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^-PREHOMOMORPHISMS ON INVERSE SEMIGROUPS

D. B. MCALISTER

A mapping θ of an inverse semigroup S into an inverse
semigroup T is called a w-prehomomorphism if, for each a, be
Sf {ab)θ g aθbθ and (α"1)^ = (aθY1. The congruences on an
ϋ7-unitary inverse semigroup P(G, £?, f ) are determined by
the normal partition of the idempotents, which they induce,
and by v-prehomorphisms of S into the inverse semigroup
of cosets of G.

Inverse semigroups, with v-prehomomorphisms as mor-
phisms, constitute a category containing the category of in-
verse semigroups, and homomorphisms, as a coreflective sub-
category. The coreflective map η:S-*V(S) is an isomorphism
if the idempotents of S form a chain and the converse holds
if S is E'-unitary or a semilattice of groups. Explicit con-
structions are given for all v-prehomomorphisms on S in case
S is either a semilattice of groups or is bisimple.

()• Introduction* A mapping θ of an inverse semigroup S into
an inverse semigroup T is called a v-prehomomorphism if, for each
a, b e S, (ab)θ ̂  aθbθ and {aΓι)θ = (aθ)'1. Thus, if S and T are semi-
lattices, a ΐ -prehomomorphism is just an isotone mapping of S into T.
N. R. Reilly and the present author have shown that the i?-unitary
covers of an inverse semigroup S are determined by v-prehomomor-
phisms with domain S. In the first section of this paper, we show
that the congruences on an J5-unitary inverse semigroup S=P(G, <%f, Ψ)
are determined by the normal partition of the idempotents, which
they induce, and by v-prehomomorphisms of S into the inverse semi-
group of cosets of G. The remainder of the paper is concerned
with the problem of constructing ^-prehomomorphisms on an inverse
semigroup S.

In §2, it is shown that inverse semigroups and ^-prehomomor-
phisms constitute a category which contains the category of inverse
semigroups and homomorphisms as a coreflective subcategory. Thus,
for each inverse semigroup S, there is an inverse semigroup V(S)
and a 'y-prehomomorphism η:S—>V(S) with the property that every
w-prehomomorphism with domain S is the composite of rj with a
homomorphism with domain V(S). It is shown that rj is an isomor-
phism if the idempotents of S form a chain and that the converse
holds if S is jE-unitary or a semilattice of groups.

Section 3 is concerned with the situation when S is a simple
inverse semigroup. It is shown that, in this case, V(S) is also simple,
but it need not be bisimple even if S is bisimple. Indeed, if S is
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E'-unitary, it is shown that V(S) is bisimple if and only if the idem-
potents of S form a chain. Despite the fact that the structure of
V(S), for S bisimple, is not completely determined, an explicit method
of construction can be given for all v-prehomomorphisms with domain
S; this is done.

Section 4 is concerned with the situation when S is a semilattice
of groups and the pattern here is similar to that in § 3. It is shown
that V(S) need not be a semilattice of groups; on the other hand,
an explicit method is given for constructing all 'V-homomorphisms
with domain S.

1* Congruences on ^/-unitary inverse semigroups* Let G be a
group. Then it was shown in [11] that the set J%Γ(G) of all cosets
X of G modulo subgroups of G is an inverse semigroup under the
multiplication * where

1 * 7 = smallest coset containing XY.

(Note that, if X = Ha, Y = Kb, then

X*Y= [H V aKa~']ab

where, for subgroups U, VoίG, U V V denotes the subgroup generated
by U and V.) It was further shown in [6] that every subdirect
product of an inverse semigroup S by G is determined by a mapping
θ of S into J%Γ(G), where θ is a v-prehomomorphism in the sense of
the following definition.

DEFINITION 1.1. Let S and T be inverse semigroups then a
mapping θ: S —> T is a v-prehomomorphism if the following hold

( i ) a r ι θ = ( a d ) ' 1 f o r e a c h a e S
( i i ) (ab)θ ^ aθbθ f o r e a c h a , b e S .
We shall consider in detail the problem of constructing the v-

prehomomorphisms of one inverse semigroup into another later in
this paper. Here we shall show that the congruences on an Z?-unitary
inverse semigroup S = P(G, £f, 2 )̂ are also determined by 'y-prehomo-
morphisms of S into

LEMMA 1.2. Let S — P(G, £f, W} be an E-unitary inverse semi-
group and let p be a congruence on S. For each a = (α, g) e S set

aθP = {k e G: (a, g)ρ(b, h) for some (6, k) e S} .

