PACIFIC JOURNAL OF MATHEMATICS
Vol. 67, No. 1, 1976

v-PREHOMOMORPHISMS ON INVERSE SEMIGROUPS
D. B. MCALISTER

A mapping 0 of an inverse semigroup S into an inverse
semigroup 7 is called a v-prehomomorphism if, for each a, b ¢
S, (@b)d = abbd and (¢ )0 = (af)"*. The congruences on an
E-unitary inverse semigroup P(G, &2, Z’) are determined by
the normal partition of the idempotents, which they induce,
and by v-prehomorphisms of S into the inverse semigroup
of cosets of G.

Inverse semigroups, with v-prehomomorphisms as moz-
phisms, constitute a category containing the category of in-
verse semigroups, and homomorphisms, as a coreflective sub-
category. The coreflective map 7: S —V(S) is an isomorphism
if the idempeotents of S form a chain and the converse holds
if S is E-unitary or a semilattice of groups. Explicit con-
structions are given for all v-prehomomorphisms on S ir case
S is either a semilattice of groups or is bisimple.

0. Introduction. A mapping 6 of an inverse semigroup S into
an inverse semigroup 7 is called a v-prehomomorphism if, for each
a,be S, (ab)d < abbf and (¢ )0 = (af)™'. Thus, if S and T are semi-
lattices, a v-prehomomorphism is just an isotone mapping of S into 7.
N. R. Reilly and the present author have shown that the E-unitary
covers of an inverse semigroup S are determined by v-prehomomor-
phisms with domain S. In the first section of this paper, we show
that the congruences on an F-unitary inverse semigroup S=P(G, 2, %)
are determined by the normal partition of the idempotents, which
they induce, and by v-prehomomorphisms of S into the inverse semi-
group of cosets of (. The remainder of the paper is concerned
with the problem of constructing v-prehomomorphisms on an inverse
semigroup S.

In §2, it is shown that inverse semigroups and v-prehomomor-
phisms constitute a category which contains the category of inverse
semigroups and homomorphisms as a coreflective subcategory. Thus,
for each inverse semigroup S, there is an inverse semigroup V(S)
and a v-prehomomorphism 7: S —V(S) with the property that every
v-prehomomorphism with domain S is the composite of 7 with a
homomorphism with domain V(S). It is shown that » is an isomor-
phism if the idempotents of S form a chain and that the converse
holds if S is E-unitary or a semilattice of groups.

Section 3 is concerned with the situation when S is a simple
inverse semigroup. It is shown that, in this case, V(S) is also simple,
but it need not be bisimple even if S is bisimple. Indeed, if S is
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E-unitary, it is shown that V(S) is bisimple if and only if the idem-
potents of S form a chain. Despite the fact that the structure of
V(S), for S bisimple, is not completely determined, an explicit method
of construction can be given for all v-prehomomorphisms with domain
S; this is done.

Section 4 is concerned with the situation when S is a semilattice
of groups and the pattern here is similar to that in §3. It is shown
that V(S) need not be a semilattice of groups; on the other hand,
an explicit method is given for constructing all v-homomorphisms
with domain S.

1. Congruences on FE-unitary inverse semigroups. Let G be a
group. Then it was shown in [11] that the set .2#°(G) of all cosets
X of G modulo subgroups of G is an inverse semigroup under the
multiplication * where

X*Y = smallest coset containing XY .
(Note that, if X = Ha, Y = Kb, then
X+xY =[H V aKa']ab

where, for subgroups U, V of G, U \V V denotes the subgroup generated
by U and V.) It was further shown in [6] that every subdirect
product of an inverse semigroup S by G is determined by a mapping
6 of Sinto .2#°(@), where @ is a v-prehomomorphism in the sense of
the following definition.

DEFINITION 1.1. Let S and T be inverse semigroups then a
mapping 0: S— T is a v-prehomomorphism if the following hold

(i) a0 = (ab)™* for each ae S ;

(ii) (ab)d < abbf for each a,beS.

We shall consider in detail the problem of constructing the wv-
prehomomorphisms of one inverse semigroup into another later in
this paper. Here we shall show that the congruences on an FE-unitary
inverse semigroup S = P(G, &2, %) are also determined by v-prehomo-
morphisms of S into .2727(@).

LEMMA 1.2. Let S = P(G, &2, %) be an E-unitary inverse semi-
group and let o be a congruence on S. For each a = (a, g)€S set
afd, = {k € G: (a, 9)p(b, k) for some (b, h)eS}.

