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GLOBAL ANALYSIS AND PERIODIC SOLUTIONS OF
SECOND ORDER SYSTEMS OF NONLINEAR

DIFFERENTIAL EQUATIONS

DAVID WESTREICH

We establish the existence of global closed connected sets
of solutions of nonlinear operator equations with linearized
part a polynomial in λ, bifurcating from characteristic values
of odd multiplicity. These results are then applied to finding
large periodic solutions of systems of second order nonlinear
differential equations.

Introduction* Using Leray-Schauder degree theory P. H.
Rabinowitz [10] has shown the existence of global continua of solu-
tions bifurcating from characteristic values of odd multiplicity of the
linearized part of completely continuous nonlinear operator equations.
By purely local bifurcation results, unrelated to those of Rabinowitz,
the author [13] has extended M. S. Berger's [1] variational techniques
to find small periodic solutions of systems of second order nonlinear
differential equations. In this paper we combine the two methods
and develop Rabinowitz's global analysis for nonlinear operators whose
linearized part is a polynomial in λ and apply these results to the
existence of large periodic solutions of second order differential
equations of the form

v," + Ay + Bxu + F,{w, w', w") = 0

v" + A2u' + B2v + F2{w, w', w") = 0

where w = (u, v).

1* Global analysis* We consider the existence of continua of
solutions of equations of the form

(1.1) x = XLx + G(λ, x)

where L is a completely continuous linear map of a real Banach
space X into itself and G(λ, x) is a completely continuous map [12,
p. 9] of R x X—>X satisfying G(λ, x) = o(||#||) for x near zero,
uniformly on bounded λ intervals. A solution of Eq. (1.1) is a point
(λ, x)eB x X satisfying Eq. (1.1) and will be called trivial if x = 0.
A λ o e β is said to be a bifurcation point if every neighborhood of
(λ0, 0) contains nontrivial solutions of Eq. (1.1). The closure of the
set of nontrivial solutions of (1.1) will be denoted S.

A λ0 e R will be called a characteristic value of a linear operator
L if there exists a nonzero xoeX such that x0 = X0LxQ. The set of
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characteristic values of L will be denoted r(L). The domain, range
and null space of an operator B will be denoted by D(B), B(B) and
N(B) respectively. For convenience we will let Nk(B)=N(Bk), N^B) =
UΓ=i NiB*), and Rk{B) = R(Bk). The smallest integer k > 0 such that
Nk(B) = ΛΓooίβ) will be denoted α(B). The algebraic multiplicity,
Λf(λ0, L), of λ0 6 r(L) is dim N^I — λ0L).

Suppose that G is not globally defined. Then by employing an
obvious modification of E. N. Dancer's work [4, Corollary 2] we can
obtain the following extension of Rabinowitz's Theorem 1.12 in [10].

THEOREM 1.1. Let P = {Xlf , Xp} be a set of consecutive charac-
teristic values of LfXί < < λP, and suppose Σ?=i M(\if L) is odd.
If Ω is a bounded open set in RxX containing [Xlf Xp]x{0} and (?(λ, x)
is completely continuous on Ω then S possesses a maximal subcon-
tinuum CP such that (Xj9 0) e CP for some λ, e P and CP either

( i ) meets dΩ or
(ii) meets (λ, 0) 6 Ω9 where X e (r(L) — P).

By a subcontinuum of S we mean a subset of S which is closed
and connected in R x X. By dΩ we mean of course the boundary
of Ω.

With Theorem 1.1 we can obtain global results for G(X, x) globally
defined but now L is just a bounded linear map of X into X such
that for all X 6 R, R(I - XL) is closed and NM - XL), NM - λL*) <
oo, L* the conjugate of L. With these assumptions on L we have the
lemma

LEMMA 1.2. If k — a(I — λL) then Rk(J — λL) is closed, X —
Nk(I — XL) 0 Rk(I — XL) and I — XL is a one-one map of Rk(I — λL)
onto Rk(I — λL) with bounded inverse.

Proof. See [14].

Lemma 1.2 implies that if 1/λ is in the spectrum of L then λ 6
r(L) and r(L) is discrete.

THEOREM 1.3. Let L and G be as described above and let P =
{Xl9 , Xp} be a set of consecutive characteristic values of L, X1

< - < XP. Suppose Σ?=i M(Xίf L) is odd. Then S contains a
maximal subcontinuum CP such that (Xj9 0) 6 CP for some X3- e P and
CP is either

( i ) unbounded in R x X or
(ii) meets (λ, 0), where Xe(r(L) — P).
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Proof. The theorem will be proved by repeated applications
of Theorem 1.1. For each positive integer n define In = (λ,. — n, Xp + n)
and Sn = {x e X\ \\x\\ < n}. Let X19 , λp, , λs be the characteristic
values of L contained in ϊn. Then by Lemma 1.3, X = N®R, where

N = Nkl(I - \L) θ • 0 Nks(I ~ \L)

Jc. = α(J — λ^L) , i = 1, 8

and

R = R((I - \L) f ci (I - XsL)kή .

