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THE STRUCTURE OF STANDARD C*-ALGEBRAS
AND THEIR REPRESENTATIONS

WAI-MEE CHING

We introduce the basic structure space Ab of a C*-algebra
A consisting of all minimal primitive ideals in A. We define
a class of C*-algebras to be called standard. All PP^-algebras
and all C*-algebras with Hausdorff structure spaces are
standard. It is proved that a standard C*-algebra A is iso-
metrically isomorphic to the C*-algebrade fined by a continuous
field of primitive C*-aigebras over its basic structure space
Ab. A sufficient condition for a C*-algebra to be faithfully
represented on a separable Hibert space is also presented.

!• Introduction* The Wedderburn structure theorem asserts

that every finite dimensional complex semi-simple algebra is a di
rect sum of simple algebras, each of which is an n x n matrix
algebra. The structure of a general infinite dimensional complex
semi-simple algebra is certainly too complicated to study at present.
Instead, we focus our attention on a well-behaved subclass of infinite
dimensional algebras: C*-algebras. A C*-algebra A is a complex
Banach *-algebra such that | |α*α| | = | |α | | 2 for all a in A. By using
the Gelfand-Naimark-Segal construction, a C*-algebra can also be
defined as a norm-closed self-adjoint subalgebra of B{H), the algebra
of all bounded linear operators on a Hubert space H. There are
structure theorems available for three families of C*-algebras: (A)
the Gelfand-Naimark theorem for commutative C*-algebras, (B) von
Neumann's direct integral decomposition theorem for von Neumann
algebras on a separable Hubert space, (C) Kaplansky's structure
theorem for liminal C*-algebras with Hausdorff spectrum which is
actually a noncommutative generalization of (A) or can be viewed
as a continuous generalization of the Wedderburn theorem. The
main purpose of this paper is to prove a structure theorem for certain
C*-algebras, called standard C*-algebras, which generalizes (C) as
well as providing a continuous version of (B).

Firstly, we introduce the basic structure space of a C*-algebra:
A primitive ideal I of a C*-algebra A is called minimal if it does
not contain any other primitive ideal of A. The basic structure space
Ab of a C*-algebra A is the set of all minimal primitive ideals in
A. A C*-algebra A is called bounded if every primitive ideal of A
contains a minimal primitive ideal of A. It follows from the results
of Kaplansky [23] and Dixmier [12] that type I C*-algebras and
separable C*-algebras are bounded. We present another sufficient
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condition for a C*-algebra to be bounded in § 2. However, we leave
the full consideration of the question whether all C*-algebras are
bounded to another occasion. With an additional technical condition,
a bounded C*-algebra A is called *-bounded, and the space Ab with
the hull-kernel topology is a locally compact 2\-space A*-bounded C*-
algebra is called normal if any primitive ideal contains an unique
minimal primitive ideal, and a normal C*-algebra is called standard
if its basic structure space is Hausdorff. C*-algebras with Hausdorff
structure space and PP*-algebras are standard. Our structure theorem
then states that every standard C*-algebra A is isomorphic to the
C*-algebra defined by a continuous field of primitive C*-algebras
over Ab.

Ever since the publication of Gelf and and Naimark [18], many
efforts have been made, notably those by Kaplansky, Fell, Dixmier
and Douady, Tomiyama and Takesaki, to generalize (A) to the non-
commutative case, at least for some special classes of C*-algebras
(see Dixmier [13]). The best example of such a generalization is
(C) which states that a liminal C*-algebra (called a CCR-algebra by
Kaplansky) with Hausdorff structure space T is isomorphic to the
C*-algebra defined by a continuous field of elementary C*-algebras
over T. Our method of approach is similar to that of Kaplansky
[23], Fell [17], Dixmier and Douady [14]; the main difference being
due to the introduction of basic structure space. Recently, Dauns
and Hofmann [11], Akemann [1] and Takemoto [31] have all worked
on a noncommutative Gelfand-Naimark theorem. Akemann [1] started
by considering left ideals, hence his approach is quite different from
ours. We will compare our result with that of Dauns and Hofmann
[11] in §5. Takemoto [31] gives a continuous decomposition of a von
Neumann algebra on a general Hubert space. Our structure theorem
can also be used to give a continuous decomposition of a von Neumann
algebra on a general Hubert space, where each coordinate algebra
is primitive. Hence it can be considered as a continuous analogue
of the direct integral decomposition theorem of von Neumann [27],
where the Hubert space is restricted to be separable due to measure
theoretical difficulties. A continuous decomposition of von Neumann
algebras has been studied earlier by Godement [20],

A normal C*-algebra A is called pre-standard if the basic structure
space Ah is only 2\ but the relation defined through inseparability
by disjoint open neighborhoods between a pair of points in Ah is an
equivalence relation. For a pre-standard C*-algebra A, we can obtain
a Hausdorff space X out of Ab by identifying points in each equivalence
class, and A is isomorphic to the C*-algebra defined by a continuous
field of "simple" C*~algebras, where "simple" means that it is a
discrete direct sum of primitive C*-algebras.



THE STRUCTURE OF STANDARD C*-ALGEBRAS 133

The equivalence of the two definitions of C*-algebras mentioned
in the beginning of this introduction is actually a representation
theorem for C*-algebras, which was essentially proved in Gelfand
and Naimark [18]. The representation space in [18] is nonseparable
in general for an infinite dimensional C*-algebra. Of course, for
separable C*-algebras the construction can easily be amended to
reduce the representation space to a separable one. In the last section,
we construct a representation for a densely bounded (see Definition
3 below) C*-algebra A, where the representation space is separable
if every exactly irreducible representation of A (see Definition 1 in
§2) can be taken on a separable Hubert space and Ab is separable.
This is a refinement of representation theorem in Gelfand and Naimark
U8].

We shall use the terminology of Dixmier [13]. By an isomorphism
(homomorphism) of a C*-algebra into another, we mean a *-isomorphism
(*-homomorphism), and a representation of a C*-algebra means a
^-representation of a C*-algebra on a Hubert space. In this paper,
all algebras and Hubert spaces are over the field of complex numbers.
If A is a C*-algebra without identity, then Aγ denotes the C*-algebra
obtained from A by adjunction of an identity. We denote by 1 the
identity in a C*-algebra; B(H) (resp. K{H)) the algebra of all bounded
(resp. compact) operators on a Hubert space H. We note that K(H)
is the unique norm closed ideal in B(H).