Then 6 = 0, is a v-prehomomorphism of S into 25 (G). Further
0 < 0 where acg = g for each a = (a, g) and where 6 < 6 means af =
ao for each acS.
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Proof. We use the fact [2] that X & G is a coset if and only
if X = XX"'X; note that X £ XXX holds for any X< G. Thus,
suppose that %, h,, h; € ad with, say, (a, g)o(b;, h;), 2 = 1,2,3. Then

(a, 9) = (a, 9)(a, 9)"(a, 9)0(b, h,)(by, hs)"'(bs, hs) = (w, h,h""hs)

for some u € 7. Hence h,h;'h; e af. It follows that ad € 22°(G). Thus
hea™gimplies h'ca'd. It follows, using the fact that a = ()7,
that (af)'=a7'd. Next, suppose k, € ab, k, € b6 with ap(c,, k.), bo(c,, k.),
say. Then abp(c,\k.c,, k.k,) consequently k.k, € abd. Hence adbo= (ab)b
and so, since (ab)d is a coset, af«blo = (ab)d; that is, (ab)d < adbl. It
follows that # is a v-prehomomorphism of S into .27(G).

Finally, if a = (a, ¢g) then g € af so that ad < {9} = ao; thus § < 0.

Suppose now that z is a normal partition on the idempotents of S.
Then Reilly and Scheiblich [10] have shown that 7* defined by (e, d) €
w* if and only if a 'eawb™eb for all ¢ = ¢ € S is the largest congruence
on S which induces the normal partition 7. The prehomomorphism
£, corresponding to 7* is given by (a, 9)k. = {h € G: for some be Z
such that h™'be 2, bra and gh~ifr f for all f < b},

Note that, if .27 = 2/, then

(a, 9)k. = {heG:gh7 ' frf for all f < a}
while, if # = 4 is the identity partition,
(a, ). ={heG:gh™'f = f for all f < a}.

If o is a congruence on S, we shall denote by 7, the normal
partition, on the idempotents, induced by p.

LEMMA 1.8. Let o be a congruence on S = P(G, 2, %) and let
a=(a,g9),b=(0,h)eS. Then, if t =w,, 0 =06,

(i) k. =6

(ii) anb implies (a, 1)6 = (b, 1)6;

(iii) (a,b)cp if and only if awd and al = bo.

Proof. (i) Suppose xecaf; thus (a, g)o(y, x) for some ye 2.
Then, since 0 S 7%, (a, 9)7*(y, x); thus x € ak,. It follows that af S ak_;
that is ax. < af. Hence k. < 0.

(ii) If amb then (a, 1)p(b, 1) since 7 is the normal partition
induced by po. Thus, by definition (a, 1) = (b, 1)8.

(iii) Suppose (a, b)€ o then, since o induces =, arb and, from
the definition of 4, ad = bf. Conversely, suppose amb and af = bé.
Then h € ad so that (a, g)o(e, k) for some ce Z2Nhz. We now have
the following string of equivalences
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(@, 9) = (a, 1)(a, 9)o(b, 1)(a, g) since anb and p induces =
(b, 1)(c, k)
= (¢, 1)(b, h)
(b, 1)(b, k) = (b, &)
since (a, 9)o(c, h) implies (a, 1)p(c, 1) and amdb implies (a, 1)o(b, 1).
Hence (a, 9)o(b, k).
Lemma 1.3 shows that o is determined by the normal partition z,
and the v-prehomomorphism 6,. We now turn to the converse situation
where we start with a normal partition and @ v-prehomomorphism.

We require the following lemma which will be of crucial importance
later in the paper.

LEMMA 1.4. Let 0 be a v-prehomomorphism of an inverse semi-
group S into an inverse semigroup T, and let a,beS. If a 'a =bb™*
or a”'a Z bb7' then adbd = (ab)b.

Proof. Suppose a'a = bb~'. Then

adbl = ad(bb'b)0 = af(a'abb™'b)d since a'a = bb™*

= af(a""ab)d

= abf(a ")0(ab)d since 6 is a v-prehomomorphism
ad(ab) " (ab)d since (ab)™ = (a™')0
= (ab)d .

I

But by hypothesis, (ab)d < adbo.
The other case is similar.

COROLLARY 1.5. Let G be a group and S an inverse semigroup
and suppose that 6 is o v-prehomomorphism of S tnto 27 (G). Then,
for each a €S, af s a coset modulo (aa™)f.

Proof. By Lemma 1.4, (aa ™) = af{a™") = ab(af)™. But af is
a coset modulo af(af)*. Hence the result.

LEMMA 1.6. Let 7w be a normal partition on the set 27 of idem-
potents of P(G, 2, 27) = S and let 6: S— 27(G) be a v-prehomonor-
phism such that

(i) k. Z0=0

(ii) aznb implies (a, 1) = (b, 1)0 for a,be 2.

Then 0 defined by

(a, 9)o(b, k) if and only if awb and (a, g)0 = (b, k)9
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18 a congruence on S which induces . Further 6 = 0,.