Then θ ~ ΘP is a v-prehomomorphism of S into Sί^{G). Further
θ ^ o where aσ — g for each a = (α, g) and where θ ^ a means aθ ^
aσ for each ae S.



v-PREHOMOMORPHISMS ON INVERSE SEMIGROUPS 217

Proof. We use the fact [2] that X £ G is a coset if and only
if X = XX^X; note that X £ XX^X holds for any X £ G. Thus,
suppose that λx, h29 h3 e aθ with, say, (a, g)p(bί9 h%), i = 1, 2, 3. Then

(α, g) = (α, flf)(α, g)~\ay g)ρ(b1, h^φ^ h2)-\b3, h5) = (u, hji^hs)

for some ue^. Hence hjιςιhz e α0. It follows that α0 e SΓ(G). Thus
A e crty implies h~ι e a~ιθ. It follows, using the fact that a — (α"1)""1,
that (aθYι — a~ιθ. Next, suppose kx e α0, k2 e 6/9 with α p ^ , &J, &iθ(c2, Λ2),
say. Then abp(c1Ak1c2f k^) consequently kjcz e abθ. Hence aθbθQ(ab)θ
and so, since (ab)θ is a coset, aθ*bθG(ab)θ; that is, (ab)θ^aθbθ. It
follows that # is a ^-prehomomorphism of S into SΓ{G).

Finally, if a = (α, g) then g eaθ so that α0 ̂  {̂ } = ασ; thus θ <£ σ.
Suppose now that Γ is a normal partition on the idempotents of S.

Then Reilly and Scheiblich [10] have shown that π* defined by (α, 6) e
Γ* if and only if a~ιeaπb~ιeb for all β2 = e G S is the largest congruence
on S which induces the normal partition π. The prehomomorphism
/cπ corresponding to TΓ* is given by (α, )̂Λ:̂  = {heG: for some 6 e ^
such that fe"^ 6 g/, 6ττα and gh~ιfπ f for all / ^ 6}.

Note that, if JT" = ĝ , then

(α, g)/cff -{AeG: gh^fπf for all / <: α}

while, if π = A is the identity partition,

(α, ^ K = {heG: gh~ιf = f for all / ^ α} .

If p is a congruence [on S, we shall denote by πP the normal
partition, on the idempotents, induced by p.

LEMMA 1.3. Let p be a congruence on S = P(G, ^ ^) and let
« = (a, g)f b = (6, Λ) 6 S. Then, if π = πp, θ = θp

( i ) κπ^θ;
(ii) απί) implies (a, 1)0 = (6, 1)0;
(iii) (α, 6) e <o i/ and only if aπb and aθ ~ 60.

Proof, (i) Suppose x e aθ; thus (a, g)p(y, x) for some y e %/.
Then, since p £ π*, (α, g)π*(y, x); thus α; e αΛ:π. It follows that aθ £ atcπ;
that is α^ ̂  aθ. Hence ιcπ ̂  0.

(ii) If aπb then (α, 1)^(6, 1) since π is the normal partition
induced by p. Thus, by definition (α, 1)0 = (6, 1)0.

(iii) Suppose (α, 6) e p then, since p induces π, aπb and, from
the definition of 0, aθ — 60. Conversely, suppose aπb and α0 = 60.
Then Λ, eα0 so that (α, #)<o(c, ̂ ) f° r some c e ̂ /{\hψ. We now have
the following string of equivalences
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(a, g) — {a, l)(α, g)p(b, l)(α, g) since aπb and p induces π

p(b, l)(c, h)

= (c, 1)(6, Λ)

p(b, 1)(6, Λ) - (6, h)

since (α, #)<o(c, ft,) implies (α, l)|θ(c, 1) and aπb implies (α, 1)^(6, 1).
Hence (α, g)ρ{b, h).

Lemma 1.3 shows that p is determined by the normal partition πp

and the v-prehomomorphism ΘP. We now turn to the converse situation
where we start with a normal partition and a 'y-prehomomorphism.
We require the following lemma which will be of crucial importance
later in the paper.

LEMMA 1.4. Let θ be a v-prehomomorphίsm of an inverse semi-
group S into an inverse semigroup T, and let a, b e S. If a~ιa ^ bb~ι

or a~ιa £ δδ"1 then aθbθ = (ab)θ.

Proof. Suppose a~ιa ̂  bb~\ Then

aθbθ = aθ(bb~ιb)θ = α^α"1abb~ιb)θ since a~ιa ̂  66"1

= aθ{a~ιab)θ

:g aθ{a~1)θ{ab)θ since θ is a ^-prehomomorphism

= aθ{aθ)~\ab)θ since (aθ)'1 = (α"1)^

^ (ab)θ .

But by hypothesis, (ab)θ ^ α̂ 6<9.

The other case is similar.

COROLLARY 1.5. Let G be a group and S an inverse semigroup
and suppose that θ is a v-prehomomorphism of S into Sί^{G). Then,
for each a e S, aθ is a coset modulo {aa~ι)θ.

Proof. By Lemma 1.4, {aa~ι)θ = aθ{a~ι)θ = aθ{aθ)~ι. But aθ is
a coset modulo aθiaθ)'1. Hence the result.

LEMMA 1.6. Let π be a normal partition on the set <2/ of idem-
potents of P(G, £f, ^/) = S and let θ: S-+3Γ(G) be a v-prehomomor-
phism such that

( i ) fcπ^θ £σ
(ii) aπb implies (α, l)θ = (δ, 1)0 for a,be^ .