2. The basic structure space of a C*-algebra* There are already
three spaces associated with a C*~algebra A which can serve as a base
for continuous decomposition of the C*-algebra A. These are the
structure space Aj = Prim (A) consisting of all primitive ideals in A, the
spectrum A consisting of all unitary equivalence classes of irreducible
representations of A, and the quasi-spectrum A consisting of all quasi-
equivalence classes of factor representations of A. Two representa-
tions π and p of a C*-algebra A are called physically equivalent if there
exists an isomorphism φ from τc(A) onto ρ(A) such that φ(π(a)) = p(a)
for all aeA (p. 107, Emch [15])1. Two representations π and p of
a C*-algebra are physically equivalent if and only if ker π = ker p.
Hence A3' can be regarded as the set of all physical equivalence
classes of irreducible representations of A. In any algebraic theory,
a simple algebra has to be considered as an indecomposable object.
Consider an uniformly hyperfinite C*-algebra which is simple. It has
infinitely many unitarily inequivalent irreducible representations, and

1 This is a special case of weak equivalence of two sets of representations of a
C*-algebra of Fell [16] when both sets are singletons. A more appropriate term is
"'algebraic equivalence". But the term "algebraic equivalence" has already been used
in Dixmier [13] and Powers [26] in two different contexts.
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a one-parameter family of nonquasi-equivalent factor representations
as shown in Powers [28] (also see Lance [25]). Therefore, in an
algebraic structure theorem for C*-algebras, the underlying base
space should be a set of physical equivalence classes of irreducible
representations rather than the spectrum A or the quasi-spectrum
A of A.

Our aim is to establish a "continuous" variant of the classical
Wedderburn theorem for C*-algebras, that is, to express a C*-algebra
A as a continuous direct sum of "indecomposable" C*-algebras. Now,
let A = B(H), where if is a separable infinite dimensional Hubert
space. A has only two physical equivalence classes of irreducible
representations: one contains the identity representation, and the
other contains irreducible representations of A induced by irreducible
representation of the quotient (simple) C*-algebra B(H)/K(H). How-
ever, we know that B{H) cannot reasonably be split into a direct sum
of two nontrivial subalgebras. Hence, we only consider the identity
representation in the decomposition process, and exclude the irreducible
representation of the second kind, whose kernel K(H) properly con-
tains {0} which is a kernel of another irreducible representation, i.e.
the identity representation. The example above illustrates two points:
First, we cannot expect a general C*-algebra to be a subdirect sum
of simple C*-algebras, and hence the basic building blocks in our
decomposition theory are primitive C*-algebras rather than simple
C*-algebras. Second, a subset of the structure space Aj would be
a more appropriate base for a continuous direct sum decomposition
of a C*-algebra A. This leads to the following definition:

DEFINITION 1. A primitive ideal I in a C*-algebra A is called
minimal primitive if it does not properly contain any other primitive
ideal of A. A representation π of A is called exactly irreducible if
kerπ is a minimal primitive ideal.

The set of all minimal primitive ideals in a C*-algebra A endowed
with the hull-kernel topology is called the basic structure space of
A, and is denoted by A\ Let A be a C*-algebra with nonempty
basic structure space A\ A subset S of Ah is closed if and only if

JQ Z) Π J implies Joe S .
JeS

Ab is a ϊ\-space. In fact, let I be an arbitrary ideal in A\ The
closure {/} of the singleton {/} in Ab consists of all J e Ab with Jz) I.
However, if J Φ I, then J is not minimal primitive. Hence {J} =
{I}, and Ab is 2\.

An immediate question arise from the preceding definition is the
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existence of a minimal primitive ideal in a C*-algebra. To faciliate
the discussion on this question, we introduce the following definitions:

DEFINITION 2. A C*-algebra A is said to satisfy the bounded
chain condition of primitive ideals if every maximal descending chain
of primitive ideals in A has a smallest element. We call a C*-algebra
bounded if it satisfies the bounded chain condition on primitive ideals.

DEFINITION 3. A C*-algebra A is said to be densely bounded if
the basic structure space Ab is dense in the structure space A3' of A.

The bounded chain condition on primitive ideals for a C*-algebra
A is equivalent to the condition that any primitive ideal I in A
contains a minimal primitive ideal of A. Hence, a bounded C*-algebra
A always has a nonempty basic structure space Ab dense in the struture
space A3'. Therefore, a bounded C*-algebra is densely bounded. And
the structure space of a densely bounded C*-algebra has a dense
ΪVsubspaee. ψe d0 not know at present whether the converse to
either of these two statements is true.

By Corollary 2 of Dixmier [12], all separable C*-algebras are
bounded. And as Lemma 7.4 of Kaplansky [23] proved that in a
postliminal C*-algebra every prime ideal is primitive, the same argu-
ment as that in Corollary 2 of Dixmier [12] shows that a postliminal
C*-algebra is bounded. It is not known whether an arbitrary C*-
algebra is always bounded, and we shall further study this question
in another occasion. We would like to point out, however, that
there do exist C*-algebras with infinite descending chains of primi-
tive ideals. This is certainly an infinite dimensional noncommutative
phenomena. Although no nonprimitive C*-algebra with an infinite
descending chain of primitive ideals going to {0} has been found (such
a C*-algebra is not bounded), examples of primitive C*-algebras with
infinite descending chains of primitive ideals can be found in Dixmier
[12], Behncke, Krauss and Leptin [4], where the structure spaces
of the C*-algebras concerned are linearly ordered. Behncke and Bos
[3] also constructed examples of primitive C*-algebras with infinite
descending chains of primitive ideals, whose structure spaces are not
necessarily linearly ordered. These examples also indicate that the
basic building blocks in our structure theorem, i.e., primitive C*-
algebras, unlike that in the finite dimensional case, can have complicated
ideal structures themselves. And it is far from easy to classify all
primitive C*-algebras. This situation is likely unavoidable for the
study of general infinite dimensional Banach algebras. For in a
decompositon theory as deep as von Neumann's direct integral de-
composition for von Neumann algebras, there are continuous families
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of pairwise non-isomorphic factors of type Hj., and of type III (they
are all algebraically simple algebras) among the basic building blocks
(see McDuff [24], Ching [4], Anastasio and Willig [2], or Sakai [27]).

The following is another sufficient condition for a C*-algebra to
be bounded:

DEFINITION 4. An element Io in a descending chain {Ia} of pri-
mitive ideals in a C*-algebra A is called a knot if (i) the elements
in Prim (/0) are totally ordered by inclusion and (ii) /0 contains a
countable cofinal subchain of {/«}. A C*-algebra A is said to be
essentially ordered if every maximal descending chain of primitive
ideals in A has a knot.