Proof. The relation p is clearly an equivalence on S. Suppose
that (a, g)o(b, k) and let (¢, k) S. Then (a, g)d = (b, h)d implies
(a, 9)k. = (b, h)k. since k. < 6 and then, since anb, Lemma 1.3 implies
(a, g)x*(b, h). Hence (a, 9)(¢c, k)x*(b, h)(c, k). It follows from this that
(@ A ge, D)x*(b A he, 1) so that (& A ge)n(b A he).

Next (a, 9)8 = (b, k)0 implies [ = (a, 9)b(c, k)0 = (a A ge, gk)d N
(b A he, hk)6 since 6 is a v-prehomomorphism. By Corollary 1.5,
(a A gc, gk)d is a coset modulo (a A ge, 1)8 and (b A ke, hk)6 is a coset
modulo (b A Au, 1)§. Hence, to prove (a A ge, gk)d = (b A he, hk)d it
suffices to prove that (¢ A g¢, 1)8 = (b A he, 1)6. But, since

(a A ge)n(b A he),

this is immediate from condition (ii) in the statement of the lemma.
It follows that p is right compatible. A similar argument shows
that it is left compatible; thus o is a congruence on S.

Now (a,1)o(b,1) if and only if ezxb and (a,1)d = (b, 1)d. By
condition (ii), awd implies (a, 1)6 = (b, 1)§. Hence (a, 1)o(b, 1) if and
only if aznb; that is, o induces =.

Finally, suppose that ke(a, g)f,. Then (b, k)p(e, g) for some
be 2 so that (b, k)0 = (a, g)§. But 6 < ¢ implies k€ (b, k). Hence
(a, 9)8, < (@, 9)8. On the other hand, if & e(a, g)d, then, since &, <
0, he(a, g)k. so that (b, h)w*(a, g) for some bez. This implies
(b, D)z*(e, 1) so that bma and, consequently, (b,1)0 = (a, 1)d. But,
since 6 < 0, h (b, h)9; thus he(b, h)9 N (a, g)d. Since, by Corollary
1.5, each of these is a coset modulo (b, 1) = (a, 1)4, it follows that
(b, R)6 = (a, g)0. Hence, since anbd, (b, h)o(a, g) so that ke(a, g)b,.
We have thus shown that (a, 9)6 < (a, 9)d,; therefore (a, 9)d, = (a, g)f.

In order to simplify the statement of the next result, we introduce
some notation. Suppose that S is an inverse semigroup and G is a
group. Then 7(S) denotes the lattice of normal partitions on the
idempotents of S while Pre (S, G) denotes the partially ordered set
of v-prehomomorphisms of Sinto G. If S = P(G, &2, 2/) is E-unitary
then we shall denote by <Z(S) the subset, under the cartesian ordering,
of w(S) x Pre (S, G) consisting of all pairs (x, 6) such that

(i) e.=0=0

(ii) anb implies (a, 1)§ = (b, 1)6.
under the ordering (z, ) =< (0, +) if and only if 7 & p, 0 = .

THEOREM 1.7. Let S = P(G, 2, /) be an E-unitary semigroup.
Then the mapping ¢ defined by

0¢ = (m,, 0,)
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18 an 1somorphism of the lattice of congruence on S onto & (S).
Proof. This follows easily from Lemmas 1.2, 1.3, 1.6.

COROLLARY 1.8. Let @ be a mormal partition on P(G, 2, %).
Then the lattice of congruences on S with mormal partition w is
antiisomorphic to the set of v-prehomomorphisms 6 of S into 25 (G)
which satisfy

(i) k. =0=0;

(ii) <f azmb then (a, 1)§ = (b, 1)4, for a,be Z.

2. The category of v-prehomomorphisms. In this section, we
show that inverse semigroups, with w»-prehomomorphisms as mor-
phisms, form a category having the category of inverse semigroups
and homomorphisms as a coreflective subcategory.

LEMMA 2.1. Let S and T be inverse semigroups and let 0: S —
T be a v-prehomomorphism of S into T. Then

(i) 6 maps idempotents of S to idempotents of T;

(il) @ is isotome; that s, a < b implies ad < b, for a,beS.

Proof. (i) Let ¢® =ecS; then
el = 0 < efled < efefed = ef(e™)0ed = ef(ef) ‘el = el .

Hence e = efed.
(ii) Suppose @ < b; thus a = ¢b for some ¢ =e<cS. Then af =
(eb)d < efbf < b0 since, by (i), ef is an idempotent of T.

COROLLARY 2.2. Inverse semigroups, with v-prehomomorphisms
as morphisms, constitute a category.

Proof. We need only show that the composite of wv-prehomo-
morphisms is again a v-prehomomorphism. Thus, let 6: S— T and
¢: T—U be v-prehomomorphisms and let a,beS. Then (ab)d < adbd
whence, since ¢ is isotone, (ab)f8s < (a0bd)¢ < abgbls. Further (a )¢ =
(a67)¢ = (abg)'. Hence 04 is a v-prehomomorphism.