Then p defined by

(α, g)p{b, h) if and only if aπb and (α, g)θ = (&, h)θ
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is a congruence on S which induces π. Further 0 = ΘP.

Proof. The relation p is clearly an equivalence on S. Suppose
that (a,g)p(b,h) and let (c,k)eS. Then (a, g)θ = (δ, h)θ implies
(a, g)icπ = (δ, h)fcπ since ιcπ^θ and then, since aπb, Lemma 1.3 implies
(a, g)π*{bf h). Hence (α, g){c, &)π*(δ, h)(c, k). It follows from this that
(a A gc, l)ττ*(δ Λ he, 1) so that (a A gc)π(b A he).

Next (a, #)0 = (6, λ)0 implies Π ^ (α, 0)0(e, &)# C (α Λ #e, #&)# Π
(6 Λ ftc, M)0 since 0 is a ΐ -prehomomorphism. By Corollary 1.5,
(α Λ flfc, gk)θ is a coset modulo (a A gc, 1)0 and (6 Λ ftc, M)0 is a coset
modulo (6 Λ hu, l)θ. Hence, to prove (a A gc, gk)θ = (6 Λ he, hk)θ it
suffices to prove that (a A gc, 1)0 = (δ Λ &c, 1)0. But, since

(a A gc)π(b A he) ,

this is immediate from condition (ii) in the statement of the lemma.
It follows that p is right compatible. A similar argument shows
that it is left compatible; thus p is a congruence on S.

Now (α, l)ρ(b, 1) if and only if aπb and (a, 1)0 = (6, 1)0. By
condition (ii), aπb implies (a, 1)0 = (6, 1)0. Hence (a, l)p(b, 1) if and
only if aπb) that is, p induces π.

Finally, suppose that he(a,g)θp. Then (δ, h)p(a, g) for some
δ e & so that (δ, h)θ = (α, #)0. But 0 ^ (7 implies Λ e (δ, &)0. Hence
(α, g)θP £ (α, g)0. On the other hand, if λ e (a, g)θ, then, since fcπ ^
0, A e (α, g)fcπ so that (6, h)π* (a, g) for some be^/. This implies
(δ, l)π*(α, 1) so that bπa and, consequently, (6, 1)0 = (α, 1)0. But,
since 0 <; σ, h e (b, h)θ; thus h e (b, h)θ Π {a, g)θ. Since, by Corollary
1.5, each of these is a coset modulo (δ, 1)0 = (a, 1)0, it follows that
(δ, h)θ = (a, g)θ. Hence, since aπb, (b, h)p(a, g) so that he(a,g)θP.
We have thus shown that (a, g)θ £ (a, g)θP; therefore (a, g)θp = (a, g)θ.

In order to simplify the statement of the next result, we introduce
some notation. Suppose that S is an inverse semigroup and G is a
group. Then π(S) denotes the lattice of normal partitions on the
idempotents of S while Pre (S, G) denotes the partially ordered set
of ΐ -prehomomorphisms of S into G. If S = P(G, £f, <%/) is ^/-unitary
then we shall denote by ^(S) the subset, under the cartesian ordering,
of π(S) x Pre (S, G) consisting of all pairs (π, 0) such that

( i ) /cπ £ 0 ^ σ
(ii) aπb implies (a, 1)0 = (δ, 1)0.

under the ordering (π, 0) ^ (p, ψ) if and only if π C p, θ Ξ> ψ.

THEOREM 1.7. Lβί S = P(G, £f> ^/) be an E-unitary semigroup.
Then the mapping φ defined by

pφ = (πP, ΘP)
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is an isomorphism of the lattice of congruence on S onto &(S

Proof. This follows easily from Lemmas 1.2, 1.3, 1.6.

COROLLARY 1.8. Let π be a normal partition on P{G, <%?,,
Then the lattice of congruences on S with normal partition π is
antiisomorphic to the set of v-prehomomorphisms Θ of S into 3$Γ(Gr)
which satisfy

( i ) tcπ^θ ^σ;
(ϋ) if aπb then (a, 1)0 = (6, 1)0, for a,be^/.

2. The category of v-prehomomorphisms* In this section, we
show that inverse semigroups, with v-prehomomorphisms as mor-
phisms, form a category having the category of inverse semigroups
and homomorphisms as a coreflective subcategory.

LEMMA 2.1. Let S and T be inverse semigroups and let Θ:S~+
T be a v-prehomomorphism of S into T. Then

( i ) θ maps idempotents of S to idempotents of T;
(ii) θ is isotone; that is, a^b implies aθ ̂  bθ, for a,beS.

Proof, (i) Let e2 = e e S; then

eθ = e2θ ^ eθeθ <: eθeθeθ = eθ{e~ι)θeθ = eθ{eθ)~ιeθ = eθ .

Hence eθ = eθeθ.

(ii) Suppose a ^ 6; thus a = eb for some e2 = e e S. Then aθ =
(eb)θ <; eθbθ ̂  bθ since, by (i), eθ is an idempotent of T.