LEMMA 1. A C*-algebra A is bounded if it is essentially ordered.

Proof. Let {Ia} be a maximal descending chain of primitive
ideals in A with a knot Jo. We can assume that Io Φ {0}, for otherwise
{Ia} is bounded below by {0}. By passing to the quotient algebra,
we can assume that Π« Ia — {0}. For each ideal In in the countable
cofinal subchain of {Ia}, let Sn be the set of all primitive ideals in
To properly contained in In. The complement of Sn in Prim(/0) is
closed since it consists of all primitive ideals in Jo containing In.
Hence each Sn is open in Prim (JΓ0). Furthermore, each Sn is dense
in Prim (Io) because primitive ideals in IQ are linearly ordered.
Now, it follows form Theorem 1 of Dixmier [12] that Π*=i Sn Φ 0 .
Let /eΠn=iSΛ. Since / is contained in every In and {In} is cofinal
in {Ia}, I is contained in every Ia in the chain. By the preceding
assumption, we have I = {0}. This implies that Jo has a faithful
irreducible representation π0 on a Hubert space H. By proposition
2.10.4 of Dixmier [13], we can extend π0 to an irreducible repre-
sentation π of A on H. Let J = ker π. Let x be a nonzero element
of Jo and y a nonzero element in J. If xy Φ 0, then π(xy) = πo(xy) Φ 0
as πQ is faithful. But π(xy) = π(x)π(y) = 0. This contradiction shows
that xy = 0. Hence I0 J=Q. Since each primitive ideal in a C*-
algebra is prime and the intersection of descending family of prime
ideals is obviously a prime ideal, we conclude that I = {0} is a prime
ideal in A. This implies that either Io = {0} or J = {0}. Since we
assumed Jo ^ {0} in the beginning, we have J = {0}. Therefore, A
is primitive and {0} is the smallest element in the chain {IJ. This
shows that A is bounded.

For some important classes of C*-algebras, we can actually identify
their basic structure spaces with some familiar spaces. A C*-algebra
A is called liminal if π(a) is a compact operator for every π e A
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and aeA (Def. 4.2.1 [14]). The structure space A3 of a liminal
C*-algebra A is Tx. In fact, for any primitive ideal J of A, A/J
is isomorphic to the (norm) simple algebra K{H) for some Hubert
space H, i.e., J is also a maximal ideal. Hence the singleton {/} is
closed in A3'. Since each point is closed, A5 is 2\. And A3' = Ab,
the basic structure space, as every primitive ideal in A is also minimal
primitive.

A topological space X is a T1/2-space if every pair of distinct
points x and y has disjoin closures. A C*-algebra A with a Tιn

structure space is bounded as the following lemma shows:

LEMMA 2. For a C*-algebra A, Ab = A3' if and only if A3' is a
T1/2-space.

Proof. If Ab = A\ then AJ" is a TΓspace. Hence A5" is a T1/2-
space. Conversely, if A3' is a T^-space, then every primitive ideal
/ of A is minimal primitive. For if Ie A5 is not minimal primitive
and properly contains another primitive ideal J of A, then Ie {!} Π {/}.
Hence {7} Π {/} Φ 0, and A5' is not Γ1/2. A contradiction. Therefore
Ah = A3'.

REMARK 1. The relation between the structure space and the
basic structure space for postliminal C*-algebras (Def. 4.3.1 [13]) is
quite different from that for liminal C*-algebras. Let H be a separable
infinite dimensional Hubert space. Let T be a bounded noncompact
normal operator of H with spectrum S. Let A be the C*~algebra
generated by all operators of the form T + K, where K is a compact
operator on H. A is a postliminal C*-algebra, and it is an extension
of the algebra K(H) by a commutative C*-algebra C(S) of all con-
tinuous on the compact set S. A has only one minimal primitive
ideal, namely {0}. Yet A has many primitive ideals, all properly
containing {0} with the exception of {0} itself. Hence Ab = {0}, and
A3r = X U {0}, where X is the maximal ideal space of C(S) which can
be identified with S.

The proofs of the following lemmas are adapted from the proofs
of the corresponding lemmas in §3.3 [13]. Their inclusion here is
partly for the sake of completeness and partly due to certain modifi-
cations required by a change of space.

LEMMA 3. Let A be a C*-algebra with nonempty structure space
A\ For each x e A6, let πx be the quotient map of A onto A/x. Then
for each a e A, the function

Na:x >\\πx(a)\\
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is lower semi-continuous on Ab.

Proof. Since ||τrβ(α)||2 = \\πx(a*a)\\ for all aeA, we only need
to prove the lower semi-continuity of Na when a is a positive element
of A. To do so is the same as to show that

Ck = {xeAb:\\πx(a) \| ^ k) = {x e Ah: Sp πx(a) c [0, k]}

is closed in Ab for each real k ^ 0, where Sp πx(a) denotes the spectrum
of πx(a) (in case A is without identity, we pass to Alf and S^Alπx(a) =
0 U Sp̂ TΓ^α)). Let y e Ab be in the closure Ck of Ck. Suppose $pπy(a)
contains a point t not in [0, k]. Let / be a continuous real-valued
function vanishing on [0, k] and positive on t. Then,

πx(f(a)) = f(πx(a)) = 0 for all x e Ck , and

*,(/(<*)) = / ( π » ) * 0 .

Hence,

y ib f l » > or yίCk.
xeCk

This contradiction shows Sp^cifO, fc], i.e., y eCk. Hence Ck is closed
and Na is lower semi-continuous.

LEMMA 4. Lβί A be a bounded C*-algebra. For each a e A, the
function Na defined in Lemma 3 attains its supremum \\a\\ on the
basic structure space Ab.

Proof. The function Na is also defined on the structure space
A3' of A, and it attains its supremum \\a\\ on Aj as shown in Lemma
3.3.6 of [13]. Ab is a subspace of A\ If xeAj\Ab, then x is not a
minimal primitive ideal. Hence there exists a y e Ab properly con-
tained in x. Since the quotient algebra A/x is isometrically isomorphic
to the quotient algebra (A/y)/(x/y), we have 11̂ (̂ )11 ^ | |^(a) | | by
the definition of the quotient norm. Hence the function Na attains
its supremum on Ab.

A bounded C*-algebra A is said to be *-bounded if for any pri-
mitive ideal J of A with Jz)f\IesI, where S c i J , there exists a
minimal primitive ideal JQaJ with JOZD f\Ies I-

LEMMA 5. The basic structure space Ab of a ^-bounded C*-algβbra
A is locally compact.