Thus xe X can be uniquely expressed as x = % + v where % e ΛΓ and
v e # . Moreover, for all XeR, I - λL: ΛΓ-> N, R-+R and G = G^ +
G^ where GNeN and G^ e J?. Thus our problem is equivalent to
that of finding solutions (λ, u + v) e R x (N(& R) of the system of
equations

(1.2) u - XLu = GN(X, u + v)

(1.3) v - λLv = GΛ(λ, w + v) .

Since / — λL has a bounded inverse on R for all X£Ϊn and (I —
is continuous in λ for all 1/λ in the resolvent of L (as a mapping
of R->R) [5, p. 257], (λ, u + v)eΩn = In x SΛ is a solution of (1.2),
(1.3) if and only if (λ, u + v) is a solution of the system

(1.4) u = λLa, + G^(λ, % + v)

(1.5) <y = (I - XLy'GsiX, u + v) .

As (I — λL)"1Gi2(λ, t6 + ^) is a completely continuous map of Ωn into
J? and dimiV< oo, Eqs. (1.4), (1.5) satisfy the hypothesis of Theorem
1.1. Thus for some 1 ^ j ^ p and each integer n, Ωn contains a
maximal closed connected subset Cn of S such that (Xj9 0) e Cn and
Cn either meets the boundary of Ωn or meets (λ, 0), λ e (r(L) — P).
As the union of connected sets containing a common point is connected,
an application of Zorn's lemma [8, p. 62] will show that S contains
a unique maximal subcontinuum CP meeting (λ^ , 0). Thus U~=i Cn c CP

and our theorem is proved.

REMARK. If G is not globally defined but is instead completely
continuous on the closure of an open bounded set ΩdR x X, con-
taining [x19 Xp] x {0}, and L and P are as in Theorem 1.3, then by
replacing the Ωn by Ω we can readily prove that if Σ?=i ^ ( λ ^ L) is
odd, S possesses a maximal subcontinuum CPCLΏ such that CP Π
(P x {0}) Φ 0 and either (i) meets dΩ or (ii) meets (λ, 0) 6 Ω, where
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Xe(r(L)-P).
If we consider (1.4) and (1.5) and modify Rabinowitz's proof of

Theorem 1.16 in [1], (as was done in [4]) for CP in a sufficiently large
Ω% we can readily verify

THEOREM 1.4. Suppose the hypotheses of Theorem 1.3 are satisfied
and (i) does not occur. Then CP meets a point (λ, 0) such that X 6
(r(L) - P) and M(X, L) is odd.

REMARK. Similarly we could show that when a G is not globally
defined and (i) of the above remark does not obtain then CP meets
a (λ, 0) and M(λ, L) is odd.

The existence of continua of nontrivial solutions can also be
shown for completely continuous operator equations of the form

(1.6) x = (XnAn + + XAx)x + G(X, x)

where G(λ, x) is o(\\x\\) for x near zero, uniformly on bounded λ intervals
and Aί9 , An are completely continuous linear operators of a real
Banach space X into itself. We will call λ0 a characteristic value of an
operator polynomial A(X) = XnAn + + XAλ if there exists a nonzero
vector xoeX such that A(X0)x0 = x0. The set of such characteristic
values will be denoted r(A).

The geometric multiplicity of λ0 e r(A) is dim N(I — A(XQ)). To
define its algebraic multiplicity we consider the associated matrix of
operators W + V: Xn —• X*, where

(1.7)

and

0 0

(1.8) V =

"0
I

0

0

0
0
/ .

•
•

•

• I

0
0

0

0

If x = (xlf , xn), xlf , xneX, then the operator equation x
X(W+ V)x is the system of equations
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x2 =
x,)

xn =
Thus it is clear λ0 6 r(A) if and only if Xoer(W + V). We therefore
define the algebraic multiplicity JJf(λ0, A) of λ0 to be the

REMARK. Our definition is an analog of the one given for finite
dimensional square matrices. The algebraic multiplicity of a charac-
teristic value λ0 of a matrix A is the multiplicity of the eigenvalue
β0 = l/λ0 as a root of the characteristic equation det | βl — A \ — 0 [7, p.
104]. Correspondingly, the algebraic multiplicity of a characteristic
value λ0 of a matrix polynomial A(λ) is the multiplicity of β0 = l/λ0

as a root of the equation

det - An - - βn-ιA,\ - 0

Moreover, by the Jordan canonical form the algebraic multiplicity
of a characteristic value λ0 of a matrix A, is equal to dim N^I — \A).
Similarly, the algebraic multiplicity of a characteristic value λ0 of
A(X) is dim NM - X0(W + V)). Indeed dim N^I- \(W + V)) is equal
to the multiplicity of β0 = l/λ0 as a root of the characteristic equation
det\βI-W-V\ = 0. But