COROLLARY 2.2. Inverse semigroups, with v-prehomomorphisms
as morphisms, constitute a category.

Proof. We need only show that the composite of ΐ -prehomo-
morphisms is again a 'y-prehomomorphism. Thus, let θ: S—+T and
φ: T —>U be 'y-prehomomorphisms and let a,beS. Then (ab)θ <Ξ aθbθ
whence, since φ is isotone, (ab)θφ ^ (aθbθ)φ <; aθφbθφ. Further (a~ι)θφ =
{aθ~ι)φ = {aθφY1. Hence θφ is a 'y-prehomomorphism.

It is a straightforward matter to show that, as a subcategory
of the category of inverse semigroups and i -prehomomorphisms, the
category of inverse semigroups and homomorphisms is closed under
limits and has solution sets. Hence, by the adjoint functor theorem,
it is a coreflective subcategory. This may be shown directly since
the inequality in the definition of a v-prehomomorphism can be written
as an equality. Thus θ: S —> T is a v-prehomomorphism if and only
if, for each a,beS
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( i ) ' (άb)θ = (άb)θ(άb)θ^aθbθ
(ii) {a^θ = (aθ)~\

THEOREM 2.3. Let S an inverse semigroup. Then there is an
inverse semigroup V(S) and a v-prehomomorphism η:S—+V(S) with
the following property: given any v-prehomomorphism Θ:S-+T
there is a unique homomorphism ψ: V(S) —> T such that θ = ηψ.

Proof. Let p be the congruence on the free inverse semigroup
FI(S) on S, generated by the relations

ab — ab.{ab)~ι.a.b

a = a.a~\a

for all a,beS, where juxtaposition denotes the product in S and
denotes that in FI(S); let V(S) = FI(S)/p. Then the mapping η: S-+
V(S) defined by aη = ap* is, by the definition of p, a 'y-prehomomor-
phism. Further, because of the universal property of FI(S), any v-
prehomomorphism θ: S—>T factors uniquely through a homomorphism
ψ: V(S) -> T as θ = ηf.

The following proposition gives some properties of V(S) for an
arbitrary inverse semigroup.

PROPOSITION 2.4. Let S be an inverse semigroup. Then
( i ) 7]: S—>V(S) is one-to-one and S is a homomorphic retract

of V(S); if θ: V(S) —> S is the retraction then, for each w e V(S)

wθη = min {u e V(S): wθ = uθ)

i.e. for each s e S, wθ — s implies w ^ srj\
(ii) V(S)/σ & S/σ where σ denotes the minimum group con-

gruence)
(iii) is S has an identity 1, then lη is the identity of V(S);

if S has a zero 0, then 0η is the zero of V(S).

Proof, (i) The identity mapping 1 :̂ S —* S is a homomorphism.
Hence it factors through rj: ls = ηθ for some homomorphism θ. This
means that ΎJ is one-to-one and θ is onto.

Now let w = sj]s2η snη e V(S). Then wθ = sLs2 sn but
SiV * SJ] ^ (si sn)η. Hence

wθη = min {u e V(S): wθ = uθ} .

(ii) Let G and H be respectively the maximal group homomorphic
images of S and V(S), with a, β the corresponding canonical homo-
morphisms, and consider the diagram
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V(S) -^-> H

Since a is a v-prehomomorphism of S into a group, there is a unique
homomorphism ψ:H—»G such that a = ηβψ. On the other hand,
any ^-prehomomorphism of S into a group is actually a homomorphism.
Hence there is a unique homomorphism χ: G—> iίsuch that rjβ — aχ.
Thus

αls = α = αχ^r whence, since α is onto, χψ* = 1G

and

whence <f χ = 1* .

It follows that χ and ψ are inverse isomorphisms so that G ^ H.
(iii) Each element of V(S) has the form sj] s ^ with sίf ,

sΛ G S. Hence, to prove that lη is the identity of V(S), it suffices to
show that Vηsη = sη = sηlη for each seS. Now, iT'l = 1 ^ ss"1 and
II" 1 = 1 :> s-'s so, by Lemma 1.4, ŝ lTy = (si))? = sη = (ls))7 = l^s)7.

The case when S has a zero is treated similarly.
It follows from Theorem 2.3 that the problem of describing the

v-prehomomorphisms with domain S is the same as that of describing
homomorphisms with domain V(S). In particular each ^-prehomomor-
phism is a homomorphism if and only if η is a homomorphism, thus
an isomorphism, of S into V(S). Since V(S) is generated, as an
inverse semigroup, by S this occurs if and only if η is an isomorphism
of S onto V(S).

PROPOSITION 2.5. Let S be an inverse semigroup whose idempot-
ents form a chain. Then τ]:S—>V(S) is an isomorphism.

Proof. Let a, b e S; then either ά~ιa ^ bb~ι or bb~ι ^ a~ιa. Hence
by Lemma 1.4, {ab)rj = arjbrj. Thus ΎJ is a homomorphism and therefore
an isomorphism.