It is a straightforward matter to show that, as a subcategory
of the category of inverse semigroups and v-prehomomorphisms, the
category of inverse semigroups and homomorphisms is closed under
limits and has solution sets. Hence, by the adjoint functor theorem,
it is a coreflective subcategory. This may be shown directly since
the inequality in the definition of a v-prehomomorphism can be written
as an equality. Thus 6: S— T is a v-prehomomorphism if and only
if, for each a¢,bc S
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(i) (ab)d = (ab)6(ab)dadbl
(if) (a8 = (ad)™™.

THEOREM 2.3. Let S an inverse semigroup. Then there is an
inverse semigroup V(S) and a v-prehomomorvhism 1: S — V(S) with
the following property. given any v-prehomomorphism 6:S— T
there is a unique homomorphism +:V(S)— T such that 6 = 7.

Proof. Let o be the congruence on the free inverse semigroup
FI(S) on S, generated by the relations

ab = ab.(ab)'.a.b
a=a.al.a

for all a,be S, where juxtaposition denotes the product in S and
denotes that in FI(S); let V(S) = FI(S)/po. Then the mapping 7: S—
V(S) defined by a7 = ap® is, by the definition of p, a v-prehomomor-
phism. Further, because of the universal property of FI(S), any -
prehomomorphism 6: S — T factors uniquely through a homomorphism
P V(S)—T as 0 = N,

The following proposition gives some properties of V(S) for an
arbitrary inverse semigroup.

PROPOSITION 2.4. Let S be an inverse semigroup. Then

(i) 7:S—V(S) is one-to-one and S is a homomorphic retract
of V(S); of 0:V(S)— S is the retraction then, for each w e V(S)

w0n = min {u € V(S): wd = ub}

i.e. for each se S, w0 = s implies w = s7;

(ii) V(S)/o ~ Slc where o denotes the minimum group con-
gruence;

(iii) s S has an identity 1, then 17n 1is the identity of V(S);
of S has a zero 0, then 07 is the zero of V(S).

Proof. (i) The identity mapping 1,: S— S is a homomorphism.
Hence it factors through 7: 1y = 70 for some homomorphism 4. This
means that 7 is one-to-one and @ is onto.

Now let w = s7s,m---8,7eV(S). Then wld = s, ---s, but
87 8,0 =(s, -+ 8,)7). Hence

won = min {u € V(S): wf = ud} .

(ii) Let G and H be respectively the maximal group homomorphic
images of S and V(S), with «, 8 the corresponding canonical homo-
morphisms, and consider the diagram
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V(S) — H
4
S— ¢

a

Since « is a v-prehomomorphism of S into a group, there is a unique
homomorphism +: H— G such that a¢ = 78+4. On the other hand,
any v-prehomomorphism of S into a group is actually a homomorphism.
Hence there is a unique homomorphism y%: G — H such that 78 = ay.
Thus

aly = a = ayy whence, since « is onto, xy = 1,4
and
7BYY = 7B = 17Bly whence ¥y =15 .

It follows that y and + are inverse isomorphisms so that G ~ H.

(iii) Each element of V(S) has the form s,9:--s,7 with s;, +--,
s, €S. Hence, to prove that 17 is the identity of V(S), it suffices to
show that 17sy = snp = syl for each s€S. Now, 17'1 =1 =ss™ and
117 =1 = s's so, by Lemma 1.4, sn1n = (sl)n = s7 = (1s)n = 19s7.

The case when S has a zero is treated similarly.

It follows from Theorem 2.3 that the problem of describing the
v-prehomomorphisms with domain S is the same as that of describing
homomorphisms with domain V(S). In particular each v-prehomomor-
phism is a homomorphism if and only if 7 is a homomorphism, thus
an isomorphism, of S into V(S). Since V(S) is generated, as an
inverse semigroup, by S this occurs if and only if 7 is an isomorphism
of S onto V(S).

PROPOSITION 2.5. Let S be an inverse semigroup whose idempot-
ents form a chain. Then 7: S —V(S) is an isomorphism.

Proof. Let a, beS; then either ¢7'a = bbb or bb™* = ¢ 'a. Hence
by Lemma 1.4, (ab)y = anby. Thus 7 is a homomorphism and therefore
an isomorphism.

COROLLARY 2.6. Let S be an w-bisimple inverse semigroup.
Then 17: S—V(S) is an tsomorphism. Thus every v-prehomomorphism
with domain S 1s & homomorphism.

The next result and its corollaries give partial converses to
Proposition 2.5.
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THEOREM 2.7. Let S be an E-unitry inverse semigroun. Then
7: S—V(S) is an isomorphism ©f and only if the idempotents of S
form a chain.