άet\βI-W -V\ = άet\βnl- An-

since by elementary row operations we have

det |£J-"FP-VΊ

3/ 0 . . . -An

-I βl -A^

βn~ιA\

0

βl 0

0 βl

-I βl- A,

-An

0 0 • βl - β~n+1An - . . . -
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The closure of the set of nontrivial solutions of Eq. (1.6) will
be denoted by S. A XoeR will be a bifurcation point if every
neighborhood of (λ0, 0) contains nontrivial solutions of Eq. (1.6). It
is clear that if λ0 is a bifurcation point of Eq. (1.6) then XQer(A).
To see this we note that by the Fredholm theory [11, Chaps. IV, V]
if λ0 $ r(A) then I — A{X) is invertible for all X near λ0 with uniformly
bounded inverse. Writing (1.6) for x Φ 0 in the form

x/\\x\\ = (I-A(X)ΓG(X,x)/\\x\\

we see λ0 is not a bifurcation point of Eq. (1.6) as G — o(||cc||).
We can show

THEOREM 1.5. Let P = {λ̂  , Xp} be a set of consecutive charac-
teristic values of A(X), λj. < < Xp, and suppose ΣfU M(Xif A) is
odd. Then S contains a maximal subcontinuum CP such that (Xj, 0) €
CP for some Xj e P and CP is either

( i ) unbounded in R x X or
(ii) meets (λ, 0) where Xe(r(A) — P).

Proof. Showing the existence of CP is equivalent to showing
the existence of a maximal continuum of solutions C'P of

+ V)x + G(X,x)(i.

in

(i

9)

X%

10)

where

G(X, x) =

X = λ

G(λ, xlf ,<O = (0, •• ,0,G(λ,α?n)).

We will show Eq. (1.9) satisfies the hypotheses of Theorem 1.3. By
(1.10) G(λ, x) is completely continuous and G(λ, x) = o(||#||) for x near
zero, uniformly on bounded λ intervals. In addition, dim NJ^I —
X(W+ V)), dim NM - X(W + V)*) < eχ> and R(I - X(W + V)) is closed
for all real λ. Indeed, one can readily verify F7 1"1 = 0. Thus as
(W + V)m = Km + Vm for all positive integers m, where Km is com-
pletely continuous, it follows that (V + WY~ι is completely continuous.
Moreover

NM - X(W + V)) c NM - X^iW + F)™"1) .

Thus by the Riesz-Schauder theorem [11, p. 183 and p. 219], dim AΓ^I —
X{W + V)) is finite. Similarly as ((W + F)*)*1"1 is completely continuous,
dimJVcoίl— X(W + V)*) < oo. Lastly, as ( F + T^f"1 is completely
continuous it readily follows that iϋ(I — X{W + F)) is closed [6, p. 705].

Hence Eq. (1.9) satisfies the hypothesis of Theorem 1.3 and the
result follows.
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An argument analogous to that of the proof of Theorem 1.5 will
show that if G is not globally defined and A(X) and P are as in
Theorem 1.5 then

THEOREM 1.6. // Ω is a bounded open set in R x X containing
[X19 Xp] x {0} and G(X, x) is completely continuous on Ω and Σ*U M(Xif A)
is odd then S possesses a maximal subcontinuum CPaΩ such that
(λj , 0) e CP for some X3- e P and CP either

( i ) meets dΩ or
(ii) meets (λ, 0) 6 Ω, where λ e (r(A) — P).

By arguing as in the proof of Theorem 1.5 and applying Theorem
1.4 or the remark following Theorem 1.4 we can verify

THEOREM 1.7. Suppose the hypotheses of Theorem 1.5 (1.6) are
satisfied and (i) does not occur. Then CP meets a point (λ, 0) such
that X e (r(A) — P) and M(X, A) is odd.

Theorem 1.6 can be used to show the existence of bifurcation
points of operator equations which are not completely continuous.
Suppose Alf , An are closed linear operators of X into X such that
Π?=i D(Ai) = X and λ0 is a characteristic value of XnAn + + XA^.
Let us further assume G(λ, x) is a continuous map of a neighborhood
of (λ0, 0) e R x X into X satisfying

(1.11) ||G(λ, x,) - G(λ, OH ^ h(xlf O I K - x21|

for (λ, O, (λ> χz) n e a r (̂ o, 0) and where h(a, b) is a function indepenent
of λ tending to zero as both a and b tend to zero. If we define W
and V by (1.7) and (1.8) and let S be the closure of the set of
nontrivial solutions of

(1.12) x = (XnAn + + XAJx + G(λ, x)

we can prove

THEOREM 1.8. If I — X0(T7+ V) is a closed Fredholm operator of
index zero [4] and M(λ0, A) is odd then XQ is a bifurcation point of
Eq. (1.12) and S contains a maximal subcontinuum meeting (λ0, 0).

