For instance, a result of this type is needed in order to prove the upper semi-continuity of the differential form of the Kobayashi metric as done by Royden in [4].

It will be shown that if $f: S \rightarrow M$ is a holomorphic embedding (resp., immersion) S is a Stein manifold, and $K \subset S$ is compact, then there is a neighborhood U of K, where K is considered as a subset of the normal bundle of f, and a biholomorphic map (resp., holomorphic immersion) $f: U \rightarrow M$ such that $\widetilde{f}|S \cap U=f| S \cap U$. Also, with S, M, K as above and $f: S \rightarrow M$ a holomorphic map regular at a point $p_{0} \in S$ (i.e. $d f: T_{p_{0}} S \rightarrow T_{f\left(p_{0}\right)} M$ is injective), then there is a trivial bundle \widetilde{A} over $S, \operatorname{dim}_{c} \widetilde{A}=\operatorname{dim}_{c} M$, a neighborhood U of K in \tilde{A}, and a holomorphic map $\tilde{f}: U \rightarrow M$ such that $\tilde{f} \mid S \cap U=f$ and \widetilde{f} is regular at p_{0} (that is, in this case $d \widetilde{f}:(T \widetilde{A})_{p_{0}} \rightarrow(T M)_{f\left(p_{0}\right)}$ is an
isomorphism). The key ingredient in the proofs of these results is the construction of an appropriate strictly plurisubharmonic function defined on a neighborhood of $f(K)$ in M, which reduces things to the result of Forster and Ramspott.

These results are contained in a thesis done at Stanford University, and were announced in [6]. The author would like to thank Professor Halsey Royden for his helpful advice.

Remarks. For standard terminology and results in several complex variables we refer to the books of Gunning and Rossi [2] and Hörmander [3].
2. To construct the desired strictly plurisubharmonic function on M, we need to obtain coordinate systems which are related to each other in a special way. This section will contain the needed results. The main fact used here is that S is a Stain manifold and hence the one-dimensional cohomology of S with coefficients in a coherent analytic sheaf vanishes.

Note. (a) All coordinate neighborhoods mentioned in the remainder of this paper are assumed to be polydises with compact closure.
(b) A point on a manifold will be identified its with coordinates with respect to a given coordinate system under consideration unless some confusion arises from doing so.

Let S be a Stein manifold, $\operatorname{dim} S=m, M$ is a complex manifold, $\operatorname{dim} M=n, m<n$, and let $f: S \rightarrow M$ be a holomorphic embedding. By the implicit function theorem, for any $p \in S$, there is a coordinate system $\left(\widetilde{Q}_{z}, z\right)$ in M near $f(p)$ such that $S \cap \widetilde{Q}_{z}=\left\{q \in \widetilde{Q}_{z} \mid z_{j}(q)=0\right.$, $m<j \leqq n\}$. In everything below, all coordinate systems in M near $f(S)$ will be assumed to be of this type.

Note. Throughout the rest of this section we assume we are given a Stein manifold $S, \operatorname{dim}_{c} S=m$, a complex manifold M, $\operatorname{dim}_{c} M=n>m$, and a holomorphic embedding $f: S \rightarrow M$. We let N_{f} denote the normal bundle of f and we let $T S$ denote the bundle of holomorphic tangent vectors to S.

We now take the first step towards getting a collection of appropriately related coordinate systems.

Proposition 1. There is a collection \mathscr{C} of coordinate systems $\left(\widetilde{Q}_{z}, z\right)$ of the above type which cover $f(S)$, is as fine as we like, and satisfies the following property: if $\left(\widetilde{Q}_{z}, z\right)$ and $\left(\widetilde{Q}_{w}, w\right)$ are in \mathscr{C},
then the Jacobian of the change of coordinates in $\widetilde{Q}_{z} \cap \widetilde{Q}_{w}$ is of the form

$$
\left[\frac{\partial w_{i}}{\partial z_{j}}\right]=\left(\left.\frac{J_{1}^{z w}}{0} \right\rvert\, \frac{0}{J_{2}^{z w}}\right) \quad \text { on } f(S), \text { where } \quad J_{1}^{z w}=\frac{\partial\left(w_{1}, \cdots, w_{m}\right)}{\partial\left(z_{1}, \cdots, z_{m}\right)}
$$

Proof. By the way we have chosen our coordinates, it is clear that the Jacobian [$\partial w_{i} / \partial z_{j}$], when restricted to $f(S)$, is of the form

$$
\left(\begin{array}{c|c}
J_{1}^{z w} & A^{z w} \\
\hline 0 & J_{2}^{z w}
\end{array}\right) .
$$

We can consider $A^{z w}$ as a holomorphic section of the bundle $\operatorname{Hom}\left(N_{f}, T S\right)$ over $Q_{z} \cap Q_{w}$, by considering it as the matrix of a bundle map $\left.\left.N_{p}\right|_{Q_{z} \cap Q_{w}} \rightarrow T S\right|_{Q_{z} \cap Q_{w}}$ with respect to the basis $\left\{\partial / \partial z_{m+1}\right.$, $\left.\cdots, \partial / \partial z_{n}\right\}$ in N_{f} and the basis $\left\{\partial / \partial w_{1}, \cdots, \partial / \partial w_{m}\right\}$ in TS. Thus the collection $\left\{A^{z w}\right\}$ determines a 1-cocycle $\left\{\widetilde{A}^{z w}\right\}$ on S, with respect to the covering $\left\{Q_{z}\right\}$, with coefficients in the sheaf, $\mathfrak{F o m}\left(N_{f}, T S\right)$, of germs of holomorphic sections of $\operatorname{Hom}\left(N_{f}, T S\right)$ (see [2] p. 256).

We have $H^{1}\left(S, \mathscr{F} \circ \mathrm{~m}\left(N_{f}, T S\right)\right)=0$ since S is a Stein manifold. Because we have taken all the Q_{z} 's to be polydiscs, the covering $\left\{Q_{z}\right\}$ is a Leray covering and hence there is a 0-cochain $\left\{\widetilde{B}^{z}\right\}$ on S, with respect to the covering $\left\{Q_{z}\right\}$, whose coboundary is $\left\{\widetilde{A}^{z w}\right\}$, i.e. $\widetilde{A}^{z w}=$ $\widetilde{B}^{w}-\widetilde{B}^{z}$. Let $B^{w}(z, w)$ be the matrix of \widetilde{B}^{w} with respect to z coordinates in N_{f} and w-corrdinates in $T S$ etc. We now modify our old corrdinates z, w to get new coordinates ζ in \widetilde{Q}_{z} and ω in \widetilde{Q}_{w} defined by

$$
\left(\begin{array}{c}
\zeta_{1} \\
\vdots \\
\zeta_{n}
\end{array}\right)=\left(\frac{I_{m}}{0} \left\lvert\, \frac{-B^{z}(z, z)\left(z_{1}, \cdots, z_{m}\right)}{I_{n-m}}\right.\right)\left(\begin{array}{c}
z_{1} \\
\vdots \\
z_{n}
\end{array}\right)
$$

and

$$
\left(\begin{array}{c}
\omega_{1} \\
\vdots \\
\omega_{n}
\end{array}\right)=\left(\frac{I_{m}}{0} \left\lvert\, \frac{-B^{w}(w, w)\left(w_{1}, \cdots, w_{m}\right)}{I_{n-m}}\right.\right)\left(\begin{array}{c}
w_{1} \\
\vdots \\
w_{n}
\end{array}\right)
$$

Then on $f(S)$ we have

$$
\begin{aligned}
{\left[\frac{\partial \omega_{i}}{\partial \zeta_{j}}\right] } & =\left[\frac{\partial \omega_{i}}{\partial w_{j}}\right]\left[\frac{\partial w_{i}}{\partial z_{j}}\right]\left[\frac{\partial z_{i}}{\partial z_{j}}\right] \\
& =\left(\frac{I_{m}}{0} \left\lvert\, \frac{-B^{w}(w, w)}{I_{n-m}}\right.\right)\left(\frac{J_{1}^{z w}}{0} \left\lvert\, \frac{B^{w}(z, w)-B^{z}(z, w)}{J_{2}^{z w}}\right.\right)\left(\frac{I_{m}}{0} \left\lvert\, \frac{B^{z}(z, z)}{I_{n-m}}\right.\right) \\
& =\left(\left.\frac{J_{1}^{z w}}{0} \right\rvert\, \frac{0}{J_{2}^{2 w}}\right)=\left(\left.\frac{J_{1}^{\zeta \omega}}{0} \right\rvert\, \frac{0}{J_{2}^{\zeta \omega}}\right) .
\end{aligned}
$$

Let \mathscr{C} be the collection of all coordinate systems ($\left.\widetilde{Q}_{z}, \zeta\right)$ as just obtained. Clearly \mathscr{C} satisfies the properties stated in the proposition.

Note. From now on we work within the collection \mathscr{C} of coordinate systems obtained above.