COROLLARY 2.6. Let S be an ω-bisimple inverse semigroup.
Then rj\ S—+V(S) is an isomorphism. Thus every v-prehomomorphism
with domain S is a homomorphism.

The next result and its corollaries give partial converses to
Proposition 2.5.
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THEOREM 2.7. Let S be an E-unitry inverse semigroup. Then
η: S-+V(β) is an isomorphism if and only if the idempotents of S
form a chain.

Proof. Suppose S = P{G, <%?, W) where ^ is a down directed
partially ordered set having ^/ as an ideal and subsemilattice and
where G acts on £? in such a way that £f — G Ψ\ this is possible
by [4], Theorem 2.6. Let J&* denote the set of finitely generated
up ideals of <%f. Then G acts on J ^ by ^ A = {ga: aeA} and £f
is a semilattice under U. Hence we may form the semidirect product
P(G, Jέf, JT) of JT by G.

For each (α, g) e S define

(α, g)φ = (A, g) where A = {x e <%?\ x ^ a) .

Then, for (α, βr), (6, fe)eS with (α, α)^ = (A, <?), (6, h)φ = (B, A),

(α, flrV(&, λ)^ - (A U flrS, gh)

while [(α, ̂ )(6, λ)]^ = (C, flfΛ) where C = {a? 6 . ^ : a? ̂  α > flrδ} £ A U flrB.
The partial order on P(G, J^ <%f) is defined by (U,u)^(V, v) if and
only iίu = v and F £ Ϊ7. Hence [(α, g)(δ, Λ)]̂  ̂  (α, flr)^(δ, Λ)̂ . Further,
it is easy to see that (α, flf)~V = t(α» Sf¥]~1 Thus φ is a 'y-prehomo-
morphism of S into P(G, ̂  <Mf).

Suppose now that 7]:S—*V(S) is an isomorphism, then φ also is
a homomorphism. Let e, f e 3^ and set (e, 1)^ = (Z7, 1), (/, 1)0 = (V, 1).
Then, from the definition of φ, (e,ΐ)φ(f,ϊ)φ = (UUV, ϊ). On the
other hand, since φ is a homomorphism, (β, ΐ)φ(f, ΐ)φ = (β Λ /, 1)0.
Hence £7 U F = {ίc e .^"i x ̂  β Λ /}. This implies e Λ / e U or β Λ / e F;
that is e Λ / ^ e or e Λ f ^ f. Thus either / ^ e or β ̂  /. It
follows that the idempotents of S form a chain.

The converse is immediate from Proposition 2.5.

COROLLARY 2.8. Lβί S be a semilattice. Then V(S) is a semi-
lattice; further η: S —>V(S) is an isomorphism if and only if S is
a chain.

Proof. The fact that V(S) is a semilattice is immediate from
Lemma 2.1, since V(S) is generated by Sη. The other assertion is
immediate from Theorem 2.7.

PROPOSITION 2.9. Let S be an inverse semigroup and suppose
that S admits an idempotent separating homomorphism onto an
E-unitary inverse semigroup. Then rj\ S—*V(S) is an isomorphism
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if and only if the semilattice of idempotents of S is a chain.

Proof. Let θ: S—> P be an idempotent separating homomorphism
of S onto an E'-unitary inverse semigroup P and suppose that ηs; S—>
V(S) is an isomorphism. Then θηP — ηsψ for some homomorphism
V(S)~+V(P). Thus, for idempotents e = eθ,f=fθ in P1(ef)ηP =
er)pfif]P. As in the proof of Theorem 2.6, this implies e ^ / or / >̂ e.
Hence the idempotents of P, thus of S, form a chain.

COROLLARY 2.10. Let S be a semilattice of groups then η:S—>
V(S) is an isomorphism if and only if the idempotents of S form
a chain.

Let E be a semilattice and let aeTE([8]) with domain a =
{x e E: x ^ e}; if / is in the domain of a and ga = g for all g ^ /,
we shall say that / is a nontrivial fixpoint of a. If a has no
nontrivial fixpoints we shall say that a is fixpoint free. We shall
say that E is locally rigid if each non idempotent of TE is fixpoint
free. It is easy to see that TE is i?-unitary if and only if E is
locally rigid.

COROLLARY 2.11. Let S be an inverse semigroup whose semi-
lattice of idempotents is locally rigid. Then η:S—+V(S) is an
isomorphism if and only if the idempotents form a chain.

It remains an open question whether η:S—+V(S) an isomorphism
implies that the idempotents of S form a chain. In the next two
sections, we consider situations when S has special structure. Here
more definitive results may be given.

3* Simple and bisimple inverse semigroups*

PROPOSITION 3.1. Let S be a simple inverse semigroup. Then
V(S) is a simple inverse semigroup.