Proof. As in the proof of Theorem 1.5 it suffices to show λ0 is
a bifurcation point of

(1.13) x = X(W + V)x + G(λ, x)

in Xn, where G is defined by (1.10). By hypothesis one can readily
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verify that Xn = NP(I - X0(W + F)) 0 RP(I - XQ(W + V)) where p =
α ( / - λoίΐ^ + F)) [14]. Thus for x e P , a ; = ιt + ί; where ueiVp(J-
\(W + F)) and v 6 RP{I - XQ(W + 7)) and G = GN + GB where G^ e
^ ( J - λo(TF + F)) and G* e Λ P (I- XQ(W + V)). Moreover I - X(W+ V)
is invertible on RP(I — X0(W + V)) for all λ near λ0. Thus finding
solutions of Eq. (1.12) is equivalent to finding solutions of the system

u =
v = (I-MW + Vy-'GJl,, u + v).

An application of the contraction mapping principle [5, p. 260] to Eq.
(1.14) shows the existence of a uniquely determined continuous function
v(X, u) such that v(X, u) = (I - X(W + V^'G^X, u + v(X, u)). Hence
our problem is reduced to that of solving the equation

u = X(W + V)u + GN(X, u + v(X, u)) .

As the equation satisfies the hypotheses of Theorem 1.6 there is a
unique maximal subcontinuum of meeting (λ0,0) and the result follows.

2* Second order systems* Let us consider autonomous systems
of ordinary differential equations of the form

(2.1) w" + Ajjo* + A2w + F(w, w\ w") = 0

where w denotes the ^-vector (w^t), , wjf)) of real-valued functions,
w' = (dwjdt, , dwjdt), Ax and A2 are real n x n matrices, F is a
continuous function of 3w variables satisfying F(x) = o(|a;|) (|a;| =
(x\ + + #L)1/2) and for any matrix A and vector v by Av we mean
the vector {A v1)1 with £ denoting the transpose. We wish to determine
when the existence of periodic solutions of the linearized part,

(2.2) w" + i y + A2w = 0 ,

implies the existence of periodic solutions of (2.1) and the relationships
between the periodic solutions of Eq. (2.2) and those of Eq. (2.1).

Using classical results from the theory of ordinary differential
equations [3], one can readily verify that Eq. (2.2) has a solution of
period 2ττλ0 for some λ0 > 0 if and only if λ0 is a characteristic value
of the matrix polynomial A(X) = i\A1 + X2A2 [13]. From the results
of §1 and [13], [1], one might expect Eq. (2.1) to have periodic solutions
when A(X) has real characteristic values of odd algebraic multiplicity.
However it will be shown in § 3 that unless we make further restric-
tions on A19 A2 and F, (2.1) may have no periodic solutions even though
A(X) has only simple characteristic values.

Let us therefore assume A^ and A2 are of the special form
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where Ax is an r x q matrix, At SL q x r matrix, A2 a nonsingular
rxr matrix, and A2 a q x g matrix with 0 ^ g < n and 0 < r <; w.
Thus if

system (2.1), can be expressed

(2.5) w" + Ay + A2^ + J P 7 ^ , v, uf, v', u", v") = 0

(2.6) v" + A&! + -A2v + i^2(^, v, u', v'9 u", v") = 0 .

We further assume

F^u, -v, -u', v', u", -v") = JP^W, v, u', v\ u'\ v")

Flu, -v, -%', v', u", -v") = -F2(u, v, u', v\ u", v") .

If λx is a positive characteristic value of A(X) let jS(λi) be the set
of all different positive characteristic values, Xlf XN of A(λ) satisfying

; = integer (i = 1, . . , N). We define ^t{Xx) = Σ ^ β ^ ) Affo, -A).

THEOREM 2.1. Suppose ^ λ j Λ-αs ΛΓ elements, ^(X^) is odd,
and that | F(x) — F(y) \ ̂  h(x, y) \ x — y \ for x, y e R5n near zero, where
h(x, y)—*0 as (x, y) —* 0. Then for each sufficiently small δ there
exists a nontrivial periodic solution wδ(t) — (uδ(t), vδ(t)) of Eqs. (2.5),
(2.6) with period 2πXδ such that wδ(t)—>0 and Xδ-+Xu as d—+Q.