Next we want coordinate systems around $f(S)$ which are related to each other by the Jacobian of the change of coordinates on $f(S)$, up to terms "third order" and higher in the variables z_{m+1}, \cdots, z_{n}. This is done inductively, so we start with an easy special case, and eliminate the details in the general case.

Notation. Let N_{f} be the normal bundle of f and let $T S$ be the holomorphic tangent bundle of S; let \mathscr{N} and τS be the correponding sheaves of holomorphic sections, and let \mathscr{N}^{*} be the dual of \mathscr{N}.

Cocycle Lemma S. Let $\mathscr{N}, \mathscr{N}^{*}, \tau S$ be as above. Associate to each ordered intersection $Q_{u} \cap Q_{w}$ the section of $\mathscr{N} \otimes \mathscr{N}^{*} \otimes \mathscr{N}^{*}$ (resp. $\tau S \otimes \mathscr{N}^{*} \otimes \mathscr{N}^{*}$) given by

$$
\begin{gathered}
\sum_{r, k, l=m+1}^{n} \frac{\partial^{2} u_{r}}{\partial w_{k} \partial w_{l}} \frac{\partial}{\partial u_{r}} \otimes d w_{k} \otimes d w_{l}=A^{w n} \\
\left(\text { resp. } \sum_{r=1}^{m} \sum_{k, l=m+1}^{n} \frac{\partial^{2} u_{r}}{\partial w_{k} \partial w_{l}} \frac{\partial}{\partial u_{r}} \otimes d w_{k} \otimes d w_{l}=B^{w u}\right)
\end{gathered}
$$

Then the collection $\left\{A^{* *}\right\}$ (resp. $\left\{B^{* *}\right\}$) determines a 1-cocylce on S with respect to the covering $\left\{Q_{z}\right\}$, with coefficients in $\mathscr{N} \otimes \mathscr{N}^{*} \otimes \mathscr{N}^{*}$ $\left(\operatorname{resp} . \tau S \otimes \mathscr{N}^{*} \otimes \mathscr{N}^{*}\right)$.

Proof. Step a. Suppose $m<k, l \leqq n$ and consider coordinate systems $\left(\widetilde{Q}_{u}, u\right),\left(\widetilde{Q}_{w}, w\right)$, and $\left(\widetilde{Q}_{z}, z\right)$. It is clear that on $\widetilde{Q}_{u} \cap \widetilde{Q}_{w} \cap \widetilde{Q}_{z} \cap f(S)$ we have

$$
\frac{\partial^{2} w_{j}}{\partial w_{k} \partial w_{l}}=0, \quad \text { so } \quad \sum_{j=1}^{n} \frac{\partial^{2} w_{j}}{\partial w_{k} \partial w_{l}} \frac{\partial u_{r}}{\partial w_{j}}=0,
$$

and by calculating using the chain rule we get

$$
\begin{align*}
0= & \frac{\partial^{2} u_{r}}{\partial w_{k} \partial w_{l}}+\sum_{i, h, a=1}^{n} \frac{\partial^{2} z_{a}}{\partial u_{h} \partial u_{i}} \frac{\partial w_{h}}{\partial w_{k}} \frac{\partial u_{i}}{\partial w_{l}} \frac{\partial u_{r}}{\partial z_{a}} \tag{S.a}\\
& +\sum_{a, b, j=1}^{n} \frac{\partial^{2} w_{j}}{\partial z_{a} \partial z_{b}} \frac{\partial z_{a}}{\partial w_{k}} \frac{\partial z_{b}}{\partial w_{l}} \frac{\partial u_{r}}{\partial w_{j}} .
\end{align*}
$$

Step b. Notice now that on $f(S)$ we have $\partial w_{a} / \partial z_{b}=0$ for
$a \leqq m<b$ or $b \leqq m<a$. Using this with (S.a) we now get that

$$
\begin{align*}
0= & \sum_{l, r, k=m+1}^{n} \frac{\partial^{2} w_{j}}{\partial w_{k} \partial w_{l}} \frac{\partial u_{r}}{\partial w_{j}} \frac{\partial}{\partial u_{r}} \otimes d w_{k} \otimes d w_{l} \\
= & \sum_{l, k, r=m+1}^{n} \frac{\partial^{2} u_{r}}{\partial w_{k} \partial w_{l}} \frac{\partial}{\partial u_{r}} \otimes d w_{k} \otimes d w_{l} \\
& +\sum_{j, a, b=m+1}^{n} \frac{\partial^{2} w_{j}}{\partial z_{a} \partial z_{b}} \frac{\partial}{\partial w_{j}} \otimes d z_{a} \otimes d z_{b} \tag{S.b}\\
& +\sum_{a, k, \sum_{i=m+1}^{n}}^{n} \frac{\partial^{2} z_{a}}{\partial u_{h} \partial u_{i}} \frac{\partial}{\partial z_{a}} \otimes d u_{h} \otimes d u_{j} \\
= & A^{w u}+A^{z w}+A^{u z} .
\end{align*}
$$

It is now evident that the collection $\left\{A^{w u}\right\}$ determines a 1-cocycle on S with respect to the covering $\left\{Q_{z}\right\}$, with coefficients in $\mathscr{N} \otimes \mathscr{N}^{*} \otimes \mathscr{N}^{*}$.

The proof for the case $\tau S \otimes \mathscr{N}^{*} \otimes \mathscr{N}^{*}$ is exactly the same, except that the r index varies between 1 and m, instead of between $m+1$ and n as above, and $A^{w u}$ is replaced by $B^{w u}$.

Proposition 2S. There is a subcollection \mathscr{D}_{2} of \mathscr{C} such that the coordinate polydiscs of \mathscr{D}_{2} cover $f(S)$, the covering is as fine as we like, and for $\left(\widetilde{Q}_{z}, z\right)$ and $\left(\widetilde{Q}_{w}, w\right)$ in \mathscr{D}_{2} we have $\partial^{2} w_{r} / \partial z_{k} \partial z_{l}=0$ on $f(S)$ for $k, l>m$.

Proof. Step A. Let $\left\{A^{z w}\right\}$ and $\left\{B^{z w}\right\}$ be the cocycles in the lemma above. Since S is Stein, we have that

$$
H^{1}\left(S, \mathscr{N} \otimes \mathscr{N}^{*} \otimes \mathscr{N}^{*}\right)=H^{1}\left(\tau S \otimes \mathscr{N}^{*} \otimes \mathscr{N}^{*}\right)=0
$$

Each member of the covering $\left\{Q_{z}\right\}$, which consists of all coordinate polydiscs in \mathscr{C}, is a Stein manifold, hence there is a 0 -cochain $\{\Gamma(z)\}$ with respect to the covering and with coefficients in $(\tau S \oplus \mathscr{N}) \otimes$ $\mathscr{N}^{*} \otimes \mathscr{N}^{*}$, whose coboundary is $\left\{B^{z w}\right\} \oplus\left\{A^{z w}\right\}$, i.e. $B^{z w} \oplus A^{z w}=$ $\Gamma(w)-\Gamma(z)$. Let $\left\{\gamma_{k l}^{r}\left({ }_{w}^{u}\right)(z)\right\}$ denote the components of $\Gamma(z)$ with respect to the basis $\left\{\partial / \partial u_{r} \otimes d w_{k} \otimes d w_{l}\right\}$, that is

$$
\Gamma(z)=\sum_{r=1}^{n} \sum_{k, l=m+1}^{n} \gamma_{k l}^{r}\left(w_{w}^{u}\right)(z) \frac{\partial}{\partial u_{r}} \otimes d w_{k} \otimes d w_{l}
$$

in $Q_{z} \cap Q_{u} \cap Q_{w}$. In this notation we of course allow $u=w=z$ etc.
Step B. In each coordinate polydisc \widetilde{Q}_{z} we define the functions $\zeta_{r}=z_{r}-\sum_{k, l=m+1}^{n} \gamma_{k l}^{r}(z)(z) z_{k} z_{l}$. Since $z_{k}=0$ on $f(S)$ for $k \geqq m+1$, it is clear that $\partial \zeta_{r} / \partial z_{s}=\delta_{s}^{r}$ on $f(S)$, so $\left[\partial \zeta_{r} / \partial z_{s}\right]=I_{n}$, the identity matrix. It is now clear that if the functions ζ_{r} are restricted to a sufficiently
small polydisc $\widetilde{Q}_{5} \subset \widetilde{Q}_{z}$ (whose center is the same as that of \widetilde{Q}_{z}), they give a set of coordinates there. Let \mathscr{D}_{2} be the collection of all coordinate systems $\left\{\left(\widetilde{Q}_{5}, \zeta\right)\right\}$, where the $\left(\widetilde{Q}_{5}, \zeta\right)$ are obtained from the $\left(\widetilde{Q}_{z}, z\right)$ in \mathscr{C} as described above. If (\widetilde{Q}_{5}, ζ) and ($\widetilde{Q}_{u}, \omega$) are in \mathscr{D}_{2}, then we have on $f(S)$

$$
\left[\frac{\partial \omega_{i}}{\partial \zeta_{j}}\right]=\left[\frac{\partial \omega_{i}}{\partial \zeta_{j}}\right]\left[\frac{\partial w_{j}}{\partial z_{i}}\right]\left[\frac{\partial z_{i}}{\partial \zeta_{j}}\right]=I_{n}\left[\frac{\partial w_{i}}{\partial z_{j}}\right] I_{n}=\left[\frac{\partial w_{i}}{\partial z_{j}}\right]
$$

and hence \mathscr{D}_{2} is a subcollection of \mathscr{C}. Also \mathscr{D}_{2} is as fine as we like and clearly its coordinate polydises cover $f(S)$.