Proof. Let w = sj] - -. srη e V(S); then w e V(SystfV(Sy for
1 <̂  i ^ r. On the other hand, VJ ̂  (sx sr)η so that (s1 -- - sr)η e
V(SYwV(Sy. But, since S is simple, st = ui{sι s r ) ^ for some
UitViβS1, so that sj] Su^s^" s^ηvj] so that sj] eV(S)ιwV{Sι),
1 ^ i ^ r. I t follows t h a t w^' s{η, 1 ^ i <; r . This shows

( i ) every element of V(S) is ^^-equiva lent to some sη, seS

( i i ) is s, teS then sη^\st)η^/'tη.

Hence V(S) is simple.
The result of Proposition 3.1 does not hold if simple is replaced
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by 0-simple. For example, we have

EXAMPLE 3.2. Let S = M2 be the Brandt semigroup of 2 x 2
matrix units with non zero elements:α, oΓ1, e = aa~\ f = α~xα. Then,
by Lemma 1.4, aψι = (a~ι)η, eη = {aa~ι)η = ay(a>V)~\ fV = (a^a)7] =
(aη^aη. Hence F(S) has exactly one nonzero generator a?? and so
is a homomorphic image of FJ where 2*\ denotes the free inverse
semigroup on one generator, a.

On the other hand, the mapping θ: S—> Fl defined by aθ = α,
α"1/? = α"1, e# = aa~\ fθ = α^α, 00 = 0, is easily seen to be a t -pre-
homomorphism of S into i*7?. Hence θ — ηψ for a unique homomorphism
ψ: V(S) —• JFJ. It follows that )y is an isomorphism so that V(S) & Ft,
which is not 0-simple.

In a similar way, the result of Proposition 3.1 does not hold if
simple is replaced by bisimple. Indeed we have the following pro-
position.

PROPOSITION 3.3. Let S be an E-unίtary bisimple inverse semi-
group. Then the following statements are equivalent:

(1) η:S—>V(S) is an isomorphism;
( 2) V(S) is bisimple;
(3) the idempotents of S are totally ordered.

Proof. (1) => (2) is clear.
( 2) =* ( 3) Suppose that S = P{G, <%f, %/) and, as in Theorem

2.7, consider the 'y-prehomomorphism φ of S into P(G, JΪf, <%?). Then,
by hypothesis, the inverse subsemigroup T of P(G, ^ <Mf) generated
by Sφ is bisimple.

Let β, / G g/ with U = {xejgf: x^e}, V = {x e <%f\ x ^ /}. Then
(U\JV,1) = eφfφ so that (U\JV,1) is ^-equivalent to eφ in T, thus
in P(G, Jίf, £f). The form of Green's relations on P(G, J?f, Jίf), [2],
then implies that U U V has a least element z. This must be either
β or / so that e ^ / or / >̂ e. Hence the idempotents of S form a
chain and (3) holds.

( 3 ) => (1) is immediate from Proposition 2.5.
Despite the fact that, when S is bisimple, V(S) need not be

bisimple and its structure is not completely determined, one can give
a direct method for constructing all 'y-prehomomorphisms with domain
S. Before doing this we need to introduce some terminology.

A partial semigroup is a pair (R, P), where B is a set and P
is a nonempty subset of R, together with a map P x R—>R, written
as multiplication, such that, for a,beP,ceR,abeP and a(bc) = (ab)c.
If (JB, P) and (U, Q) are partial semigroups a morphism φ: (R, P)—*
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(U, Q) is a mapping φ: R—+U such that Pφ £ Q and (ab)φ = aφbφ for
a 6 P, 6

PROPOSITION 3.4. Lβί S be a bisimple inverse semigroup and
let e be an idempotent of S; set R = {x e S: xx~ι = e}, P = i2 Π βSe.
Suppose that T is an inverse semigroup and let f be an idempotent
of T; set U= {xeT: xx'1 = /} and Q = U Π fTf. If φ is a morphism
(R, P)-+(U, Q) then Θ:S->T defined by

sθ = {aφY^bφ if 8 = a~'b

is a v-prehomomorphism of S into T such that eθ — /.
Conversely, each such is constructed in this way.

Proof. We show first that θ is well defined. Suppose that a~ιb =
c~ιd. Then, [9], c = ga, d = gb for some g e P such that gg~ι = g~xg = β.
Thus

cφ~ιdφ = (gφaφ)"ιgφbφ

since gr1^ = β is a left identity for i?.
Next, let α"1^, c"1^ e S and choose u, v eP such that w& = vc and

Pb f] Pc = Pub; this is possible since S is bisimple, see [9]. Then
a~ιbc~ιd = {ua)~ιvd. Thus

{a~1bc~ιd)φ = (ua)φ"1(vd)φ

= {aφY\uφYι{vφ)dφ

= (aφY^uφY^vφ^φicφY^φ since cφ&dφ

— (aφY1(uφY1(ub)φ(cφY1dφ since ^6 = vc

= {aφYι(uφYι{uφ)bφ{cφYιdφ

since (uφYλuφ is idempotent ,

while, by definition s"1^ = (s/?)"1 for each s G S. Hence 0 is a /y-
prehomomorphism of S into Γ, and, since β, / are the unique
idempotents in R, U, eθ = f.