Proof. We first introduce a change of variables and set t = Xs,
where λ is a real constant to be determined. The resulting system
is then

(2.7) ω" + XA,wr + λ2A2ω + X2F(X, ω) = 0

where

F(X, ω) - (F^X, ω), F2(x, ω)) = (Fx(ω9 λ~V, λ " V ) , F2(ω, λ"V, λ"V))

and ω = (μ, v) = (μlf , μr, v19 , vg). It suffices to determine the
2π periodic solutions of (2.7) as they correspond to 2πX periodic solu-
tion of (2.1).

Even 2π periodic functions are of the form μ = μ0 + μ*9 where

S 2π

μ(s)ds, the mean value of μ, and μ0 is of mean value
0
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zero. Thus Eq. (2.7) can be expresed equivalently as

(2.8) A2μ* + - i - Γ Fx(λ, μQ(s) + μ*f v(s))ds = 0
2π Jo

μ'o + λ i ί y + λ2Γi2/4) + ^i(λ, μ0 + μ*, v)
(2.9) 2;r

 L

A Γ # ( λ , jκo(β) + μ*, v{s))ds\ = 0
J

(2.10) i/' + XAμΌ + λ2[A2y + F2(λ, μ0 + μ*, v)] = 0

To apply Theorem 1.8 we introduce the appropriate Banach spaces.
Let ^ be the space of twice continuously differentiable, 2π periodic,
even r-vector functions of mean value zero and ^ 2 the space of
twice continuously differentiable, 2π periodic, odd ̂ -vector functions.

Then let ^ be the Banach space defined by ^ = ^ x ^ with
the norm

| | |ω | | | = 111(0),, .• ,tt>.)| | |= max {||ωj*>||}
j=l, ,n
fc = 0,l,2

where ||ωf} || = supo^^2* \ωjk)(t)\- Note that there is a c ̂  0 such
that for all ωe<Sf, |||ά>||| ^ cmaxi=1,...,%{||α>;'||}. Indeed if f(t) is a
twice continuously differentiable 2π periodic function of mean value
zero then there exist tx and t2 such that /(ίx) = /'(ί2) = 0. Therefore
for each t

1/(01 - \fit) - f(Q\ ^ |t - ί j | / ' ( ί ) | ^ |ί - ί j | ί - ίa| |/"(ίo)l ,

where t lies between ^ and t, and ί0 lies between t and ί2. Hence
||/(0H ^ 2π| |/ '(t) | | ^ 4π2 | |/"(ί)li. Thus

(2.10a) | | | ω | | | ^ c m a x { | K I | } .

Let iΪ! be the Hubert space of absolutely continuous, 2π periodic,
(μΌ(s)2)ds < oo

0

and H2 the Hubert space of absolutely continuous, 2π periodic, odd

S 27Γ

(v'(s)2)ds < co. Let H = Hι x H2 with
0 Γ2τr

inner product defined by {x, y) = I x'(s) τ/'(s)ds, x = (μQ, v). And
Jo

lastly let X* be the space of the μ* with Euclidean norm. For
convenience we express (μQ + μ*, v) as x + ̂ *.

A2 is nonsingular and we consider now finding solutions of the
operator equations
(2.11) μ* + AA^-^F^X, μo(s) + μ*f v(s))ds] - 0

L2τrJo J
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(2.12) x - ^f{X)x - X2J^(X, x + μ*) = 0

in R x X* x 9f where J^(λ) = λj*f + λ 2 J^ and for λ 6 R and a? 6
^ Jϊζx, Jzζx and ^"(λ, #) are defined to be the unique element in
^ such that

(2.13) <j*fr, y) = [27ΐAίx\s)'y(s)dsf <J^α, y) =
Jo Jo

and

(2.14) <jr(λ, a? + ^*), y> - ΓV(λ, φ ) + μ*)-y{fi)ds ,
Jo

for all yeH.
It is clear that if (λ, x + μ*) is a solution of Eqs. (2.11) and (2.12)

then it is a solution of Eq. (2.7) as we have

\2\x" + XA,x' + X2A2x + X2F(X, x + μ*)) , y = 0
Jo

for all yeH.
Now JK, ^ and ^ " satisfy the equations

= —A2x

and

32jF~(λ, £ + μ*)/ds2 = -F(λ, a? + Ϊ;*) + — Γ ^ .
2π Jo

Thus an application of the Ascoli-Arzela theorem will verify that
J^tand J ^ a r e compact maps of ^ into ^ . By Eq. (2.10a) it follows
/ ^ Γ f27Γ ^ Ί \
ί A2H l/2ττ \ i77! L &~\ is a continuous nonlinear map of ί x l * x ^
into X* x If satisfying Eq. (1.11).