Proof. Suppose S = P(G, 22, ) where .27 is a down directed
partially ordered set having 2 as an ideal and subsemilattice and
where G acts on 27 in such a way that .22 = G-2; this is possible
by [4], Theorem 2.6. Let .2~ denote the set of finitely generated
up ideals of 22 Then G acts on .2° by g-A = {ga:ac A} and 2
is a semilattice under U. Hence we may form the semidirect product
PG, & &) of & by G.

For each (a, g) € S define

(¢, 9)p = (A, 9) where A={xecZ:2=a}.
Then, for (a, 9), (b, ) € S with (a, g)¢ = (4, g), (b, k)¢ = (B, h),
(@, 9)¢(b, B)p = (A U gB, gh)

while [(a, 9)(B, k)1 = (C, gh) where C = {xc.2:2 = a > gb} S AUgB.
The partial order on P(G, 25 #°) is defined by (U, ) < (V, v) if and
only if w =v and VS U. Hence [(a, g)(, h)l¢ <(a, 9)é(b, h)s. Further,
it is easy to see that (@, 9)7'¢ = [(a, 9)$]™*. Thus ¢ is a v-prehomo-
morphism of S into P(G, 2 ).

Suppose now that 7: S—V(S) is an isomorphism, then ¢ also is
a homomorphism. Lete, f e 2 and set (¢, 1)¢ = (U, 1), (f, Vs =(V, 1).
Then, from the definition of 4, (¢, 1)¢(f, 1)¢ = (UUV, 1). On the
other hand, since ¢ is a homomorphism, (e, 1)3(f, 1)¢ = (¢ A f, 1)g.
HenceUUV={xe2:x=eA f}. Thisimpliese A fecUoreA feV,;
that is eAf=e¢ or e A f=f. Thus either f=¢ or ex>f. It
follows that the idempotents of S form a chain.

The converse is immediate from Proposition 2.5.

COROLLARY 2.8. Let S be o semilattice. Then V(S) is a semi-
lattice; further 7: S —V(S) is an tsomorphism i1f and only if S is
a chain.

Proof. The fact that V(S) is a semilattice is immediate from
Lemma 2.1, since V(S) is generated by S7. The other assertion is
immediate from Theorem 2.7.

PRrOPOSITION 2.9. Let S be an inverse semigroup ond suppose
that S admits an idempotent separating homomorphism onto an
E-unitary inverse semigroup. Then 12 S—V(S) is an isomorphism
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wf and only if the semilattice of idempotents of S is a chain.

Proof. Let 6: S— P be an idempotent separating homomorphism
of S onto an FE-unitary inverse semigroup P and suppose that 75 S—
V(S) is an isomorphism. Then 67, = sy for some homomorphism
V(S)—V(P). Thus, for idempotents & = ef, f = f0 in P, (@f)y, =
&)pfNp. As in the proof of Theorem 2.6, this implies & = for f = &.
Hence the idempotents of P, thus of S, form a chain.

COROLLARY 2.10. Let S be a semilattice of groups then 7:S—
V(S) is an isomorphism if and only if the idempotents of S form
a chain.

Let E Dbe a semilattice and let ac T,([8]) with domain a =
{xeE:x<e¢e}; if fis in the domain of « and ga = g for all ¢ < f,
we shall say that f is a nontrivial fixpoint of @. If @ has no
nontrivial fixpoints we shall say that « is fixpoint free. We shall
say that E is locally rigid if each non idempotent of T, is fixpoint
free. It is easy to see that 7T, is E-unitary if and only if E is
locally rigaid.

COROLLARY 2.11. Let S be an inverse semigroup whose semi-
lattice of idempotents 1s locally rigid. Then 7:S—V(S) is an
isomorphism if and only if the idempotents form a chain.

It remains an open question whether 7: S —V(S) an isomorphism
implies that the idempotents of S form a chain. In the next two
sections, we consider situations when S has special structure. Here
more definitive results may be given.

3. Simple and bisimple inverse semigroups.

PROPOSITION 3.1. Let S be a simple inverse semigroup. Then
V(S) ts a simple inverse semigroup.

Proof. Let w = sy ---s579¢eV(S); then we V(S)ysnV(S) for
1<+=+7%. On the other hand, w = (s, -+- s,)n so that (s,---s,)n¢€
V(S)wV(S). But, since S is simple, s, = u,(s, ---s,)v;, for some
U, V;€SY, so that s < uy(s, --- s.)nv) so that s; ;e V(S)wV (S,
1=v=7r. It follows that w_Zs%,1 =14 = r. This shows

(i) every element of V(S) is _#-equivalent to some s7,s¢S

(ii) 1is s,teS then sy_gZ(st)y_~£t7).