Conversely, let θ: S —> T be a 'y-prehomomorphism such that
eθ = f. Then for aeR,eθ = (aa~ι)θ = α ^ ^ " 1 so that aθ e U. Further,
if b e P then b — be implies b~xb = δ '^β ^ e so that, by Lemma 1.4,
(ba)θ = bθaθ; in particular bθ = bθf so that 60 G Q. Hence the restriction
φ of 0 to i2 is a morphism of (i2, P) into (£7, Q).

Finally, if s = cΓ δ̂ e S then, since (α""1)"1^"1 = αα"1 = 66"1, Lemma
1.4 shows that sθ = α ί " ^ = α^"1^^.

The result in Proposition 3.4 can easily be adapted to deal with
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the case of a O-bisimple inverse semigroup.
Proposition 3.4 can be used to give necessary and sufficient

conditions for V{S) to be bisimple whenever S is a bisimple monoid.
However these conditions can not be regarded as giving a completely
satisfactory answer to the problem.

PROPOSITION 3.5. Let S = S1 be a bisimple inverse monoid with
right unit subsemigroup R. Then V(S) is bisimple if and only if
S is the unique inverse monid having right unit subsemigroup R
and generated as an inverse semigroup, by R. In this case rj: S—>
V(S) is an isomorphism.

Proof. Suppose that S is the unique inverse semigroup generated
by R and having right unit subsemigroup R. We shall show that
V(S) has right unit subsemigroup Rrj. Then η:S —>V(S) is an iso-
morphism and V(S) is bisimple.

Let xηyη be a right unit in V(S). Then xηyηyη~ιxη-1 = lη so
that χrfιχrj — xψ^xrjyηyη^xψ^xΎ] — xη^xrjyηyψ1 <̂  yfjyrf1. Hence,
by Lemma 1.4, xrjyη = {xy)rj so that, since (xy)y]{xy)r]~1 — xy{xy)~ιy]
and Ύ] is one-to-one, xrjyη eRrj. Now suppose that w = sj] snrj, n^2
is a right unit of V(S). Then sj]s2rj is a right unit so that s{ηs2η =
(Sî )7?- Repetition then gives w = (s^ $n)η and, as above sx sn e
R. Hence, since each member of Rrj is a right unit, we have shown
that V(S) has right unit subsemigroup Rη.

Since S is generated by R and V(S) is generated by Sη, V(S)
is, by Proposition 3.1, a simple inverse semigroup generated by Rrj.
Hence V(S) ̂  S is bisimple and then, every element of V(S) is of
the form aψιbr] with α, b e Rη. Hence rj is onto so that, since l s =
7]θ for some homomorphism Θ:V(S) —> S, V} is an isomorphism.

Conversely, suppose V(S) is bisimple and let U(R) be the free
inverse semigroup with right unit subsemigroup R, and generated
by R. Then [4], U(R) is simple and, by Proposition 3.4, the mapping
φ: a~xb —> (av)~ιbv is a ^-prehomomorphism; here v is the embedding
R-+U{R). Hence φ = ηθ for some homomorphism θ of V(S) into U(R).
Since U{R) is generated by Rv, θ is onto. Hence U{R) is bisimple
with right unit subsemigroup isomorphic to R and so S ^ U(R) is
the only inverse semigroup with right unit subsemigroup R and
generated by R.

4* Semilattices of groups* This section follows the pattern of
§3. In the first part we show that, if S is a semilattice of groups
then V(S) need not be a semilattice of groups. In the second part,
we give a method for constructing all v-prehomomorphisms of a
semilattice of groups into an inverse semigroup T
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DEFINITION 4.1. Let S be a semilattice of groups. Then the
trunk of S is the set

{a e S: for each β2 = e e S either aά~x ^ β or aaΓι ̂  e) .

Note that the trunk of S is an inverse subsemigroup of S. If
the idempotents of S form a tree then the trunk is an ideal of S.

PROPOSITION 4.2. Let S be a semίlattiee of groups whose idem-
potents form a tree. Then V(S) is a semilattice of groups if and
only if every nontrivial subgroup of S is contained in the trunk.

Proof. Suppose that each nontrivial subgroup of S is contained
in the trunk. Let a e S and suppose that a is not idempotent; thus
a belongs to the trunk of S. Then, by Lemma 1.4, arjbr] — (ab)η for
each b e S. It follows that each element of V(S) has one of the
forms aη, where a is a nonidempotent in the trunk of S, or ejjejη erη
where e19 e2, , er are idempotents.