Proof. By exactly the same argument as that in Proposition
3.3.7 of [13], we can prove that for an element a in A and k > 0,
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the subset

is compact in A\ We only need to change π e A to x e A\ and replace
Lemma 3.3.6 of [13] by *-boundedness. Now, let xeAb, and U be
an open neighborhood of x. Since Ab\U is closed, there exists an
element a in A such that a ί x but a e y for all y e Ab\ U. Let V
(resp. W) be the set of all z in Ab such that

πz(a) 11 > A 11 πχ(a) \ | (resp. 11 πz(a) 11 ̂

It follows from Lemma 3 that V is an open neighborhood of x. Hence
W is a compact neighborhood of x contained in U. This shows that
Ah is locally compact.

COROLLARY 1. Let A he a "-bounded C*-algebra with Hausdorff
basic structure space Ab. Then for each a e A, the function Na

defined in Lemma 3 is continuous on Ab.

Proof. The set Gk in the preceding lemma is then closed. Hence
the function Na is upper semi-continuous. This together with Lemma
3 implies that Na is continuous on Ah.

3* The basic structure space of a IF*-algebra* A C*-algebra
A is called a W*-algebra if it can be faithfully represented as a von
Neumann algebra on some Hubert space, i.e., a weakly closed self-
adjoint subalgebra of B(H). For a W*-algebra we can easily identify
its basic structure space.

LEMMA 6. Let A be a W^-algebra with center Z. Let M be the
maximal ideal space of Z. For each m in M, let [m] be the smallest
closed two-sided ideal of A generated by m. Then p: m H-> [m] is a
homeomorphism of M onto the basic structure space Ab of A.

Proof. By Theorem 4.7 of Halpern [21] for each m in M, [m]
is a primitive ideal. Suppose J is another primitive ideal in A
contained in [m]. Let J = ker π for some irreducible representation
π of A. It is not difficult to see that π restricted to Z is a mul-
tiplicative functional on the commutative C*-algebra Z. Hence its
kernel ker (π\Z) — J Π Z is a maximal ideal of Z. However, Ja [m]
implies J f] Z cz [m] Π Z = m. Hence J Π Z = m, Ji)m. Therefore,
J Z) [m] since [m] is the smallest ideal in A containing m. This shows
that [m] is a minimal primitive ideal of A. By the same argument
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we know that if I is any primitive ideal of A, then I ΓΊ Z is a maximal
ideal of Z. Hence [/ Π Z] is a minimal primitive ideal contained in
I. Consequently, A is bounded. This also shows that p is onto.
For if I is in Ab, then I = ρ(I Π Z). The mapping p is one-to-one.
For if m1 and m2 are two maximal ideals of Z such that [mj =
[m2], then m1 = [mj Π Z = [m2] f) Z = m2.

Let S be a closed subset of M. Let J be a minimal primitive
ideal of A such that Jz)f}IBp{s) I. Then we have

j n ̂  =) n / n z = n i n ̂  .
Iep(S) IΠZeS

Hence, J π ^ e S and Jep(S). This shows that ^(S) is closed, and
p is an open mapping. Conversely, let K be a closed subset of A\
Let m0 be a maximal ideal in the closure of p'ι(K). We claim that

[m0] =) Π [m] .
mep—1(K)

For otherwise there exists an element a in A such that α e Γ\[m]eκ [m]
but α ί [m0]. For each [m] in A\ let αw be the canonical image of
a in A/[m], Hence we have αmo Φ 0 while αm = 0 for all m in ρ~\K).
by Lemma 10 of Glimm [19], the mapping m—>||αm | | is continuous
on M. Consequently | | α m j | = 0, a contradiction. Hence the claim
holds, and

m0 = [m0] r\Zz> (Ί m,moe ρ~%K) .
mep—ι{K)

Hence p~\K) is closed, and p is continuous. Therefore p is a homeo-
morphism.

We remark that the fact that A is a TF*-algebra is only used
twice: (i) [m] is primitive, (ii) m—>||αm | | continuous.

Let A be a ΐ^-algebra and let S c Ah. Suppose that J is a
primitive ideal of A and Jz)Γ[IeSI. Then J Π Z Z)(Γ\IeS I) f] Z =
Πies(IΓ\Z). Hence ρ(J Π Z) =) f|/e5 /θ(/ Π Z) = f)Ies I since p is a
homeomorphism. Clearly, p(J f) Z) is & minimal primitive ideal of
A contained in J. Therefore, a T7*-algebra is *-bounded.

4. The structure of standard C*-algebras* We still need another
condition on a C*-algebra to ensure a direct sum decomposition.

DEFINITION 5. A ^-bounded C*-algebra is said to be normal if
every primitive ideal in A contains a unique minimal primitive ideal
of A.

An immediate consequence of the definition is the following. If
A is a normal C*-algebra and I, J two distinct primitive ideals in
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A, then / + J = A. For if I + J Φ A, then A/I + J is a nonzero
C*-algebra. Let TΓ be an irreducible representation of A/1 + J. π
induces an irreducible representation πf of A. ker π' is then a primitive
ideal in A containing two distinct minimal primitive ideals I and J.
A contradiction. Conversely, if in a C*-algebra A, I + J = A for
all pair of distinct minimal primitive ideals I and J, then A is
obviously normal. We point out that there exists a (primitive) C*-
algebra A with two distinct primitive ideals I and J such that I <£ J
and J ςt I but J + J Φ A.

Let A be a J7*-algebra with center Z, and J a primitive ideal
in A. It is clear from the proof of Lemma 6 that the two-sided
ideal J of A generated by / Π Z is a minimal primitive ideal contained
in /. And if J' is another minimal primitive ideal contained in I,
then JnZ = Ir)Z = J'f)Z. Consequently, J = J'. Hence an W*-
algebra is normal.

In general, a *-bounded C*~algebra A is normal if and only if for
any pair of distinct points x and y in A\ the closure of {x} and of
{y} in the structure space Aj of A are disjoint. Therefore, a C*-
algebra A with a T7^ structure space AJ" is normal. In particular,
a liminal C*-algebra is normal. We do not know at present whether
a postliminal C*-algebra is necessarily normal. As for the question
of boundedness, we shall study the normalcy of a general C*-algebra
in another paper. We introduce the following class of C*-algebras:

DEFINITION 6. A C*-algebra A is called standard if it is normal
and its basic structure space Ab is Hausdorff.

An ΫP*-algebra is standard since it is normal and its basic
structure space being homeomorphic to the maximal ideal space of
a commutative C*-algebra is Hausdorff. Any C*-algebra with Hausdorff
structure space is also standard.