Step C. Now we need only show that if (\widetilde{Q}_{5}, ζ) and ($\left.\widetilde{Q}_{\omega}, w\right)$ are in \mathscr{D}_{2}, then for $k, l>m$ we have $\partial^{2} w_{r} / \partial \zeta_{k} \partial \zeta_{l}=0$ on $f(S)$. We consider only $r>m$, since the $r \leqq m$ case differs only by changing the range of r index below.

Using the chain rule, the fact that terms of the form $\partial w_{a} / \partial z_{b}=0$ on $f(S)$ for $a \leqq m<b$ or $b \leqq m<a$, the definition of $\gamma_{e c}^{c}\left({ }_{w}^{u}\right)(z)$, and expressing derivatives of the form $\partial^{2} z_{b} / \partial \zeta_{k} \partial \zeta_{l}(b>m)$ in terms of things like $\partial^{2} \zeta_{c} / \partial z_{h} \partial z_{i}$ using (S.a), we have on $f(S)$ that

$$
\begin{align*}
\frac{\partial^{2} w_{r}}{\partial \zeta_{k} \partial \zeta_{l}}= & \sum_{a, e=m+1}^{n} \frac{\partial w_{e}}{\partial \zeta_{k}} \frac{\partial w_{a}}{\partial \zeta_{l}}\left[-\gamma_{e a}^{r}\binom{w}{w}(w)\right] \\
& +\sum_{a, b, c=m+1}^{n} \frac{\partial \omega_{r}}{\partial w_{a}} \frac{\partial z_{c}}{\partial \zeta_{k}} \frac{\partial z_{b}}{\partial \zeta_{l}}\left[\gamma_{c b}^{r}\binom{w}{z}(w)-\gamma_{c b}^{r}\binom{w}{z}(z)\right] \tag{S.c}\\
& +\sum_{b=m+1}^{n} \frac{\partial \omega_{r}}{\partial z_{b}}\left[-\sum_{i, h, c=m+1}^{n} \frac{\partial^{2} \zeta_{c}}{\partial z_{h} \partial z_{i}} \frac{\partial z_{h}}{\partial \zeta_{k}} \frac{\partial z_{i}}{\partial \zeta_{l}} \frac{\partial z_{b}}{\partial \zeta_{c}}\right] .
\end{align*}
$$

It is clear that $\partial^{2} \omega_{r} / \partial \zeta_{k} \partial \zeta_{l}=0$ on $f(S)$ for all $k, l>m$ if and only if

$$
\sum_{r, k, l=m+1}^{n} \frac{\partial^{2} \omega_{r}}{\partial \zeta_{k} \partial \zeta_{l}} \frac{\partial}{\partial \omega_{r}} \otimes d \zeta_{k} \otimes d \zeta_{l}=0
$$

By the preceding, and using the facts that $\partial \omega_{r} / \partial w_{a}=\delta_{a}^{r}$ and $\partial / \partial w_{r}=\partial / \partial \omega_{r}$ on $f(S)$, we have then

$$
\begin{aligned}
& \sum_{r, k, l=m+1}^{n} \quad \frac{\partial^{2} \omega_{r}}{\partial \zeta_{k} \partial \zeta_{l}} \frac{\partial}{\partial \omega_{r}} \otimes d \zeta_{k} \otimes d \zeta_{l} \\
& = \\
& \quad \sum_{a, e, k, l, r=m+1}^{n} \frac{\partial w_{e}}{\partial \zeta_{k}} \frac{\partial w_{a}}{\partial \zeta_{l}}\left[-\gamma_{e a}^{r}\binom{w}{w}(w)\right] \frac{\partial}{\partial \omega_{r}} \otimes d \zeta_{k} \otimes d \zeta_{l} \\
& \quad \sum_{a, b, c, k, l, r=m+1}^{n} \frac{\partial \omega_{r}}{\partial w_{a}} \frac{\partial z_{c}}{\partial \zeta_{k}} \frac{\partial z_{b}}{\partial \zeta_{l}}\left[\gamma_{b c}^{a}\binom{w}{z}(w)-\gamma_{b c}^{a}\binom{w}{z}(z)\right] \frac{\partial}{\partial \omega_{r}} \otimes d \zeta_{k} \otimes d \zeta_{l} \\
& \quad \frac{\partial \omega_{r}}{\partial z_{b}} \frac{\partial z_{h}}{\partial \zeta_{k}} \frac{\partial z_{i}}{\partial \zeta_{l}} \gamma_{h i}^{b}\binom{z}{z}(z) \frac{\partial}{\partial \omega_{r}} \otimes d \zeta_{k} \otimes d \zeta_{l}=0
\end{aligned}
$$

This last equality is obtained after expressing in everything in terms of the basis $\left\{\partial / \partial z_{a} \otimes d z_{b} \otimes d z_{c}\right\}$. We have now finished the proof.

We now clear away higher order terms from the change of coordinates $w(z)$ on $\widetilde{Q}_{z} \cap \widetilde{Q}_{w}$. The proofs are much the same as in the lemma and Proposition 2.2S above, but the calculations become a bit longer. We will not carry out all the detail.

We have constructed the collection \mathscr{D}_{2}. We now assume that we have constructed collections $\mathscr{D}_{t-1} \subset \mathscr{D}_{t-2} \subset \cdots \subset \mathscr{D}_{2}$ such that if $\left(Q_{z}, z\right)$ and $\left(Q_{w}, w\right)$ are in \mathscr{D}_{t-1}, then for $2 \leqq k \leqq t-1$ we have $\partial^{k} w_{r} / \partial z_{j_{1}} \cdots \partial z_{j_{k}}=0$ on $f(S)$ for $j_{1}, \cdots, j_{k}>m$. We now continue the induction.

Cocycle Lemma G. Associate to each ordered intersection $Q_{u} \cap Q_{w}$ of coordinates in \mathscr{D}_{t-1}, the section of $\mathscr{N} \otimes \mathscr{N}^{*} \otimes \cdots \otimes \mathscr{N}^{*}$ (resp. $\tau S \otimes \mathscr{N}^{*} \otimes \cdots \otimes \mathscr{N}^{*}$)—with t factors of $\mathscr{N}^{*}-$ given by

$$
A^{w u}=\sum_{r, k_{1}, \ldots, k_{t}=m+1}^{n} \frac{\partial^{t} u_{r}}{\partial w_{k_{1}} \cdots \partial w_{k_{t}}} \frac{\partial}{\partial u_{r}} \otimes d w_{k_{1}} \otimes \cdots \otimes d w_{k_{t}}
$$

(resp. $B^{w u}=\{$ same sum with $1<r \leqq m$ instead\}). Then the collection $\left\{A^{w u}\right\}$ (resp. $\left\{B^{w u}\right\}$) determines a 1-cocycle on S with respect to the covering $\left\{Q_{z}\right\}$, with coefficients in $\mathscr{N} \otimes \mathscr{N}^{*} \otimes \cdots \otimes \mathscr{N}^{*}$ (resp. $\tau S \otimes$ $\left.\mathscr{N}^{*} \otimes \cdots \otimes \mathscr{N}^{*}\right)$.

Proof. Step a. As in Step a of the previous cocycle lemma, we start with the fact that for $k_{1}, \cdots, k_{t}>m$ we have on $f(S)$

$$
\begin{equation*}
\frac{\partial^{t} w_{j}}{\partial w_{k_{1}} \cdots \partial w_{k_{t}}}=0=\sum_{j=1}^{n} \frac{\partial^{t} w_{j}}{\partial w_{k_{1}} \cdots \partial w_{k_{t}}} \frac{\partial u_{r}}{\partial w_{j}} . \tag{G.a}
\end{equation*}
$$

Calculating using the chain rule we get a formula analogous to (S.a), but very much messier to write down, so we don't write it here but refer to it as (G.a).