Since ΎJ is one-to-one, it follows that the non-idempotents of V(S)
are the elements ar] where a is a nonidempotent in the trunk of S.
We show that each such aη commutes with all the idempotents of
V(S). Let e1ψ2η erη be an idempotent of V(S). Then

0iW7 erηaη — ej] {era)rj by Lemma 1.4

= &iV ''' er-iV(aer)V since idempotents in

are central

= (ej] - er_{η)arjerη

which repeating the argument is equal to ar]{exr] errj).
Hence each nonidempotent of V(S) belongs to a subgroup; that

is, V(S) is a semilattice of groups.
Conversely, suppose that H is a nontrivial maximal subgroup,

with identity e, not contained in the trunk of S. Then there is a
maximal subgroup K, with identity /, such that e ^ /, / ^ e. Let
T = H U K U {0} and turn T into a semilattice of groups with linking
homomorphisms H —> {0}, K-* {0}. Then the mapping θ: S-+T defined
by

aθ =

ae if aa 1 ^

af if aa"1 ^

,0 otherwise

is a homomorphism of S onto T. Let i ί inv K denote the coproduct
of H and K in the category of inverse semigroups and define φ: T—>
(if inv K)° by /^ = h, for heH,kφ = k for & e if and 0^ = 0, where
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we regard h and k as being contained in H inv K. Then φ is a v-
prehomomorphism of T into (H inv K)° so that ψ = 0^ is a v-prehomo-
morphism of $ into (ff inv i£")°. But, [6], H inv iΓ is not a semi-
lattice of groups. Hence V(S) is not a semilattice of groups.

REMARK 4.3. One can show that V(T) ** (H inv K)°.

Proposition 4.2 is false without the assumption that the idem-
potents of S form a tree.

EXAMPLE 4.4. Let H be a nontrivial group with identity e and
let {/} be a one-element group. Construct the semilattice of groups
with linking maps given by the diagram

in

/

{0}

where the unmarked maps are the obvious ones. Denote the resulting
semigroup by S. Then, by Lemma 1.4, each element of V(S) is in
Sη or is a product of terms from H2η U {/̂ }. Let h2 e H2 then

— (βzK)VfV where hL — h2 in H1

= ej]h{ηfΎ] since /̂ fef1 ^ β2

= e27](hj)η since Ar1^! ^ /

It follows that V(S) = Sη I) {e2ηfη} ^ S° so that F(S) is a semilattice
of groups. However H2 does not belong to the trunk of S.

We now turn to the problem of describing the v-prehomomor-
phisms on a semilattice of groups S. In order to do this we need
to construct a family of semilattices of groups based on a semilattice
E.

Let E be a semilattice and let θ: E —> ϊ7 be an isotone mapping
of i? into the idempotents of an inverse semigroup T. For each
eeE, set Ke = {h e Heθ: h(fθ) = (fθ)h for each / ^ β in #}. It is
clear that Ke is a subgroup of £Γe. Suppose that e ^ / and define
&,/ by

^ ,/ = Hfθ) for each heKe .
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LEMMA 4.5. Each φe,f, e^ f is a homomorphίsm of Ke into Kf.
Further φe>e is the identity on Ke while, if e ̂  / ^ g, then φe,g =
Φe,fΦf,g-

Proof. This is straightforward.

It follows, from Lemma 4.5, that we can construct an inverse
semigroup which is the semilattice of groups {Ke:eeE} with linking
homomorphisms φβlf, e ^ /. We shall denote this semigroup by
SL{E9 θ, T).

PROPOSITION 4.6. Let S be a semilattice of groups with semilattice
of idempotents E. Let θ be an isotone mapping of E into the
idempotents of an inverse semigroup T. Suppose that φ is an
idempotent separating homomorphism of S into SL{E, θ, T). Then
ψ defined by

a^r = aφ

regarded as an element of T is a v-prehomomorphism of S into T
such that e<ψ = eθ for each e2 = eeS.

Conversely, each such v-prehomomorphism has this form for a
unique idempotent separating homomorphism φ: S—+ SL(E, θ, T).

Proof. It is clear that ψ is a mapping of S into T such that
eψ — eθ for each e2 = e e S and that {a~x)ψ = (aψ)"1 for each a e S.
Suppose that aeHe, be Hf then ab e Hef implies

(ab)ψ = (ab)φ = aφbφ = aφφe>efbφφf>ef

- aψ(ef)θbψ(ef)θ

g aψbψ since (ef)θ is idempotent .

Hence f is a v-prehomomorphism.
Conversely, let ψ be a v-prehomomorphism of S into T such that

βτ/r = eθ for each e2 = e e S. Suppose that h eHe and let / ^ e. Then

hψfθ - hfff = (hf)ψ = (fh)ψ = fψhψ = fθhf

by Lemma 1.4 since hh'1 = h~ιh ^ /. Hence hψ e Ke. Further, by
Lemma 1.4, hxψh2ψ = (h^ψ for hlf h2 e He. Thus φ defined by

hφ = hψ regarded as a member of SL(E9 θ, T)

is an idempotent separating mapping of S into SL(E, θ, T) which
is a homomorphism on each subgroup of S. Now let heHe, ke Hf.
Then
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hφkφ = hφφe>efkφφf>ef

= hψ(ef)θkir(ef)θ

= (hef)f{kef)f by Lemma 1.4

= (Λβ/ Λβ/)α/r = (hk)ψ by Lemma 1.4 .

Hence φ is a homomorphism and

hψ = fc^ considered as a member of T .

Finally, the uniqueness of φ is immediate.
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