Hence V(S) is simple.
The result of Proposition 3.1 does not hold if simple is replaced
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by 0O-simple. For example, we have

ExampLE 3.2. Let S = M, be the Brandt semigroup of 2 x 2
matrix units with non zero elements:a, ™%, ¢ = aa™, f = a'a. Then,
by Lemma 1.4, ap™ = (a7')y, e = (aa™)p = an(an)™, f1 = (a7'a)p =
(an)'an. Hence V(S) has exactly one nonzero generator a7 and so
is a homomorphic image of F? where F, denotes the free inverse
semigroup on one generator, a.

On the other hand, the mapping 6:S— F? defined by af = a,
a0 =a" el =aal, f0 =a'a,00 =0, is easily seen to be a v-pre-
homomorphism of Sinto F?. Hence 0=7+ for a unique homomorphism
¥:V(S) — Fi. It follows that 7 is an isomorphism so that V(S) ~ F7,
which is not O-simple.

In a similar way, the result of Proposition 3.1 does not hold if
simple is replaced by bisimple. Indeed we have the following pro-
position.

PrOPOSITION 3.3. Let S be an E-unitary bisimple inverse semi-
group. Then the following statements are equivalent:

(1) 7:S—V(S) is an isomorphism;

(2) V(S) is bisimple;

(3) the idempotents of S are totally ordered.

Proof. (1) = (2) is clear.

(2)=(3) Suppose that S = P(G, 25 ) and, as in Theorem
2.7, consider the v-prehomomorphism ¢ of S into P(G, .2, .2°). Then,
by hypothesis, the inverse subsemigroup T of P(G, .2, ) generated
by Sp is bisimple.

Let e, fez with U={xec2:22¢}, V={xec2Z:2 = f}. Then
(UUV,1) =epfp so that (UUV, 1) is &-equivalent to es in T, thus
in P(G, Z, &Z°). The form of Green’s relations on P(G, 2 %), [2],
then implies that U U V has a least element z. This must be either
e or f so that e = f or f =e¢. Hence the idempotents of S form a
chain and (3) holds.

(3)=1(1) is immediate from Proposition 2.5.

Despite the fact that, when S is bisimple, V(S) need not be
bisimple and its structure is not completely determined, one can give
a direct method for constructing all v-prehomomorphisms with domain
S. Before doing this we need to introduce some terminology.

A partial semigroup is a pair (R, P), where R is a set and P
is a nonempty subset of R, together with a map P x R — R, written
as multiplication, such that, for a, b€ P, ce R, ab e P and a(bc) = (ab)c.
If (B, P) and (U, Q) are partial semigroups a morphism ¢: (R, P) —
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(U, Q) is a mapping ¢: R —U such that Py < @ and (ab)p = agbs for
acP,beR.

ProOPOSITION 3.4. Let S be a bisimple inverse semigroup and
let ¢ be an idempotent of S; set R ={xeS:xx™* = e}, P= RN eSe.
Suppose that T s an inverse semigroup and let f be an tdempotent
of Ty set U={weT:2x' = fland @ =UN fTf. If ¢ is a morphism
(R, P)— (U, Q) then 6:S— T defined by

s0 = (ap)'bp if s=a'b

is a v-prehomomorphism of S into T such that e = f.
Conversely, each such ts constructed in this way.

Proof. We show first that 0 is well defined. Suppose that ¢™'b =
c¢'d. Then, [9], ¢=ga, d = gb for some g € P such that gg7'=g7'g=e.
Thus

cg~'do = (99ag) 'gobs
= (ag¢)'gp 'gpbs
= (ag)(g7'gb)p = (ag) 'bs

since g7'g = ¢ is a left identity for R.

Next, let a™b, c'd € S and choose #, v € P such that «b = vec and
Pb N Pc = Pub; this is possible since S is bisimple, see [9]. Then
a”be'd = (ua)'vd. Thus

(@a™'bc™'d)g = (ua)g~'(vd)¢
= (ag) ' (ug) " (vg)dg
= (ag) " (ug)(vg)cp(cg)'d¢ since cpZd¢
= (a¢) (ug) (ub)g(cp)'d¢ since ub = ve
= (ag) (ug) " (ug)bg(cg) 'dg
=< [(ag) 'bgll(cp) 'dp] since (ug)'u¢ is idempotent ,

while, by definition s7'¢ = (sf)™* for each s€S. Hence 4 is a v-
prehomomorphism of S into 7, and, since e, f are the unique
idempotents in R, U, ¢f = f.

Conversely, let 6: S— T be a wv-prehomomorphism such that
¢d = f. Then for a e R, ¢ = (aa™')0 = abafd™ so that af € U. Further,
if be P then b = be implies b™'b = b™'be < ¢ so that, by Lemma 1.4,
(ba)d = blad; in particular bd=06f so that bd € Q. Hence the restriction
¢ of 6 to R is a morphism of (R, P) into (U, Q).