Step b. Using (G.a) and the fact that our coordinate systems are in \mathscr{D}_{t-1}, after calculating with the chain rule we get that

$$
\begin{align*}
0= & \sum_{r, k_{1}, \cdots, k_{t}=m+1}^{n} \frac{\partial^{t} w_{j}}{\partial w_{k_{1}} \cdots \partial w_{k_{t}}} \frac{\partial u_{r}}{\partial w_{j}} \frac{\partial}{\partial u_{r}} \otimes d w_{k_{1}} \otimes \cdots \otimes d w_{k_{t}} \\
= & \sum_{r, k_{1}, \cdots, k_{t}=m+1}^{n} \frac{\partial^{t} u_{r}}{\partial w_{k_{1}} \cdots \partial w_{k_{t}}} \frac{\partial}{\partial u_{r}} \otimes d w_{k_{1}} \otimes \cdots \otimes d w_{k_{t}} \\
& +\sum_{r, j_{1}, \ldots, j_{t}=m+1}^{n} \frac{\partial^{t} w_{r}}{\partial z_{j_{1}} \cdots \partial z_{j_{t}}} \frac{\partial}{\partial w_{r}} \otimes d z_{j_{1}} \otimes \cdots \otimes d z_{j_{t}} \tag{G.b}\\
& +\sum_{r, h_{1}, \cdots, h_{t}=m+1}^{n} \frac{\partial^{t} z_{r}}{\partial u_{h_{1}} \cdots \partial u_{h_{t}}} \frac{\partial}{\partial z_{r}} \otimes d u_{h_{1}} \otimes \cdots \otimes d u_{h_{t}} \\
= & A^{w u}+A^{z w}+A^{u z} .
\end{align*}
$$

Thus, $\left\{A^{w u}\right\}$ is a cocycle. The $\tau S \otimes \mathscr{N}^{*} \otimes \cdots \otimes \mathscr{N}^{*}$ case is handled as before.

Proposition 2G. For all $t \geqq 3$, there is a subcollection \mathscr{D}_{t} of \mathscr{D}_{t-1} such that the coordinate polydiscs of \mathscr{D}_{t} cover $f(S)$, the covering is as fine as we like, and for $\left(\widetilde{Q}_{z}, z\right)$ and $\left(\widetilde{Q}_{w}, w\right)$ in \mathscr{D}_{t} we have $\partial^{t} w_{r} / \partial z_{k_{1}} \cdots \partial z_{k_{t}}=0$ on $f(S)$ for $k_{1}, \cdots, k_{t}>m$.

Proof. Step A. Starting with the cocycles $\left\{A^{z w}\right\}$ and $\left\{B^{z w}\right\}$ of the preceding lemma, we obtain the 0-cochain $\{\Gamma(z)\}$ with components $\left\{\gamma_{k_{1} \cdots k_{t}}^{r}\binom{u}{w}(z)\right\}$ exactly as in Step A of Proposition 2S.

Step B. Exactly as in Step B of Proposition 2S we get now coordinate systems (\widetilde{Q}_{5}, ζ) in \mathscr{C} from $\left(\widetilde{Q}_{z}, z\right)$ in \mathscr{D}_{t-1} by setting $\zeta_{r}=z_{r}-\sum_{k_{1}, \cdots k_{t}=m+1}^{n} \gamma_{k_{1} \cdots k_{t}}^{r}\binom{z}{z}(z) z_{k_{1}} \cdots z_{k_{t}}$.

Step C. (i) Next we must show that the coordinate systems obtained in Step B form a subcollection of \mathscr{D}_{t-1}. Suppose $2 \leqq q \leqq t-1$ and consider $\partial^{q} \omega_{r} / \partial \zeta_{k_{1}} \cdots \partial \zeta_{k_{q}}$ where $k_{1}, \cdots, k_{q}>m$. Using the chain rule we express $\partial^{q} \omega_{r} / \partial \zeta_{k_{1}} \cdots \partial \zeta_{k_{q}}$ in terms of

$$
\frac{\partial^{q} \omega_{r}}{\partial w_{j_{1}} \cdots \partial w_{j_{q}}}, \quad \frac{\partial^{q} w_{a}}{\partial z_{k_{1}} \cdots \partial z_{h_{q}}}, \quad \frac{\partial^{a} \zeta_{b}}{\partial z_{l_{1}} \cdots \partial z_{l_{q}}},
$$

and various lower order derivatives. From the definition of ζ_{b}, ω_{r}, and the fact that the z and w coordinates are in \mathscr{D}_{t-1}, all these terms (and hence $\partial^{q} \omega_{r} / \partial \zeta_{k_{1}} \cdots \partial \zeta_{k_{q}}$) will be 0 . So our new coordinates are in \mathscr{D}_{t-1}.
(ii) It only remains now to show that for $k_{1}, \cdots, k_{t}>m$ we have $\partial^{t} \omega_{r} / \partial \zeta_{k_{1}} \cdots \partial \zeta_{k_{i}}=0$ on $f(S)$. We use the method of paragraph (i) above to get an expression for $\partial^{t} \omega_{r} / \partial \zeta_{k_{1}} \cdots \partial \zeta_{k_{t}}$. Using the fact that the ω and ζ coordinates are in \mathscr{D}_{t-1}, we get an $f(S)$

$$
\begin{align*}
\frac{\partial^{t} \omega_{r}}{\partial \zeta_{k_{1}} \cdots \partial \zeta_{k_{t}}}= & \sum_{j_{1}, \cdots, j_{t}=m+1}^{n} \frac{\partial w_{j_{1}}}{\partial \zeta_{k_{1}}} \cdots \frac{\partial w_{j_{1}}}{\partial \zeta_{k_{t}}} \frac{\partial^{t} \omega}{\partial w_{j_{1}} \cdots \partial w_{j_{t}}} \\
& +\sum_{a, j_{1} \cdots, j_{t}=m+1}^{n} \frac{\partial \omega_{r}}{\partial w_{a}} \frac{\partial^{t} w_{a}}{\partial z_{j_{1}} \cdots \partial z_{j_{t}}} \frac{\partial z_{j_{1}}}{\partial \zeta_{k_{1}}} \cdots \frac{\partial z_{j_{t}}}{\partial \zeta_{k_{t}}} \tag{G.C}\\
& -\sum_{a, b, j_{1}, \cdots, j_{t}=m+1}^{n} \frac{\partial \omega_{r}}{\partial z_{b}} \frac{\partial z_{b}}{\partial \zeta_{a}} \frac{\partial z_{j_{1}}}{\partial \zeta_{k_{1}}} \cdots \frac{\partial z_{j_{t}}}{\partial \zeta_{k_{t}}} \frac{\partial z_{j_{1}} \cdots \partial \zeta_{a}}{} .
\end{align*}
$$

We now proceed exactly as in (S.C) and following in Step C of Proposition 2S to conclude the proof.
3. Throughout this section, unless stated to the contrary, we assume we are given complex manifolds $S, M, m=\operatorname{dim}_{c} S<n=\operatorname{dim}_{c} M$,
S is a Stein manifold, $K \subset S$ is compact, and $f: S \rightarrow M$ is a holomorphic embedding.

Having obtained all the special collections of coordinate systems we need in the previous section, we now proceed to construct a strictly pluri-subharmonic function $\phi_{\lambda_{0}}$ such that $\phi_{\lambda_{0}}^{-1}([-\infty, a])$ is compact for all $a \in \boldsymbol{R}$ and $\phi_{\lambda_{0}}$ is defined on a neighborhood of $f(K)$. We will thus have $f(K)$ contained in a Stein submanifold of M. The desired strictly pluri-subharmonic function will be gotten by using a certain strictly pluri-subharmonic function on N_{f}, and transferring it to an open subset of M by means of the maps $\Delta_{z w}$ defined below.

Note. Sometimes below for clarity we will use the notation $p_{z}(z)=p_{z}\left(z_{1}, \cdots, z_{n}\right)$ to mean the point q on M such that q has coordinates $\left(z_{1}, \cdots, z_{n}\right)$ with respect to the coordinate system ($\left.\widetilde{Q}_{z}, z\right)$.

Also if we are given a point $p \in \widetilde{Q}_{z}$ with coordinates $z(p)=$ $\left(z_{1}(p), \cdots, z_{n}(p)\right)$, then we let $\hat{z}=\hat{z}(p)=\left(z_{1}, \cdots, z_{m}, 0, \cdots, 0\right)$ denote the point q on $f(S) \cap \widetilde{Q}_{z}$ such that $z_{\imath}(q)=z_{i}(p)$ for $1 \leqq i \leqq m$ and $z_{i}(q)=0$ for $m<i \leqq n$.

Also below we will sometimes implicitly identify a point $s \in S$ with $f(s) \in M$, and we will often identify a point $p \in M$ with its set of coordinates $\left(z_{1}(p), \cdots, z_{n}(p)\right)$ with respect to a given system ($\left.\widetilde{Q}_{z}, z\right)$.