Let A be a standard C*-algebra with basic structure space X —
A\ For each x e X, let πx be the quotient map from A onto the
primitive C*-algebra A/x which we shall denote by A{x). For each
a e A, let a be a function on X defined by

d(x) = πx(a) , x e X .

By Corollary 1, x—>\\a(x)\\ is continuous for each a e A. Let 77 =
T[xeχA(x) be the cartesian product of all primitive C*-algebras A(x),
x e X. Let A be the subspace of 77 consisting of all functions α,
aeA. Clearly, A satisfies conditions (i), (ii), (iii) of Definition 10.1.2
in [13]. Furthermore, A is obviously stable under the pointwise
involution and multiplication of the product algebra 77. By Proposition
10.2.3 and Proposition 10.3.2 of [13], there exists a subset Γ of 77,
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containing Ά, such that E = ((A(x))xex, Γ) is a continuous field of
primitive C*-algebras (A(x))xex (Dei. 10.3.1 [13]). E is called the
continuous field of primitive C*-algebras over X defined by A. Let
A be the C*~algebra defined by the continuous field E of primitive
C*-algebras (10.4.1 [13]). We have the following structure theorem
for standard C*-algebras:

THEOREM 1. Let Abe a standard C*-algebra with basic structure
space X. Let E = ((A(x))xex, Γ) be the continuous field of primitive
C*-algebras over X defined by A. Let A be the C*-algebra defined
by E. Then the Gelf and transform a —* a, a e A, is an isometric
isomorphism of A onto A.

Proof. For each a e A, the function a —•> ||α(a?)|| vanishes at
infinity on X by Lemma 5. Hence deΆ for all a e A. It is easy
to see that the Gelfand transform is linear, preserves multiplication
and involution. The Gelfand transform is isometric by Lemma 4. We
only need to show that the Gelfand transform is onto, i.e., A — A.
Now, for any xeX, {ά(x)\ae A} = A(x). Suppose x and y is a pair
of distinct points in X, and ξt e A(x), ζ2 e A(y). There exist aλ and
a2 in A such that πx{a^) = ζlf πy(a2) = f2. Since x and y are distinct
minimal primitive ideals of A, we have x + y = A. Let at = bt + c£

where btex and ct e y, i = 1, 2. Let a = b2 + cx. Then

d{x) = πx{a) = ξ19 d(y) = πy(a) = f2 .

Hence 4 = i by Corollary 11.5.3 in [13] which is a consequence of
of Glimm's noncommutative generalization of the Stone-Weierstrass
theorem for C*-algebras [19].

We shall apply the structure theorem to a brief study of ideals
in a standard C*-algebra. By an ideal I of a C*-algebra, we now
mean a norm-closed one-sided (left or right), or two-sided ideal. But
once the type of / is chosen, all the ideals in the subsequent discussion
in this paragraph shall have the same type as that of I. Let I be
an ideal of standard C*-algebra A with basic structure space X.
Let I(x) = {d(x) I a e /}, x e X. Then I(x) = A(x) or I(x) is a proper
ideal of A(x). Let

= {xeX\I(x)Φ A(x)} .

k(I) is nonempty for a proper ideal / of A. Let

Ix = {a e AI d(x) e I(x)} , x e k(I) .

Then Ix is an ideal in A, and
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i= n
xek(I)

by Lemma 10.4.2 of [13]. Hence I is a maximal ideal in A if and
only if k(I) is a singleton {x0} and I(x0) is a maximal ideal in the
primitive C*~algebra A(x0) (we admit {0} as a maximal two-sided
ideal of A(x0) if A(x0) is topologically simple). In fact, suppose I is
a maximal ideal. Since Ialx, for xek(I),

I = Ia , for all a e k(I) .

Suppose x, y e k(I), and x Φ y. Then I(y) Φ A(y). Let ξ e A(y)\I(y).
By Theorem 1, there exists an element a of A such that d(x) = 0
and α(̂ /) = ζ. Hence α € / κ but α g /»• This shows that Ix Φ Iy in A.
Hence we have k(I) = {x0} and I — IXQ. If I(x0) is not maximal, let
J(x0) be an ideal containing I(x0) in A(#o). Then

J = {α I α(a?0) e J(x0)}

is an ideal properly containing J. A contradiction. Hence I(x0) is
maximal. Conversely, suppose k(I) = {#0} and I(£o) is maximal. Let
Jz> J = J,o. Now for yeX,yΦ x09 y ί &(I), /(?/) = J(?/) = A(τ/), and

J(^o) = {α(α;0) I α 6 J} =) I(xQ) .

Hence J(ί»0) = I(x0). Consequently J — I. / i s maximal.
It follows that a standard C*-algebra A is strongly semi-simple

if and only if each coordinate algebra A(x), x e X, is a simple C*-
algebra.

5* Pre-standard C*-algebras* Let F be a 2\ topological space.
For a pair of distinct points x and y in Y, we write xRy if x and
y do not have disjoint open neighborhoods. A topological space Y
is called a TlU2-space if it is 2\ and the relation R of inseparability
between points of Y so defined is an open equivalence relation (5.2
Bourbaki [7]).

DEFINITION 7. A normal C*-algebra A is called pre-standard
if its basic structure space Ab is a Tx 1/2-space.

A C*-algebra A with a Γ11/2 structure space if pre-standard.
Let A be a pre-standard C*-algebra with basic structure space

A\ For each xeA\ let [x] = {T/|O;JR^}. Let X = {[x]\xeAh} be the
quotient space of Ab with respect to the equivalence relation R
(equipped with the quotient topology and the quotient map is denoted
by q). We call the space X the base of the pre-standard C*-algebra A.

LEMMA 7. X is a locally compact Hausdorff space.
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Proof. X is locally compact since Ab is locally compact. X is
Hausdorff. In fact, let [x0] Φ [yQ] be two distinct points of X. Since
x0 and y0 are not in the same equivalence class, we can find two
disjoint open sets 01 and 02 containing x0 and y0 respectively. Let
Gi = {z I zRx for some x e OJ. Gλ and G2 are open in Ab since R is open.
Suppose z 6 Gι Π G2 Then there exist sc e d, 2/ e 02, such that #i?2,
zRy. Hence xRy, i.e., a? and y cannot be separated by open sets.
This contradiction shows that G1 Π G2 = 0 . Then g(Gi) and g (G2)
are disjoint open sets in X containing [x0] and [y0] respectively.