In the course of proving theorem 1.5 it was shown that
I —X0(W + V) is a closed Fredholm operator of index zero whenever
A19 , An are compact. Thus by Theorem 1.8 the proof of Theorem
Theorem 2.1 will be complete once we have shown that X1 is a
characteristic value of odd algebraic multiplicity of the linearized
part of (2.11), (2.12),

0 0

0

(which is a mapping of I * x 'g7 into X* x ^ ) . It suffices to show
M(X19 J^f) is odd. To this end we prove the lemma
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LEMMA 2.2. Under the hypotheses of Theorem 2.1, M(Xίf J%f) is
odd.

Proof. If Xk e iS(λi) and (a + ib, c + id) with ά, 6 6 Rr and c, cZ e
Rq is a characteristic vector corresponding to Xk, then by equating
components we have the equalities

XkJ\.2d XkjΆ-ι(h :=z (t

λ2 A Λ "X A J\ •— /»

On the other hand it is clear that for all integers p > 0

(2.15) S/X(a cos ps, β sin ps) = l/p(Aj3 cos ps, — A ^ sin ps)

(2.16) J^J(α cos psf β sin ps) = l/p2(A2a cos ps, A2/3 sin ps) .

Thus if pk — XjXk, (b cos pks, c sin pfes) is a characteristic vector
corresponding to X1 if and only if (6, c) is a characteristic vector
corresponding to the characteristic value Xk of xΆt + X2A2 where

Moreover from Eqs. (2.15) and (2.16) it follows that for

if (y, x) e & x <& is an element of No£I — λxL) then 3/ and cc must
be of the form

and

N

V = Σ to cos pyβ, /S. sin pάs) pά =

c o s

and the coefficient vector (a3-, βs, yd, δd) for j = 1, , ΛΓis an element
of ΛUI - λyQ), where

Conversely, if {a, β, 7, δ) e N^I — λyQ) then (a cos j>ya, 8̂ sin pds,
7 cos pys, δ sin Pj s) 6 iVoo(Z — XtL). Hence
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(2.17) dim - \L) = Σ dim iSL(I - λ, Q) .

For j = 1, , N, dim JVΌo(/ — XjQ) is equal to the multiplicity of
λ5- as a root of det | / — A(X) | = 0. Indeed by the remark preceding
Theorem 1.5 it follows that dim JV«,(J — λ;Q) is equal to the mul-
tiplicity of λ, as a root of det 11 — λ2A2 — XA1 | = 0. It is easily
verified that if P is a nonsingular square matrix we have the formula

P

R

Q

S
= det

I

-RP'1

P Q-

R S
(2.18) det

- d e t | P | d e t | S -

Thus for all but a finite number of X we have

det 11 - X2A2 - XALI

= det 11 — X2A21 det | (/ — X2A2) — XA^I — X2A2)~1XJ

= det 1J - A(X)\ .

However they are polynomials and so

det I / - λ2Λ - XAλ I = det | J - A(X) \ .

Hence dim #«,(/ - \-Q) = M(Xί9 A). Therefore by (2.17) dim JSΓ«
is odd.

With Lemma 2.2 the proof of Theorem 2.1 is complete.

If F depends on w" then ^ need not be completely continuous
and we cannot establish the existence of large periodic solutions of
(2.1). Therefore we now consider the system of ordinary differential
equations.

(2.19) w" 4- Axw
f + A2w + F(w, w') = 0

where A, and A2 are as described by (2.3) and (2.4), and F is a
continuous function of 2n variables satisfying

F(x) = o(| x I), F - (Fl9 F2), Fλ(u9 -v, -u\ v')

= F^u, v, uf, v,)9 F2(u, —v, —u', vr) — —F2(u, v, v!9 v') .

To characterize sets of nontrivial periodic solutions of (2.19) let
E be the set of nontrivial 2π periodic solutions with λ > 0, of

(2.20) ω" + XAγω' + X2A2ω + X2F(X, ώ) = 0

in R x X* x <£f, where F(X9 ω) = F{ωy X~ιω'). Clearly if (λ, μ*9 x)eE
then x(t/X) + μ* is a 2πλ periodic solution of (2.20). The closure
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of E in R x X* x ψ will be denoted by E.
We note that F(X, ω) is undefined for λ = 0 so that care must

be taken when dealing with solutions with λ near zero.

THEOREM 2.3. Let Xx be a characteristic value of A(X) and
suppose S(λL) has N elements and ̂ f{X^ is odd. Then E contains
a maximal set of solutions, Ch, such that Ch meets (Xίf 0, 0), Ch is
closed and connected in R x X* x ^ and either

( i ) Cλl meets a point (λ0, 0, 0) such that for some positive
integer m, λo/m is a positive characteristic value of A(X), Xo ί SiX^,
and ^f(X0/m) is odd or

(ii) Cλί is unbounded in R x X* x r^ or
(iii) for each XL > ε > 0, Ch meets a point of the form (ε, μf, xε).