Definition. Let $\left(\widetilde{Q}_{z}, z\right)$ and ($\left.\widetilde{Q}_{w}, w\right)$ be in \mathscr{D}_{t} and let $\left(Q_{z}, z\right)$ and $\left(Q_{w}, w\right)$ be the associated coordinate systems on S. Let ($\left.T_{z}^{\prime} ; z, \partial / \partial z\right)$ denote the coordinate system in $T_{z}^{\prime}=N_{f} \mid Q_{z}$ determined by the coordinates (z_{1}, \cdots, z_{m}) in $Q_{z} \subset S \subset N_{f}$ and the basis $\partial / \partial z_{m+1}, \cdots, \partial / \partial z_{n}$ in the fibers of N_{f} over Q_{z}. Let $T_{z} \subset T_{z}^{\prime}$ be the coordinate polydisc given by $T_{z}=\left\{v \in T_{z}^{\prime} \mid\left(z_{1}(v), \cdots, z_{m}(v), a_{m+1}(v), \cdots, a_{n}(v)\right) \in z\left(Q_{z}\right)=\right.$ (image of $Q_{z} \subset M$ in C^{n} by the coordinate functions)\}, where v has coordinates $\left(z_{1}(v), \cdots, z_{m}(v), a_{m+1}(v), \cdots, a_{n}(v)\right.$ with respect to ($\left.T_{z}^{\prime} ; z, \partial / \partial z\right)$. We then define

$$
\Delta_{z w}: T_{z} \cap T_{w} \longrightarrow T_{z} \cap T_{w}
$$

by

$$
\begin{aligned}
& \Delta_{z w}\left(\sum_{j=m+1}^{n} a_{j} \frac{\partial}{\partial z_{j}}\left(z_{1}, \cdots, z_{m}\right)\right)=\Delta_{z w}\left(\sum_{j=m+1}^{n} a_{j} \frac{\partial}{\partial z_{j}}(\hat{z})\right) \\
& \quad=\sum_{j=m+1}^{n} w_{j}\left(z_{1}, \cdots, z_{n}\right) \frac{\partial}{\partial w_{j}}\left(w_{1}(z), \cdots, w_{m}(z)\right)=\sum_{j=m+1}^{n} w_{j}(z) \frac{\partial}{\partial w_{j}}(\hat{w}(z)) .
\end{aligned}
$$

We now describe some properties of the maps $\Delta_{z w}$.
Proposition 3. Let $\left(\widetilde{Q}_{z}, z\right)$ and $\left(\widetilde{Q}_{w}, w\right)$ be in \mathscr{D}_{t-1}. Then we have

$$
\Delta_{z w}\left(\sum_{j=m+1}^{n} z_{j} \frac{\partial}{\partial z_{j}}(\hat{z})\right)=\sum_{j=m+1}^{n}\left[z_{j}+0\left(z_{m+i}^{t}\right)\right] \frac{\partial}{\partial z_{j}}(\widehat{z}(\hat{w}(z))),
$$

where $0\left(z_{m+i}^{t}\right)$ means of order at least t in the variables z_{m+1}, \cdots, z_{n}. Also $w_{j}(z)=w_{j}(\widehat{z})+0\left(z_{m+i}^{t}\right)$ for $1 \leqq j \leqq m$.

Proof. Considering what we are trying to prove, we need to express $\Delta_{z w}$ solely in terms of the basis $\partial / \partial z_{m+1}, \cdots, \partial / \partial z_{n}$ for N_{f} over $Q_{z} \cap Q_{w}$. By the definition of $\Delta_{z w}$ we have

$$
\begin{aligned}
\Delta_{z w}\left(\sum_{j=n+1}^{n} z_{j} \frac{\partial}{\partial z_{j}}(\hat{z})\right) & =\sum_{j=m+1}^{n} w_{j}(z) \frac{\partial}{\partial w_{j}}(\hat{w}(z)) \\
& =\sum_{j, k=m+1}^{n} w_{j}(z) \frac{\partial z_{k}}{\partial w_{j}}(\hat{w}(z)) \frac{\partial}{\partial z_{k}}(\hat{z}(\hat{w}(z))) .
\end{aligned}
$$

It is easily seen that

$$
\begin{aligned}
\frac{\partial}{\partial z_{a}}\left[\sum_{j=m+1}^{n} w_{j}(z) \frac{\partial z_{k}}{\partial w_{j}}(\hat{w}(z))\right](z) & =\sum_{j=m+1}^{n} \frac{\partial w_{j}}{\partial z_{a}}(z) \frac{\partial z_{k}}{\partial w_{j}}(\hat{w}(z)) \\
& +\sum_{j=m+1}^{n} w_{j}(z) \frac{\partial}{\partial z_{a}}\left[\frac{\partial z_{k}}{\partial w_{j}}(\hat{w}(z))\right](z) .
\end{aligned}
$$

Thus on S (where we consider S as the zero section of N_{f}), that is when $z=\hat{z}=\left(z_{1}, \cdots, z_{m}, 0, \cdots, 0\right)$,

$$
\begin{array}{r}
\frac{\partial}{\partial z_{a}}\left[\sum_{j=m+1}^{n} w_{j}(z) \frac{\partial z_{k}}{\partial w_{j}}(\hat{w}(z))\right](\hat{z})=\sum_{j=m+1}^{n} \frac{\partial w_{j}}{\partial z_{a}}(z) \frac{\partial z_{k}}{\partial w_{j}}(\hat{w}(\hat{z})) \\
\quad+\sum_{j=m+1}^{n} w_{j}(\hat{z}) \frac{\partial}{\partial z_{a}}\left[\frac{\partial z_{k}}{\partial w_{j}}(\hat{w}(z))\right](\hat{z})=\delta_{a}^{k}+0=\delta_{a}^{k}
\end{array}
$$

since all the coordinate systems involved are in \mathscr{D}_{t-1} and $w_{j}(\hat{z})=0$ for $m<j \leqq n$.

From this it is clear that tangential derivatives (i.e. derivatives involving only $\partial / \partial z_{a}$'s with $1 \leqq a \leqq m$) of $\sum_{j=m+1}^{n} w_{j}(z)\left(\partial z_{k} / \partial w_{j}\right)(\hat{w}(z))$ of all orders vanish on S. It is also clear that any derivative of the form $\partial^{r} / \partial z_{k_{1}} \cdots \partial z_{k_{r}}$ with $k_{1}>m$ say and $k_{j} \leqq m$ for $j \neq 1$ vanishes on S.

To complete the proof we need only show that normal derivatives (i.e. derivatives involving only $\partial / \partial z_{a}$'s with $a>m$) of order r, with $2 \leqq r \leqq t-1$, vanish on S. Suppose $2 \leqq r \leqq t-1$ and $k_{1}, \cdots, k_{r}>m$. Using the product rule we see that

$$
\frac{\partial^{r}}{\partial z_{k_{1}} \cdots \partial z_{k_{r}}}\left[w_{j}(z) \frac{\partial z_{j}}{\partial w_{j}}(\hat{w}(z))\right]
$$

consists of terms of the form

$$
\frac{\partial^{s} w_{j}}{\partial z_{j_{1}} \cdots \partial z_{j_{s}}} \cdot \frac{\partial^{q}}{\partial z_{l_{q}} \cdots \partial z_{l_{1}}}\left[\frac{\partial z_{k}}{\partial w_{j}}(\hat{w}(z))\right] .
$$

If $q=0$ the first factor is 0 on S since all coordinate systems are in \mathscr{D}_{t-1}. Since

$$
\frac{\partial}{\partial z_{h}}=\sum_{j=m+1}^{n} \frac{\partial w_{j}}{\partial z_{h}} \frac{\partial}{\partial w_{j}}
$$

on $S(h>m)$, for $q \geqq 1$ the second factor is

$$
\frac{\partial^{q-1}}{\partial z_{l_{q}} \cdots \partial z_{l_{2}}}\left[\sum_{i=1}^{m} \frac{\partial^{2} z_{k}}{\partial w_{i} \partial w_{j}}(\hat{w}(z)) \frac{\partial w_{i}}{\partial z_{l_{1}}}(z)\right] .
$$

Carrying out further differentiations we see that this factor is 0 on S since our coordinates are in \mathscr{D}_{t-1}. This completes the proof of the main part of the proposition.

The final statement of the proposition is clear since all coordinate systems are in \mathscr{D}_{t-1}.

With Proposition 3 says in essence is that if we use the coordinate system $\left(Q_{z}, z\right)$ in S and the basis $\partial / \partial z_{m+1}, \cdots, \partial / \partial z_{n}$ in $N_{f} \mid Q_{z} \cap Q_{w}$, then with respect to these coordinates $\Delta_{z w}$ differs from the identity map $\left(z_{1}, \cdots, z_{m} ; z_{m+1}, \cdots, z_{n}\right) \mapsto\left(z_{1}, \cdots, z_{m} ; z_{m+1}, \cdots, z_{n}\right)$ only by terms which are order t and higher in the variables z_{m+1}, \cdots, z_{n}.

Construction of the function $\phi_{\lambda_{0}}$.
Note. Throughout the rest of this section we use only coordinates in \mathscr{D}_{3}.

Since S is a Stein manifold, there is a strictly plurisubharmonic function $\tilde{\rho}$ on S such that $\tilde{\rho}>0$ and for all $c \in \boldsymbol{R},\{p \in S \mid \tilde{\rho}(p) \leqq c\}$ is compact. It is clearly sufficient to assume that the set K is of the form $K=\{p \in S \mid \widetilde{\rho}(p) \leqq b\}$. Choose b_{1}, b_{2}, b_{3} such that $b<b_{2}<b_{3}<b_{1}$ and set $K_{i}=\left\{p \in S \mid \widetilde{\rho}(p) \leqq b_{i}\right\}$.