For each x e Aδ, let a; = Πaew 2Λ We call such an ideal a pseudo-
primitive ideal. Hence, a pseudo-primitive ideal of A is the inter-
section of a class of inseparable minimal primitive ideals in A. X
can be identified as the set of all pseudo-primitive ideals in A, i.e.,
[x] H^ x is a one-to-one correspondence. In fact, if x — y, then 7/ z>
y = x = Π ί ^ l ^ e [#]}. Since [#] c A6 is the inverse image of a point
in X under the quotient map, [x] is closed in A\ Hence y e [x].
Consequently, [x] = [y]. We shall write [x] and x interchangingly
for an element of X. Let us denote by BA(x) the C*-algebra of all
bounded elements in the discrete direct sum (By&[X] A(y), i.e., all a in
®ye[x]A(y) with supyeM ||α(2/)|| < °° And we denote by CJx) the
C*-algebra of all elements vanishing at infinity in the discrete direct
sum ©y 6[β] A(y), i.e., all a in (&yeM A(y) with the property that given
any ε > 0, there exists a finite set Fa of [x] such that \\d(y)\\ < ε
for all y $ Fa. Of course, BA(x) = CA(ίc) if [x] is an equivalence class
consisting of finitely many points of A\ It is clear that the quotient
C*-algebra A(x) = A/x is a subalgebra of the discrete direct sum
(Bye[x]A(y) closed under the supremum norm, containing CJx) and
contained in BJx). For each a e A, let d(x) e A(x) be the image of
a under the quotient map of A onto A/x, and let

( 1 ) P(ίc)lli = sup||α(2/)|| ,
ye[x)

where d(y) is as in Theorem 1 the image of a under the quotient
map of A onto A/y. For each a e A, the function y —> ||α(τ/)|| is lower
semi-continuous on Ah by Lemma 3. Since the supremum of lower
semi-continuous functions is lower semi-continuous, x --> ||α(&)||i is
lower semi-continuous on Ab and constant on each equivalence class.
It follows that for each a e A, x —> ||α(x)||i is a lower semi-continuous
function on X since X has the quotient topology. We note that the
preceding function on X reaches its supremum | | α | | in X.

Let [x]~ be the closure of [x] (as a subset of A5) in Aj. We
remark that [x]~ is equal to

S = {J e A3' I there exists z e [x] such that zczj}. In fact, let
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Je[x]~. Then J^Γ\veίxly. By *-boundedness of A, there exists
zeAh such that Jz) ZZD Γ\ye[x-[y. Since [x] is closed in A&, we have
2e[#]. Hence JeS. As Sa[x]~ is obvious, we have [x]~ = S.

For any closed ideal I in A, let | |α + /| | denote the quotient
norm of a + I in A//. We have the following:

LEMMA 82. For a pre-standard C*-algebra A, and xeAb,

p ^ H i = sup \\a + y\\ = | | α + x\\ , / o r αW aeA.
ye[x]

Proof. By Theorem 4.9.14 of Rickart [29], for the closed subset
[x]~ of Ay, and a e A, there exists a ζ> e [a?]~ such that

|| α + Qll = sup {|| α + y\\:ye[x]~} .

By the preceding remark, there exists a z e [a;] with zaQ. Thus
| |α + z\\ ̂  | |α + Q||. Consequently, | |α + Q|| = | |α + z\\ = H α ^ ) ^ .

Now, Γl {e/| J e [x]-} = x = f\{y\y e [x]}. Thus Prim (A/x) =
{e//»|Je[a;]-}. By the proof of Theorem 4.9.14, line 8 in [29], it
follows that

||α + x\\ = sup{||(α + ά) + P| | : P e Prim (A/x)} .

But (A/x)/(J/x) = A/J, so for P = J/x wi th J e [a?]", \\(a + x) + J/x\\ =

\\a + J | | . Thus,

\\a + x\\ = sup{| |α + J\\:Je[x]~) .

By the first paragraph, it now follows that

From now on ||α(^)||x will be written as ||α(x)||.

LEMMA 9. For each aeA, Na: x κ> || d(x) \\ is a continuous function
on X.

Proof. We only need to show that Na is upper semi-continuous.
Since X is Hausdorff, it will be sufficient to show that

is compact for each k > 0.
We use the same argument as that in Proposition 3.3.7 [13].

Let {Zi} be a filter base of decreasing nonempty relatively closed

subsets of Ek. Let Jt = Γ\~χeZi^, and J — \J Ji9 The norm of the
2 The author thanks the referee for supplying this lemma.
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canonical image of a in the quotient algebra A/J is ^k. Hence,
there exists a minimal primitive ideal x0 of A such that x0Z)J.
However, for each i

T —^ T — C\ Λ*
J _J J i — I I X ,

(q is the quotient map of Ah onto X). Since q is continuous, each
each q~\Z%) is closed. Hence xQ e q~\Z^) for all i. Therefore, q(x0) e Z€

for all i.e., q(x0) is an adherence point of {Z^. This shows that Ek

is compact.

LEMMA 10. For x e A\ [z] eX,x& [z], we have

x + Γ\y = A .

Proof. We first show that for any closed ideals x, y, z in A,

( 2) (x + y) n (x + z) c x + (y (Ί s) .

Let α G ($ + y) n (# + #). Then α = «! + b = α2 + <?> where α1? α2 e x,
bey, cez. Since each element a is a linear combination of four
positive elements, we can assume that a is positive. Then

α — n rt —I— a o I Inrt I 7i/» c <τ* I (01 (~\ Φ \

Since x + (y Π z) is also a C*-algebra, we have aex + (y f] z) (Lemma
7, p. 207 in Bonsall and Duncan [6]). Hence (2) is proved.

Now let [z] be well-ordered, and let yί be the first element. We
can assume that [z] has a last element yr. For if it doesn't, we
can simply add y1 to the end, and this will not change DyeiziV- We
have by normality of A that x + y1 — A. Now suppose that

x + Γ\y = A .
y<ya

Then by (2),

A = (x + Γl v) n (a? + ya) = x + Γ! y .

Hence, by transfinite induction,

x + Γ)y = % + Πy = A .
y e [z] 2/^2/r

Now, α can be regarded as a vector field on X. Let A be the
subspace of the cartesian product Π = Πίex A(aj) consisting of all α,
α e l Then A clearly satisfies conditions (i), (ii), and (iii) of Definition
10.1.2 of [13]. Also, A is obviously stable under the involution and
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the multiplication of the product algebra Π. By Propositions 10.2.3
and 10.3.2 of [13], there exists a subset Γ of Π containing A such
that F = ((A(#))sez, Γ) is a continuous field of C*-algebras (A(^))^ex.
Let Ά be the C*-algebra defined by the continuous field F of pseudo-
primitive C*-algebras. We have the following:

THEOREM 2. Let A be a pre-standard C*-algebra with base X.
Let F = ((A(x))χex, Γ) be the continuous field of pseudo-primitive
C*-algebras over X defined by A. Let A be the C*-algebra defined
by F. Then the Gelfand transform a —> α, a e A, is an isometric
isomorphism of A onto A, where each coordinate algebra A(x) is a
closed *-subalgebra of BA(x) containing CA(x).