Finally, if s = a™'b € S then, since (¢™*)"'¢™ = aa™ = bb™', Lemma
1.4 shows that sf = af~'b0 = ag'bé.

The result in Proposition 3.4 can easily be adapted to deal with
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the case of a 0-bisimple inverse semigroup.

Proposition 3.4 can be used to give necessary and sufficient
conditions for V(S) to be bisimple whenever S is a bisimple monoid.
However these conditions can not be regarded as giving a completely
satisfactory answer to the problem.

PROPOSITION 3.5. Let S = S* be a bisimple inverse monoid with
right unit subsemigroup R. Then V(S) is bistmple if and only if
S is the unique inverse monid having right wnit subsemigroup R
and generated as an inverse semigroup, by R. In this case 7): S—
V(S) is an tsomorphism.

Proof. Suppose that S is the unique inverse semigroup generated
by R and having right unit subsemigroup E. We shall show that
V(S) has right unit subsemigroup R7». Then 7: S—V(S) is an iso-
morphism and V(S) is bisimple.

Let znyn be a right unit in V(S). Then zpynyy'zy™ = 17 so
that an™an = ey~ (xnynyn ey ey = an~wnynyn~t < yny7n~'. Hence,
by Lemma 1.4, anyn = (xy)y so that, since (xy)n(xy)y™" = xy(xy)™
and 7 is one-to-one, xnyn € Ry). Now suppose that w=s2:--s,7,n =2
is a right unit of V(S). Then s,7s,n is a right unit so that s,9s,p =
(s:52)7. Repetition then gives w = (s;s, - - - 8,)9 and, as above s, -+ s, €
R. Hence, since each member of R7 is a right unit, we have shown
that V(S) has right unit subsemigroup R7.

Since S is generated by R and V(S) is generated by Su, V(S)
is, by Proposition 3.1, a simple inverse semigroup generated by RE7».
Hence V(S) ~ S is bisimple and then, every element of V(S) is of
the form ¢77'b7 with a, b € R7). Hence 7 is onto so that, since 1, =
76 for some homomorphism ¢:V(S)— S, 7 is an isomorphism.

Conversely, suppose V(S) is bisimple and let U(R) be the free
inverse semigroup with right unit subsemigroup R, and generated
by R. Then [4], U(R) is simple and, by Proposition 3.4, the mapping
#: a7 — (av)'by is a v-prehomomorphism; here v is the embedding
R —U(R). Hence ¢ = 16 for some homomorphism 6 of V(S) into U(R).
Since U(R) is generated by Ry, is onto. Hence U(R) is bisimple
with right unit subsemigroup isomorphic to R and so S ~U(R) is
the only inverse semigroup with right unit subsemigroup R and
generated by R.

4. Semilattices of groups. This section follows the pattern of
§3. In the first part we show that, if S is a semilattice of groups
then V(S) need not be a semilattice of groups. In the second part,
we give a method for constructing all v-prehomomorphisms of a
semilattice of groups into an inverse semigroup 7T
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DEFINITION 4.1. Let S be a semilattice of groups. Then the
trunk of S is the set

{a e S: for each ¢’ = ¢€ S either aa™ < e or aa™* = ¢} .

Note that the trunk of S is an inverse subsemigroup of S. If
the idempotents of S form a tree then the trunk is an ideal of S.

PROPOSITION 4.2. Let S be a semilattice of groups whose idem-~
potents form a tree. Then V(S) is a semilattice of groups if and
only if every nontrivial subgroup of S is contained in the trunk.

Proof. Suppose that each nontrivial subgroup of S is contained
in the trunk. Let @ €S and suppose that @ is not idempotent; thus
a belongs to the trunk of S. Then, by Lemma 1.4, anbn = (ab)n for
each beS. It follows that each element of V(S) has one of the
forms a7, where a is a nonidempotent in the trunk of S, or e e, -+ .9
where ¢, ¢, ---, ¢, are idempotents.

Since 7 is one-to-one, it follows that the non-idempotents of V(S)
are the elements a7 where ¢ is a nonidempotent in the trunk of S.
We show that each such a7 commutes with all the idempotents of
V(S). Let enen --- e, be an idempotent of V(S). Then

eney ---enan =e1n--- (e,a)) by Lemma 1.4
= ¢7 -+ ¢,_7(ae,)n since idempotents in
are central

= (3177 te 3r~177)a7]6r7]

which repeating the argument is equal to an(e” --- e.n).

Hence each nonidempotent of V(S) belongs to a subgroup; that
is, V(S) is a semilattice of groups.