Consider the collection of open sets $\mathscr{A}=\left\{\widetilde{Q}_{z}\right\}$ where $\left(\widetilde{Q}_{z}, z\right)$ is in \mathscr{D}_{3}. For each \widetilde{Q}_{z} in \mathscr{A} let \widetilde{R}_{z} be a polydisc with compact closure in \widetilde{Q}_{z} (for instance if the image, by the coordinate functions $z_{1}, \cdots z_{n}$, of \widetilde{Q}_{z} is the polydisc $\Delta_{r_{1}} \times \cdots \times \Delta_{r_{n}}$, let \widetilde{R}_{z} be the set whose image by the coordinate functions is the polydisc $\Delta_{r_{1} / 2} \times \cdots \times \Delta_{r_{n} / 2}$). Since K_{1} is compact there is a finite subcollection $\mathscr{B}=\left\{\widetilde{R}_{z^{\alpha}}\right\}$ of \mathscr{A} such that $\bigcup_{\alpha} \widetilde{R}_{z^{\alpha}}$ covers $f\left(K_{1}\right)$. By very standard theorems there are C^{∞} functions η_{α} such that $0 \leqq \eta_{\alpha} \leqq 1$, supp $\eta_{\alpha} \subset \widetilde{R}_{z^{\alpha}}$, and $\sum_{\alpha} \eta_{\alpha}=1$ on a neighborhood T of $f\left(K_{1}\right)$.

Note. For convenience, from now on we use the notation \widetilde{Q}_{α} for $\widetilde{Q}_{z^{\alpha}}, \widetilde{R}_{\alpha}$ for $\widetilde{R}_{z^{\alpha}}$, and $p_{\alpha}\left(d_{1}, \cdots, d_{n}\right)$ for $p_{z^{\alpha}}\left(d_{1}, \cdots, d_{n}\right)$. Also
$A \subset \subset B$ means A has compact closure in B.
Since $\widetilde{R}_{\alpha} \subset \subset \widetilde{Q}_{\alpha}$ we have $\widetilde{R}_{\alpha_{1}} \cap \widetilde{R}_{\alpha_{2}} \subset \subset \widetilde{Q}_{\alpha_{1}} \cap \widetilde{Q}_{\alpha_{2}}$ and thus by elementary calculus there is a constant $D>1$ (since we are dealing with only a finite number of \widetilde{R}_{α} 's) such that for $p \in \bigcup_{\alpha} \widetilde{R}_{\alpha}$ we have $\left|z_{m+j}^{\alpha_{1}}(p)\right| \leqq D \sup _{1 \leqq i \leqq n-m}\left|z_{m+i}^{\alpha_{2}}(p)\right|$ for all $1<j<n-m$ if $p \in \widetilde{R}_{\alpha_{1}} \cap \widetilde{R}_{\alpha_{2}}$.

For each point $p \in S$ there are m global (holomorphic) sections of N_{f}^{*} whose values at p form a basis for the vector space $\left(N_{f}^{*}\right)_{p}$ (see [3], p. 138). Thus there are global (holomorphic) sections of N_{f}^{*}, call them $\sigma_{1}, \cdots, \sigma_{r}$, such that for all $p \in f^{-1}(T)$ some m of these sections form a basis for $\left(N_{f}^{*}\right)_{p}$. Now consider the function μ on N_{f} given by $\mu(v)=\sum_{i=1}^{r} \sigma_{i}(v) \overline{\sigma_{i}(v)}$. Since each function $\sigma_{i}(v)$ is a holomorphic function on N_{f}, clearly μ is plurisubharmonic on N_{f} and vanishes on the zero section $S \subset N_{f}$. Let $\pi: N_{f} \rightarrow S$ be the projection map of the bundle N_{f} over S and define $\rho=\tilde{\rho} \circ \pi$. It is now easy to see that for all $\lambda \geqq 0$ the function $\psi_{2}=\rho+(\lambda+1) \mu$ is strictly plurisubharmonic on N_{f}.

Throughout the remainder of this section we use ($\left.\widetilde{Q}_{w}, w\right)$ to denote one of the coordinate systems $\left(\widetilde{Q}_{\alpha}, z^{\alpha}\right)$. Also we express the forms σ_{i} in local coordinates by $\sigma_{i}(p)=\sum_{j=m+1}^{n} a_{j}^{i \alpha}(p) d z_{j}^{\alpha}$ in \widetilde{Q}_{α} and by $\sigma_{i}(p)=\sum_{j=m+1}^{n} a_{j}^{i w}(p) d w_{j}$ in \widetilde{Q}_{w}.

Now in $\mathbf{U}_{\alpha} \widetilde{R}_{\alpha}$ (or in fact in $\mathbf{U}_{\alpha} \widetilde{Q}_{\alpha}$) we define the function $\phi_{\lambda}(\lambda \geqq 0)$ by

$$
\begin{align*}
\dot{\phi}_{\lambda}(x)= & \phi_{\lambda}\left(p_{w}(w(x))\right)=\sum_{\alpha} \eta_{\alpha}(x) \psi_{\lambda}\left(\Delta_{w z \alpha}\left(\sum_{j=m+1}^{n} w_{j}(x) \frac{\partial}{\partial w_{j}}\left(p_{w}(w(x))\right)\right)\right) \\
= & \sum_{\alpha} \eta_{\alpha}(x) \rho\left(p_{\alpha}\left(\hat{z}^{\alpha}(x)\right)\right) \tag{3.1}\\
& +(\lambda+1) \sum_{\alpha} \sum_{i=1}^{r} \eta_{\alpha}(x)\left|\sigma_{i}\left(\sum_{j=m+1}^{n} z_{j}(x) \frac{\partial}{\partial z_{j}}\left(p_{\alpha}\left(\hat{z}^{\alpha}(x)\right)\right)\right)\right|^{2} .
\end{align*}
$$

Above we have written $\rho\left(p_{\alpha}\left(\widehat{z}^{\alpha}(x)\right)\right)$ where, strictly speaking, we mean $\rho\left(f^{-1}\left(p_{\alpha}\left(\hat{z}^{\alpha}(x)\right)\right)\right)$, since ρ is a function on the zero section $S \subset N_{f}$. We will not be so meticulous below and will write things like $\rho\left(\hat{z}^{\alpha}(x)\right)$ where we mean $\rho\left(f^{-1}\left(p_{\alpha}\left(x^{\alpha}(x)\right)\right)\right)$ or $\partial / \partial z_{j}\left(\hat{z}^{\alpha}(x)\right)$ where we mean $\partial / \partial z_{j}\left(p_{\alpha}\left(\hat{z}^{\alpha}(x)\right)\right)$.

By Proposition 3 we have

$$
\rho\left(\hat{z}^{\alpha}(x)\right)=\rho\left(p_{w}\left(\hat{w}(x)+O_{\alpha}\left(w_{m+h}^{4}\right)\right)\right)=\rho(\hat{w}(x))+O_{\alpha}\left(w_{m+h}^{4}, \bar{w}_{m+k}^{4}\right)
$$

where $O\left(w_{m+h}^{4}, \bar{w}_{m+h}^{4}\right)$ means terms which are at least fourth order in the variables $w_{m+1}, \cdots, w_{n}, \bar{w}_{m+1}, \cdots, \bar{w}_{n}$, and

$$
\begin{aligned}
& \sigma_{i}\left(\sum_{j=m+1}^{n} z_{j}^{\alpha}(x) \frac{\partial}{\partial z_{j}}\left(\hat{z}^{\alpha}(x)\right)\right) \\
& \quad=\sigma_{i}\left[\left(\sum_{j=m+1}^{n}\left(w_{j}(x)+O_{\alpha}\left(w_{m+n}^{4}\right)\right)\right) \frac{\partial}{\partial w_{j}}\left(\hat{w}(x)+O_{\alpha}\left(w_{m+n}^{4}\right)\right)\right]
\end{aligned}
$$

$$
=\sum_{j=m+1}^{n} \alpha_{j}^{i w}\left(\widehat{w}(x)+O_{\alpha}\left(w_{m+h}^{4}\right)\right)\left[w_{j}+O_{\alpha}\left(w_{m+h}^{4}\right)\right]
$$

Therefore

$$
\begin{align*}
\phi_{i}(x)= & \phi_{0}(x)+\lambda \sum_{i=1}^{r} \sum_{j, k=m+1}^{n} a_{j}^{i w}(\hat{w}(x)) \overline{a_{j}^{i w}(\hat{w}(x))} w_{j} \bar{w}_{k} \tag{3.2}\\
& +\lambda O\left(w_{m+h}^{5}, \bar{w}_{m+h}^{5}\right) .
\end{align*}
$$

From this formula it is easy to see that on $f(S)$ we have

$$
\left[\frac{\partial^{2} \phi_{\lambda}}{\partial w_{a} \partial \bar{w}_{b}}\right]=\left[\begin{array}{c|c}
\frac{\partial^{2} \rho}{\partial w_{a} \partial \bar{w}_{b}} & 0 \\
0 & (\lambda+1) \frac{\partial^{2} \mu}{\partial w_{a} \partial \bar{w}_{b}}
\end{array}\right]
$$

Thus $\left[\partial^{2} \varphi_{2} / \partial w_{a} \partial \bar{w}_{b}\right]$ is positive definite on $f(S)$ and hence $\phi_{\lambda} \mathrm{i}$ s strictly plurisubharmonic on some neighborhood of $f\left(K_{1}\right)$. In particular ϕ_{0} is strictly plurisubharmonic on a neighborhood $E^{\prime \prime}$ of $f\left(K_{1}\right)$. Let $E \subset \subset E^{\prime} \cap T$ be another neighborhood of $f\left(K_{1}\right)$.