Proof. Let s*ζ, Jϊζ and J^(λ, x + μ*) be defined by (2.13) and

(2.14). As 32JΠλ, x + μ*)/ds2 = -F(λ, x + μ*) + l/2ττ [** F19 an ap-

plication of the Ascoli-Arzela theorem will show that

is completely continuous. The positive characteristic values of
are all of the form βm where m is a positive integer and β is a
positive characteristic value of A(X). Thus by repeating the proof
of Theorem 2.1 and applying Theorems 1.6 and 1.7 to Eqs. (2.11)
and (2.12) on Ωίte = Ij>ε x S, for j = 1, , 0 < ε < \

Ij,ε - {λ|ε < X < j}9 Sd = {(μ*, x) I ||(/£*, x)\\ < j} ,

there exists a unique maximal closed connected set Cίtt c E meeting
(\, 0) such that Cji£ c Ω3 ,6, Cj}£ either meets dΩj>ε or meets (λ0, 0, 0),
where λ0 is a positive characteristic value of <W(X) and M(XQ, Ssf) is
odd. As the union of connected sets containing a common point is
connected, there is a unique maximal closed connected subset Cλί of
E meeting (Xlf 0). Hence U Cίtt a CXl and the theorem follows.

If we make the further assumption that F does not depend on
wf then F will be independent of X and we no longer have to be
concerned with the existence of bounded solutions of (2.1) with periods
tending to zero.

THEOREM 2.4. Let X1 be as in Theorem 2.2 and suppose F =
F(w). Then there exists a maximal subset Cλλ of E such that Cλl

is closed and connected in both R x X* x & and R x X* x H
arid either
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( i ) Cλι is unbounded in both R x X* x <^ and Λ x l * x H or
(ii) Cλι meets a point (λ0, 0, 0) such that for some positive integer

m, λo/m is a positive characteristic value of A(λ), λ0 g S(λt) and
) is odd.

Proof. It it is readily verified that J%flt J^J and J^~ are completely
continuous maps of H-+H and i ί x l * x H-+H (cf. [1], [2, pp. 155-
156]). Moreover the algebraic multiplicity of λL of J^(λ) is same
for j y (λ) as map of ^ —> <& and of H-+ H. Thus arguing as in
the proof of Theorems 2.1 and 2.3 and applying Theorems 1.5 and
1.7 to (2.11), (2.12) on R x X* x <if or R x X* x H there exists a
maximal connected set of nontrivial solutions of (2.20) whose closure,
S, meets (λx, 0, 0) and is either unbounded in both β x I * x ^ and
R x X* x H or meets a (λ0, 0, 0) where λ0 e r ( j^) and Jlf(λ0, J*O is odd.
Let C^ be the maximal closed connected subset of S meeting (X19 0, 0)
and containing those solutions (λ, μ*, x) such that λ 2> 0. If C^ meets
a point of the form (λ, μf, 0), u* Φ 0, then C^ must contain all points
of the form (λ, /*?, 0), 0 ίg λ, and so C^ satisfies (i). So suppose Ch

does not meet any points of the form (λ, μ*f 0). Then CXί cannot
meet any points of the form (0, μ*9 x). Indeed, suppose Cλl met a
point (0, μ*, x). If x Φ 0, then as (0, μ*, x) is a solution of Eq. (2.20)
we have (x + μ*)" = 0, which is impossible if x Φ 0. On the other
hand x = 0 implies μ* = 0 and so λ = 0 is a bifurcation point of (2.11),
(2.12). However as λ = 0 is not a characteristic value of the linearized
part of (2.11), (2.12) it cannot be a bifurcation point. Therefore Ch

does not meet any points of the form (0, μ*9 x). By the complete
continuity of the operators S is locally compact. Thus unless Cλl is
unbounded there exists a δ > 0 such that if (λ, μ*9 x) e Ch, λ > δ.
Hence either Ch is unbounded or Gh = S and Ch satisfies (ii).

With a rather strong condition on the derivative of the nonlinear
operators we can show the existence of an unbounded set of solutions
Cλ. To this end we first show

LEMMA 2.5. Let Γ(λ, z) eC1 be a completely continuous map of
RxX*χ^-*X*x(^ such that T(λ, z) has the same period as
(λ, z). Suppose Γ(λ0, z0) = zQ and every z e N^I — TZ(XO, zQ)) is 2π/m
periodic where m is a positive integer. Then all solutions of

(2.21) Γ(λ, z) = z

in a neighborhood of (λ0, zQ) are 2π/m periodic.