Conversely, suppose that H is a nontrivial maximal subgroup,
with identity e, not contained in the trunk of S. Then there is a
maximal subgroup K, with identity f, such that e 2 f, f % e. Let
T=HUKU{0} and turn T into a semilattice of groups with linking
homomorphisms H — {0}, K — {0}. Then the mapping 6: S — T defined
by

ae if aa'=e
afd =4{af if aat=f
{0  otherwise
is a homomorphism of S onto 7. Let H inv K denote the coproduct

of H and K in the category of inverse semigroups and define ¢: T —
(H inv K)* by h¢ = h, for he H, k¢ = k for k€ K and 0¢ = 0, where
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we regard k and % as being contained in H inv K. Then ¢ is a v-
prehomomorphism of 7T into (H inv K)’ so that « = 6¢ is a v-prehomo-
morphism of S into (H inv K)’. But, [6], Hinv K is not a semi-
lattice of groups. Hence V(S) is not a semilattice of groups.

REMARK 4.3. One can show that V(7T) ~ (H inv K)°.

Proposition 4.2 is false without the assumption that the idem-
potents of S form a tree.

ExAmMPLE 4.4. Let H be a nontrivial group with identity e and
let {f} be a one-element group. Construct the semilattice of groups
with linking maps given by the diagram

H =H
i/ "\
{f}
/
NS
{0}

where the unmarked maps are the obvious ones. Denote the resulting
semigroup by S. Then, by Lemma 1.4, each element of V(S) is in
S7 or is a product of terms from H,p U {f7}. Let h,e H, then

i
[l
/ BNs

hfn = (eh)nfy  where h, = h, in H,
= eNhfn  since hhi' = e,
= e(h,f)y since hi'h, = f
= eNS7
= fhy) .

It follows that V(S) = Sn U {e.)f7n} ~ S° so that V(S) is a semilattice
of groups. However H, does not belong to the trunk of S.

We now turn to the problem of describing the wv-prehomomor-
phisms on a semilattice of groups S. In order to do this we need
to construct a family of semilattices of groups based on a semilattice
E.

Let E be a semilattice and let §: E— T be an isotone mapping
of E into the idempotents of an inverse semigroup 7. For each
ecE, set K, ={hecH,: h(ff)=(f0)h for each f <e¢ in E}. It is
clear that K, is a subgroup of H,. Suppose that ¢ = f and define
Ge, s by

ho..; = h(f6) for each he K, .
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LEMMA 4.5. Each ¢, ¢ = f is a homomorphism of K, into K;.
Further ¢,, is the identity on K, while, if e = f = g, then ¢,, =
¢e,f¢f,0'

Proof. This is straightforward.

It follows, from Lemma 4.5, that we can construct an inverse
semigroup which is the semilattice of groups {K,: ¢ c E} with linking
homomorphisms ¢, ¢ = f. We shall denote this semigroup by
SL(E, 6, T).

PROPOSITION 4.6. Let S be a semilattice of groups with semilattice
of tdempotents E. Let 0 be an 1isotone mapping of E into the
idempotents of an inverse semigroup T. Suppose that ¢ is an
idempotent separating homomorphism of S into SL(KE, 6, T). Then
+ defined by

ayr = ag
regarded as an element of T is a v-prehomomorphism of S into T
such that ey = ef for each e* = ecS.

Conwversely, each such v-prehomomorphism has this form for a
unique idempotent separating homomorphism ¢: S— SL(E, 0, T).

Proof. It is clear that +r is a mapping of S into T such that
ey = ef for each ¢ =¢c S and that (a™*)¥ = (ay)™* for each a€S.
Suppose that ac H,, be H; then abec H,; implies

(a'b)":"f = (G,b)¢ = G,¢b¢ = a¢¢e,efb¢¢f,ef
ayr(ef)0by(ef)o

=< avybyr since (ef)d is idempotent .

Il

Hence 4 is a v-prehomomorphism.
Conversely, let « be a w-prehomomorphism of S into 7 such that
ey = el for each ¢® = ¢eS. Suppose that h € H, and let f <e. Then

W £0 = hpfop = (Wf)p = (FR)Y = Fohp = fOhop
by Lemma 1.4 since hh™ = h'h = f. Hence k€ K,. Further, by
Lemma 1.4, hyyhyyr = (hho)y for hy, h,€ H,. Thus ¢ defined by

h¢ = h+r regarded as a member of SL(E, 6, T)

is an idempotent separating mapping of S into SL(E, 6, T) which
is 2 homomorphism on each subgroup of S. Now let heH,, ke H;.
Then
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hoko = hde,okpds,r
= (e f )0k (e )0
= hy(ef)vky(ef )y
= (hef)y(kef )y by Lemma 1.4
= (hef kef)y = (hk)y Dby Lemma 1.4 .

Hence ¢ is a homomorphism and
hyr = h¢ considered as a member of T.

Finally, the uniqueness of ¢ is immediate.
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