Proof The same argument given in the proof of Theorem 1
applies here. We need only check that x0 + y0 = A for any pair [xQ]
and [y0] of distinct equivalence classes. We have for any x e [x0]

x + y = A , for all ye [y0]

since A is normal. Hence for any x e [x0],

x + y0 = % + Π v = A ,

by Lemma 10. Therefore,

^o + Vo = Π X + Vo = Π (X + Vo) = A .

REMARK 2. We are not able to give a more precise description
of A(x) other than that it is contained in BA(x) and contains CA(x).
This is perhaps due to the fact that some topological structure is
lost when we map the whole equivalence class [x] into one point x.
The algebra A(x) does not depend on {A(y)}ye[xl alone, it also reflects
the structure of A. The following pair of examples will illustrate
this situation:

Let B be the set of all sequences a — {an} of infinite matrices
representing bounded linear operators on I2, each convergent in the
operator norm to a scalar matrix. B is a C*-algebra with the pointwise
multiplication and involution (conjugation of matrices), and the norm
||α]| = supn ||α«||, where | |α Λ | | is the operator norm of the matrix
an, n = 1, 2, . Then B is a pre-standard C*-algebra with the base
X homeomorphic to the subspace {0, 1, 1/2, 1/3, •••} of the real line.
Each pseudo-primitive ideal I of A is actually a minimal primitive
ideal and A/1 is isomorphic to B{H), where H = ϊ2, except the ideal
J corresponding to the point 0, which is the intersection of infinitely
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many minimal primitive ideals /• with each A/ΐt isomorphic to the
field of complex numbers, where /• = {a \ ith coefficient in the diagonal
of lim% an is 0}, i = 1, 2, . AjJ is isomorphic to the algebra of all
bounded sequences of complex numbers, hence is equal to BA(J).

Next, let K be the set of all sequences a = {an} of infinite square
matrices representing compact operators on I2, each of which converges
to a scalar matrix in the operator norm. K is a C*-algebra under
point wise multiplication and involution with norm | |α | | = supw | |αΛ | |,
n = l,2, •••, where | |α Λ | | is the operator norm of an. Then K is
a pre-standard C*-algebra with the base X homeomorphic to the
subspace {0, 1, 1/2, 1/3, } of the real line. Each pseudo-primitive
ideal I of A is actually a minimal ideal of A, and A/I is isomorphic
to K(H), where H = I2, except the ideal / corresponding to the point
0. J is the intersection of infinitely many minimal primitive ideals
Γ with each A/Γ isomorphic to the field of complex numbers. But
A/J is isomorphic to the algebra of all bounded sequences of complex
numbers convergent to zero, hence is equal to CA(J).

Finally, we make some comment about our structure theorem
and that of Dauns and Hofmann [11]. First of all, we represent C*-
algebras as C*-algebras defined by continuous fields of C*-algebras
as in [13]. Dauns and Hofmann [11] developed a more elaborate
and somewhat more abstract notion of a field uniform structure.
The class of pre-standard C*-aIgebras is wide enough to include many
interesting examples of C*-algebras (we actually have difficulty in
finding a C*-algebra which is not pre-standard though such a C*-
algebra may well exist). However, our present result is still limited
in the sense that it can not yet be applied to all C*-algebras. By
contrast, the non-commutative Gelfand-Naimark theorem stated in
[11] is for general C*-algebras. On the other hand, we can say
something concretely about each coordinate algebra in our decom-
position, i.e. a subdirect product (in the sence of [22] of primitive
C*-algebras. The description for each fibre algebra in [11] becomes
ambiguous when the C*-algebra is very general. We get our base
X simply by identification of certain points in the basic structure
space Ab of a C*-algebra A while in [11] a more abstract but universal
process called Hausdorffization is employed. (Dauns [10] gives a
more concrete description for this in case that each primitive ideal
in A does not contain the center of A.) It should be pointed out
that the memoir of Dauns and Hofmann [11] lays the foundation of
a theory that generalizes the studies of sheaves and fibre bundles
and the application to C*-algebras is only one aspect of their work.
We conclude this section with two examples to illustrate the difference
of of our approaches.

Let X = [0, 1] U {2} with the induced topology from the real line.
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Let A be the algebra of all norm continuous functions a from Xto
B(H), where H is a separable infinite dimensional Hubert such that
a(x) e K(H) for all x e [0, 1] and α(2) is a scalar multiple of the identity
operator. For a, be A, (α&)(2) = α(2)6(2), (ab)(x) = a(x)b(x) + a(2)b(x) +
a(x)b(2), x e [0, 1]. We have

Pτim(A) = {I*,I9\xe[0, 1]} ,

where J* = {α|α(2) = 0}, and Ix = {α|α(g) = α(2) = 0}. A is *-bounded
and normal,

A» = {Ix\xe[Q,l]}

and can be identified with [0, 1] with the usual topology. Hence A
is standard and isometric isomorphic to a C*-algebra defined by a
continuous field of C*-algebras A(x) over [0,1], where each A(x) = Ao,
the primitive C*-algebra generated by K{H) and {cl}. (This is not the
C*-algebra of all continuous functions from [0, 1] to Ao. In short,
the continuous field of C*-algebras is not trivial.) The center Z of
A consists of scalars, i.e., Z=C. By Dauns and Hofmann [11] Corollary
8.14 (3), the base space is a singleton, i.e., the algebra A is of a
single fibre in their theory.

A variation of the above example is the following: Let Aι be
the subalgebra of A consisting of all aeA with α(l) a diagonal
operator with respect to a fixed orthonormal basis {βjjli in H. Again
the center of A is C, and consequently it is an algebra of a single
fibre in the theory of [11], We have

Prim (A,) = {/* Π A , Ix Π A, It\x e [0, 1), i - 1, 2, ...} ,

where /̂  = {a e A1 \ the ΐth coefficient in the diagonal of α(l) is 0, α(2)
is 0}. Aγ is ^-bounded and normal,

A \ = {IX Γ ι A , I t \ x e [ 0 , 1 ) , i = 1 , 2 , •••}

and is not Hausdorίf since {/J can not be separated. However A\
is Tγ 1/2 and the quotient space X = [0, 1] with all points corresponding
to Iif i = 1, 2, , identified as {1} in [0, 1]. Aλ is pre-standard, and
isometric isomorphic to a continuous field of C*-algebras A(x) over
[0,1], where A(x) — Ao for all x [0,1), but A(ϊ) is the pseudo-primitive
algebra of all convergent sequences. We have CJJD Si A(l) £ BJJD
in the notation of Theorem 2.