Proof. As Γ(λ, z) is completely continuous so is the derivative
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Γ,(λo, «o)= T [12, p. 51]. Thus by the Fredholm theory [11, pp.
179-190, 219], a(I - Γ) = p < «>, dim NP(I - T)< oo and X* x 9f =
JVP(I - T) 0 J?^/ - T). Let P be the canonical projection of X* x
c^ onto # „ ( ! — T"). Then finding solutions of (2.21) is equivalent to
solving

u - PT(λ, u + v) = 0

v - (/ - P)T(λ, % + v) = 0

where ueRp(I — T) and veNp(I — T'). By the implicit function
theorem [5, pp. 265] near (λ0, v0) there exists a unique function u =
w(λ, v) such that u(λ, v) = PΓ(λ, u(X, v) + v). Moreover u(λ, v) is
found by an iteration of 2π/m functions and so is itself 2π/m periodic.
Thus all solutions of (2.21) near (λ0, zQ) must be of the form v + u(X, v)
and the result follows.

THEOREM 2.6. Let X1 < < Xκ be the real characteristic values
of A(X). Suppose there exist H consecutive positive characteristic
values Xk+1 < Xk+H9 1 ̂  k ^ K such that Xf=1 M(Xk+j, A) is odd,

and for 0 < X3 ί [Xk+19 Xk+H], ^f(Xj) is even.
( i ) If F — F(w), E contains a maximal set of solutions Cλ]cH

such that, 1 ̂  i ^ H, Cλkλ. meets (Xjc+i, 0, 0), Cχk+i is closed and con-
nected in both R x X* x ^ and R x X x H and either Cλ]c+. is
unbounded in both R x X* x r^ and R x X* x H or meets a point
(Xjf 0, 0) such that X5jm is a positive characteristic value of A(X)
for some integer m > 1 and ^f(Xj/m) is odd.

(ii) If in addition FeC1 and at any nontrivial solution
(XQ, /**, #o) of (2.11), (2.12), the derivative with respects to (μ*, x0)

I + Ad-±-\**F[(xo(8) + μί)ds] 0
L 2π 3o J2π

0

is such that (μ*, x(s)) e Noo(Ψ) implies x(s) has the same period as
xo(s), then Cλk_τά is unbounded.

Proof. The characteristic values λfc+1, •• ,λ f c + / / are the only
characteristic values of j y ( λ ) in [λ/c+1, Xk+II] and by Lemma 2.2
Σf= i M(Xk+j, ,stf) is odd. Thus arguing as in the proof of Theorem
2.4 there exists a maximal subset Cλjc+. of E with the properties of
(i). To complete the proof we suppose that F is as described in (ii)
and Cλk+% is bounded and meets a points of the form (Xlf 0, 0) where
Xjm is a characteristic value of A(X) and m is an integer > 1. As
J</(X) and J^~ map 2π/h periodic functions into 2π/h periodic functions
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it follows from Lemma 2.5 that Ch+i contains both 2π and 2π/m
periodic solutions. By the connectedness of CλjcΛ. there must exist a
2π/m periodic solution (λ0, μ$, xo)^CXk+i such that every neighborhood
of (λ0, μt, xQ) contains 2π periodic solutions of (2.11), (2.12). But by
our hypotheses and Lemma 3.5 this is impossible hence the result.

REMARK. Suppose (2.1) has the form

(2.22) w" + A2w + F(w, w\ w") = 0

where A2 is an n x n matrix and F( — w, w\ —w") = —F(w, wr, w")
then if ^ and H are replaced by ^ 2 and H2 proofs similar to those
of Theorems 2.1, 2.3, and 2.4 will show that these theorems are also
true for (2.22)

3* A counterexample* We give an example to show that unless
some additional restrictions are imposed the system %" + Atx' + A2x +
F(x) = 0 may fail to have any periodic solutions even though X2A2 +
ί\A1 has only simple eigenvalues.

Consider the system

(3

(3

1)

2)

The characteristic

det

x" +

v"-

equation

Γ4 OΊ

LO 4j +

32/'

3x'

+

+

Ax

42/

0

+
—

oj

2/3 =

Xs =

- β

0

0 .

3 = 0

has four distinct roots ± 1 , ±4. Hence λ = 1, 1/4, is a simple charac-
teristic value of X2A2

J

ΓixAί. On the other hand the system (3.1), (3.2),
has no nontrivial periodic solutions. Suppose (x(t), y(t)) is a periodic
solution of (3.1), (3.2) of period a. Multiply (3.1) by y and (3.2) by
x. Then integrate the resulting equations by parts over [0, α], noting

\*x'x = [
Jo J

y'y = = 0. If we now subtract we obtain

y* + x4 = 0
Jo

This implies y = x ~ 0 and hence there do not exist nontrivial periodic
solutions of (3.1), (3.2).

After this work was completed, G. I. Ize's doctoral dissertation
[9] was brought to our attention. In it he gives an alternate, analytic,
definition of the algebraic multiplicity of a characteristic value and
with his definition proves theorems similar to our Theorem 1.5.
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