We now need to make some restrictions on the size of the last $n-m$ coordinates in each \widetilde{R}_{α}. First we assume that $c>0$ is small enough so that if $\left|z_{j}(x)\right|<c$ for all $m+1 \leqq j \leqq n$ and $p_{\alpha}\left(\hat{z}^{\alpha}(x)\right) \in f\left(K_{1}\right)$, then $x \in E$. Second, we choose c so small that, in addition to the above property, if $\left|z_{j}^{\alpha}(x)\right|<c$ for all $m+1 \leqq j \leqq n$ and $p_{\alpha}\left(\hat{z}^{\alpha}(x)\right) \in \widetilde{R}_{\alpha} \cap \widetilde{R}_{\alpha_{1}}$, then we have $p_{\alpha}\left(z^{\alpha}(x), \cdots, z_{m}^{\alpha}(x), a_{m+1}, \cdots, a_{n}\right) \in \widetilde{Q}_{\alpha} \cap \widetilde{Q}_{\alpha_{1}}$ whenever $\left|a_{i}\right|<c$ for $m+1 \leqq i \leqq n$. Thirdly we choose c small enough so that also if for some $\alpha_{0}, p_{\alpha_{0}}\left(\hat{z}^{\alpha_{0}}(x)\right)$ is outside $f\left(K_{b_{3}}\right)$ and $\left|z_{j}^{\alpha_{0}}(x)\right|<c$ for $m+1 \leqq j \leqq n$, then for any other α we have $p_{\alpha}\left(\widehat{z}^{\alpha}(x)\right) \notin f\left(K_{b_{2}}\right)$.

Before going further we remark that the forms σ_{i} determine a hermitian metric in N_{f} over $f^{-1}(T)$ given by $\langle v, w\rangle=\sum_{i=1}^{r} \sigma_{i}(v) \overline{\sigma_{i}(w)}$. Let $\|$.$\| denote the norm determined by this metric. Then there is a$ constant $L \leqq 1$ such that for all $\alpha, 1 / L \sup _{j>m}\left|z_{j}^{\alpha}\right| \leqq\left\|\sum_{j=m+1}^{n} z_{j}^{\alpha}\left(\partial / \partial z_{j}^{\alpha}\right)\right\| \leqq$ $L \sup _{j>m}\left|z_{j}^{\alpha}\right|$ since \widetilde{Q}_{α} is compact and there are only finitely $Q_{\alpha}{ }^{\prime}$ s.

By (3.2) we have in E

$$
\begin{aligned}
{\left[\frac{\partial^{2} \phi_{\lambda}}{\partial w_{a} \partial \bar{w}_{b}}\right]=\left[\frac{\partial^{2} \dot{\phi}_{0}}{\partial w_{a} \partial \bar{w}_{b}}\right] } & +\lambda\left[\frac{\partial^{2}}{\partial w_{a} \partial \bar{w}_{b}} \sum_{j, k=m+1}^{r} \sum_{i=1}^{r} \overline{a_{j}^{2 w}(\hat{w}(x))} a_{k}^{2 w}(\hat{w}(x)) \bar{w}_{j} w_{k}\right] \\
& +\lambda\left[O\left(w_{m+j}^{3}, \bar{w}_{m+j}^{3}\right)\right]
\end{aligned}
$$

We have already noted that the first term $\left[\partial^{2} \phi_{0} / \partial w_{a} \partial \bar{w}_{b}\right]$ is positive definite in E. The second term is clearly positive semi-definite. Let $t>0$ be such that if $\left|a_{i j}\right|<t$, then

$$
\left[\frac{\partial^{2} \phi_{0}}{\partial w_{a} \partial \bar{w}_{b}}\right]+\left[\alpha_{i j}\right]
$$

is also positive definite in E. Clearly then

$$
\left[\frac{\partial^{2} \dot{\phi}_{0}}{\partial w_{a} \partial \bar{w}_{b}}\right]+\lambda\left[\frac{\partial^{2}}{\partial w_{a} \partial \bar{w}_{b}} \sum_{i=1}^{r} \sum_{j, k=m+1}^{n} a_{j}^{i w} \overline{a_{k}^{i w}} w_{j} \bar{w}_{k}\right]+\left[a_{i j}\right]
$$

is also positive definite in E. Now let N be such that the term $O\left(w_{m+j}^{3}, \bar{w}_{m+j}^{3}\right)$ above satisfies $\left|O\left(w_{m+k}^{3}, \bar{w}_{m+j}^{3}\right)\right| \leqq N \sup _{j}\left|w_{m+j}^{3}\right|$ on the $\widetilde{R}_{\alpha}{ }^{\prime}$ s. Let $d=b_{2}-\min _{K} \rho$. Now choose c small enough so that in addition to the three properties mentioned above, c also satisfies $4 D^{4} d L^{2} / c^{2}<$ $t / N c^{3}$, that is, $c<t / 4 D^{4} d N L^{2}$, and choose λ_{0} such that $4 D^{4} d L / c^{2}<\lambda_{0}<$ $t / N c^{3}$. Then clearly $d<\lambda_{0} c^{2} / 4 D^{4} L^{2}=\lambda_{0}\left(c / 2 D^{2} L\right)^{2}$ and $\lambda_{0} N c^{3}<t$. Thus we now have that $\phi_{\lambda_{0}}$ is strictly plurisubharmonic in $G=E \cap\{x \mid$ for some $\alpha,\left|z_{m+i}^{\alpha}(x)\right|<c$, for all $\left.j\right\}$. Let $H=\left\{x \mid\right.$ for some $\alpha, p_{\alpha}\left(\hat{z}^{\alpha}(x)\right) \in K_{b_{3}}$ and $\left|z_{j}^{\alpha}(x)\right|<c / 2 D$ for $\left.m+1 \leqq j \leqq n\right\} \subset G$. Note that $\bar{H} \subset G$ and that \bar{H} is compact. It is also clear by the way our constants were chosen that $f(K) \subset E \cap \dot{\phi}_{\lambda_{0}}^{-1}\left(\left[-\infty, b_{2}\right]\right) \subset H$ and thus $E \cap \dot{\phi}_{\lambda_{0}}^{-1}\left(\left(-\infty, b_{2}\right]\right.$ is compact.

Theorem 1. If $\dot{\phi}$ is strictly plurisubharmonic in the open set E and $\phi^{-1}([-\infty, a])$ is a compact subset of E, then $\phi^{-1}((-\infty, a))$ is a Stein manifold.

Proof. See [3], p. 116.
Using this theorem and the strictly plurisubharmonic function $\phi_{\lambda_{0}}$ constructed above, we see that we have now proved the following theorem.

ThEOREM 2. If $f: S \rightarrow M$ is a holomorphic embedding and $K \subset S$ a compact set, then there is an open Stein submanifold U of M such that $f(K) \subset M$.
4. We are now ready to prove our final results. First we need the following lemma.

Lemma 3. Let X, Y be Stein manifolds and $f: X \rightarrow Y$ a holomorphic embedding. Then there is a neighborhood U of X in the normal bundle of f (where X is identified with the zero section of the normal bundle of f), and a holomorphic embedding $F: U \rightarrow Y$ such that $F \mid X=f$.

Proof. See [1], p. 162, Hilfsatz 11.
Our main result now follows easily.

Theorem 3. Let $f: S \rightarrow M$ be a holomorphic embedding, where S is a Stein manifold. Let K be a compact subset of S and let N_{f} be the normal bundle of f. Identify S with the zero section of N_{f}. Then there is a neighborhood U of K in N_{f} and a holomorphic embedding $F: U \rightarrow M$ such that $F \mid U \cap S=f$.

Proof. By Theorem 2 above there is a neighborhood X of K, in S, such that X is a Stein submanifold of S, and there is a neighborhood Y of $f(K)$ in M such that Y is a Stein submanifold of M and $f(X) \subset Y$. The conclusion of the theorem now follows directly from Lemma 3 above.

Remark. Note that Theorem 3 implies that we can extend Proposition 3 to clear away all higher order terms at the same time.

A version of Theorem 3 above is also valid for immersions. To derive this, however, we need the following well-known fact.

Lemma 4. Let $f: S \rightarrow M$ be a holomorphic immersion, where $\operatorname{dim}_{c} S=m$ and $\operatorname{dim}_{c} M=n$. Then there is a complex manifold W with $\operatorname{dim}_{c} W=n, ~ a ~ h o l o m o r p h i c ~ e m b e d d i n g ~ h: S \rightarrow W$, and a holomorphic immersion $g: W \rightarrow M$ such that $f=g \circ h$.