6. Representation of C*-algebras* A state / of a C*-algebra
A is a positive linear functional on A of norm one. For each state
/ of a C*-algebra A, we denote by πf the cyclic representation of
A on Hubert space Hf associated with the standard Gelfand-Naimark-
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Segal construction such that

(πf(a)ξ\ξ) = f ( a ) f o r a l l a e A ;

we denote by Vf the associated linear map from A (or A1 in case A
is without identity) onto a dense subspace of Hf, and ξ = Vf(ΐ).

Let A be a densely bounded C*-algebra with basic structure
A\ Let X be a dense subspace of Ab. X once chosen, is fixed. For
each x e X, choose one state fx of A such that ker πfχ = x. We simply
write / for fx if no confusion would arise. Let Y be the set of all
states / of A so chosen after each element of X. Y once chosen,
is also fixed. Let

feY

For each v e H, let v(f) e Hf be its /-coordinate. We have

IMI EI
feY

An operator T on the Hubert space H is called decomposable if

(Tv)(f) = T(f)v(f) , t e ί Γ ,

where T(f) e B(Hf) for each feY. We call an operator T on H
A-decomposable if T is decomposable and T(f) e πf(A) for each feY.
For each a e A, define α on Jϊ as follows:

(av)(f) = πf(a)v(f) , veH.

a is obviously linear on H, and we have

f
Σ
feY

Hence for each a eA, a is a bounded linear operator on H. Clearly,
φ\ a -* a is a linear map from the C*-algebra A into the set of all
A-decomposable operators on H.

By a straight forward computation, we have

db = α6, α* = α*, i.e., <ρ(αί>) = φ(a)<p{b), φ{a)* — φ{β*)

for all a, b e A. Since the basic structure space is dense in A\ X
is also dense in Aj. Hence

If a = 0, then

a 6 Γl ̂ /'(O) = Π « = {0} > where πj^O) = a?
/e F ϊ e l
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This shows that φ is injective. As any norm-decreasing isomorphism
from a C*-algebra into a Banach *-algebra is isometric, we have the
following:

THEOREM 3. Let A be a densely bounded C*-algebra, and let X
be a dense subset of the basic structure space Ab of A. Then φ: a —> a
constructed above is an isometric isomorphism of the C*-algebra A
onto a norm-closed self-adjoint subalgebra B{H).

A representation π of a C*-algebra A on a Hubert H is called
separable if H is separable. Let us call a C*-algebra A separably
representable if it has a faithful separable representation. An im-
mediate consequence of Theorem 3 is the following:

COROLLARY 2. Let A be a densely bounded C*-algebra with a
separable basic structure space Ab. If every exactly irreducible
representations of A is physically equivalent to a separable repre-
sentation, then A is separably representable.

REMARK 3. Theorem 3 is a refinement of the representation
theorem in Gelfand and jNaimark [18]. The Hubert space H in
[18] is usually nonseparable for an infinite dimensional C*-algebra A
since the direct sum is taken over all states of A to ensure the
faithfulness of the representation. Of course, this is not always
necessary. For example, if A is (norm) separable, the direct sum
can be taken over a countable separating family F of states / and
each Hf is separable; so A is separably representable. But such a
judicious choice of a countable separating set F of states is not
always possible in general. And many separably representable C*-
algebras are not separable. In fact, any infinite dimensional von
Neumann algebra is not norm separable. The separable represen-
tability of a C*-algebra is of considerable interest to theoretical
physicists. It seems that the sufficient condition of being separably
representable in Corollary 4 is also very close to be a necessary
condition. The condition that every exactly irreducibly representation
of a C*-algebra A is physically equivalent to a separable representaion
is weaker than the condition that every irreducible representations
of A is physically equivalent to a separable representation as the
following example shows: Take A = B(H), H a separable infinite
dimensional Hubert space. There is only one physical equivalence
class of exactly irreducible reprentations of A, i.e., the one containing
the identity representation which is of course a separable representa-
tion. However, not every irreducible representations of A is physically
equivalent to a separable representation. For all irreducible repre-
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sentations of B(H) induced from a faithful irreducible representation
of the Calkin algebra B(H)/K(H) is necessarily taken on a non-
separable Hubert space (see Calkin [8]).

DEFINITION 8. A densely bounded C*-algebra A with a dense
subspace X of the basic structure space Ab is called X-normal if
any primitive ideal of A does not contain two distinct minimal pri-
mitive ideals from X.

It follows from the definition that if I, J e X and I Φ J, then
I + J = A.

Let A be a densely bounded X-normal C*-algebra such that X
is a locally compact Hausdorff space. Let Y, φ and H be as in the
paragraph preceding Theorem 3. Ler Y have the topology transplanted
from X. Let DA denote the subalgebra of B(H) consisting of all
A-decomposable operators T on H such that / —-> 11 T(f) 11 is continuous
and vanishing at infinity on Y. It is not difficult to see that φ(A)
is a closed ^-subalgebra of DA. φ{A) obviously satisfies the conditions
(i), (ii), and (iii) of Definition 10.1.2 of [13] with respect to the family
(πf(A))feγ of primitive C*-algebras. By Proposition 10.3.2 of [13],
there exists a subset Γ of the cartesian product Π/er ftf(A) containing
φ(A) such that G = ({πf{A))feγ, Γ) is a continuous field of primitive
C*-algebras (πf(A))feγ over Y which can be identified with X. By
the same argument as that in the proof of Theorem 1, we conclude
that the isomorphism from A to the C*-algebra defined by the con-
tinuous field G of C*-algebras is onto. In other word, Γ = φ(A) = DA.
We summarize the above discussion as follows:

THEOREM 4. Let A be a densely bounded C*-algebra with a
dense subspace X of the basic structure space Ab. If A is X-normal
and X is a locally compact Hausdorff space, then φ\ a —•* a as defined
in the paragraph preceding Theorem 3 is an isometric isomorphism
of the C*-algebra A onto the C*-algebra DA of all continuous A-
decomposable operators on H vanishing at infinity.
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