Proof. This follows easily from the tubular neighborhood theorem for differentiable manifolds, because things can be given the appropriate complex analytic structure since g is a local diffeomorphism and h is an embedding.

Theorem 4. Let S be a Stein manifold and let $f: S \rightarrow M$ be a holomorphic immersion. Let $K \subset S$ be compact, let N_{f} denote the normal bundle of f, and identify S with the zero section of N_{f}. Then there is a neighborhood U of K in N_{f} and a holomorphic immersion $F: U \rightarrow M$ such that $F \mid U \cap S=f$.

Proof. By Lemma 4 above there is a complex manifold W, $\operatorname{dim}_{c} W=\operatorname{dim}_{c} M$, a holomorphic embedding $h: S \rightarrow W$, and a holomorpoic immersion $g: W \rightarrow M$ such that $f=g \circ h$. Since g is locally a diffeomorphism, it is easy to see that the normal bundle of h is the same as the normal bundle of f. The conclusion of the theorem now follows easily from Theorem 3.

Our last result involves extending a map (to an equi-dimensional map) which is only assumed to be regular at a point. In general there is no normal bundle to extend things to, so we must use
some other object. It turns out that an appropriate extension can be made to a trivial bundle in this case. We first prove, however, the following intermediate lemma.

Lemma 5. Let E be a vector bundle over a Stein manifold S. Then for any $x_{0} \in S$ there is a trivial bundle $\widetilde{A}\left(\operatorname{dim}_{c} \widetilde{A}=\operatorname{dim}_{c} E\right)$, a neighborhood U of the zero section of \widetilde{A}, and a holomorphic map $F: U \rightarrow E$ such that $F(x)=x$ for $x \in S$ and F is regular at x_{0} (here we identify S with the zero section of \widetilde{A} and E).

Proof. Let $m=\operatorname{dim}_{c} S, n=\operatorname{dim}_{c} E$. Thus the fibers of E are of dimension $n-m$. Let $f: S \rightarrow E$ be the embedding of S as the zero section of E and let $i: E \rightarrow C^{q}$ be a holomorphic embedding (this is possible since vector bundles over Stein manifolds are Stein manifolds). By Theorem 8, p. 257 of [2] there is a neighborhood W of $i(E)$ in C^{q} and a holomorphic retraction $\rho: W \rightarrow i(E)$. Let $N_{i \cdot f}$ be the normal bundle of $i \circ f$. By Lemma 3, since S is a Stein manifold, there is a neighborhood U_{1} of the zero section in $N_{i . f}$ and a holomorphic embedding $\alpha: U_{1} \rightarrow \boldsymbol{C}^{q}$ of U_{1}. onto an open set in \boldsymbol{C}^{q}. By Lemma 3 above, there is a neighborhood $U_{2} \subset U_{1}$ of S in $N_{i \cdot f}$ and a holomorphic embedding $F_{2}: U_{2} \rightarrow C^{q}$ such that $F_{2} \mid S=i \circ f$. Since the tangent bundle of \boldsymbol{C}^{q} (denoted $T C^{q}$) is trivial, so is $(i \circ f)^{*} T \boldsymbol{C}^{q}=S \times \boldsymbol{C}^{q}$ and $(i \circ f)^{*} T \boldsymbol{C}^{q}=N_{i \cdot f} \oplus T S$, where $T S$ denotes the tangent bundle of S. Let $\pi: N_{i \cdot f} \oplus T S \rightarrow N_{i \cdot f}$ be the obvious projection (that is, for $n \in N_{i \cdot f}$ and $s \in T S, \pi(n \oplus s)=n$). Let A be an $n-m$ dimensional subspace of $\left(N_{i \cdot f} \oplus T S\right)_{x_{0}}=\left(S \times \boldsymbol{C}^{q}\right)_{x_{0}}$ (that is, the fiber over x_{0}) such that $i^{-1} \circ \rho \circ F_{2} \circ \pi \mid S \times A$ is regular at x_{0}, and let \widetilde{A} be the trivial bundle $\widetilde{A}=S \times A \subset S \times C^{q}=N_{i \cdot f} \oplus T S$. If we set $U=\widetilde{A} \cap \pi^{-1}\left(U_{2} \cap \alpha^{-1}(W)\right)$ and $F=i^{-1} \circ \rho \circ F_{2} \circ \pi$, then clearly \widetilde{A}, U, and F satisfy the conclusions of the lemma, that is, $F: U \rightarrow E$ is regular at x_{0}.

We now proceed to the general case. The proof of the following theorem is contained, in essence, in the proof of the preceding lemma.

TheOrem 5. Let S a Stein manifold and let $f: S \rightarrow M$ be a holomorphic map which is regular at $x_{0} \in S$. Let $K \subset S$ be compact with $x_{0} \in K$. Then there is a trivial bundle \widetilde{A} over $S, \operatorname{dim}_{c} \widetilde{A}=\operatorname{dim}_{c} M$, a neighborhood U of K in \widetilde{A} (here S is identified with the zero section of \widetilde{A}), and a holomorphic map $F: U \rightarrow M$ such that $F \mid S \cap U=f$ and F is regular at x_{0}.

Proof. Let $m=\operatorname{dim}_{c} S, n=\operatorname{dim}_{c} M$ and let $g: S \rightarrow S \times M$ be defined by $g(x)=(x, f(x))$. Clearly g is an embedding. By Theorem 2 above there is an open Stein submanifold $X \subset S$ with $K \subset X$ and
there is an open Stein submanifold $Y \subset S \times M$ such that $f(X) \subset Y$. There is a holomorphic embedding $i: Y \rightarrow \boldsymbol{C}^{q}$ since Y is a Stein manifold. By Theorem 8, p. 257 of [2] there is a neighborhood W of $i(Y)$ and a holomorphic retraction $\rho: W \rightarrow i(Y)$. Let $N_{i \cdot g}$ denote the normal bundle (over X) of $i \circ g$. By Lemma 3 above, since X is a Stein manifold, there is a neighborhood U_{1} of the zero section of $N_{i \cdot g}$ and a holomorphic embedding $\alpha: U_{1} \rightarrow C^{q}$ of U_{1} onto an open set in \boldsymbol{C}^{q}. By Lemma 3 above there is a neighborhood $U_{2} \subset U_{1}$ of X in $N_{i \cdot g}$ and a holomorphic embedding $F_{2}: U_{2} \rightarrow C^{q}$ such that $F_{2} \mid X \cap U_{2}=i \circ g$. Since the tangent bundle $T C^{q}$ is trivial, so is $(i \circ g)^{*} T \boldsymbol{C}^{q}=X \times \boldsymbol{C}^{q}=N_{i} . g \oplus T X$ where $T X$ is the tangent bundle of X. Let $\pi_{1}: N_{i \cdot g} \oplus T X$ be the projection onto $N_{i \cdot g}$ along $T X$. Let $\pi_{\mu}: S \times$ $M \rightarrow M$ be the projection onto M. Now let A be an $n-m$ dimensional subspace of $\left(X \times C^{q}\right)_{x_{0}}$ (that is, the fiber over $\left.x_{0}\right)$ such that $\pi_{M} \circ i^{-1} \circ \rho \circ F_{2} \circ \pi_{1}$ is regular at x_{0} (there is such an A since all the maps involved have rank at least n) and let \widetilde{A}_{1} be the trivial bundle $\widetilde{A}_{1}=X \times A \subset X \times \boldsymbol{C}^{q}=N_{i \cdot g} \oplus T X . \quad$ Set $\quad U=\widetilde{A}_{1} \cap \pi^{-1}\left(U_{2} \cap \alpha^{-1}(W)\right)$, set $F=\pi_{M} \circ i^{-1} \circ \rho \circ F_{2} \circ \pi_{1}$, and set $\widetilde{A}=S \times A \supset X \times A=\widetilde{A}_{1}$. Then clearly \tilde{A}, U, and F satisfy the conclusions of the theorem.

References

1. O. Forster, and K. J. Ramspott, Analytische Modulgarben und Endromisbundel, Invent. Math., 2 (1966), 145-170.
2. R. C. Gunning, and H. Rossi, Analytic Functions of Several Complex Variables, Prentice-Hall, Englewood Cliffs, N. J., 1965.
3. L. Hörmander, An Introduction to Complex Analysis in Several Variables, Van Nostrand, Princeton, N. J., 1966.
4. H. L. Royden, Remarks on the Kobayashi Metric, Proc. Maryland Conf. on Several Complex Variables, Springer Lecture Notes in Mathematics 185.
5. -, The extension of regular holomorphic maps, Proc. Amer. Math. Soc., 43 (1974), 306-310.
6. C. C. Seabury, Some extension theorems for regular maps of Stein manifolds, Bull. Amer. Math. Soc., 80 (1974), 1223-1224.

Received April 12, 1976
Massachusetts Institute of Technology

