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GLOBAL ANALYSIS AND PERIODIC SOLUTIONS OF
SECOND ORDER SYSTEMS OF NONLINEAR
DIFFERENTIAL EQUATIONS

DAviD WESTREICH

We establish the existence of global closed connected sets
of solutions of nonlinear operator equations with linearized
part a polynomial in A, bifurcating from characteristic values
of odd multiplicity. These results are then applied to finding
large periodic solutions of systems of second order nonlinear
differential equations.

Introduction. Using Leray-Schauder degree theory P. H.
Rabinowitz [10] has shown the existence of global continua of solu-
tions bifurcating from characteristic values of odd multiplicity of the
linearized part of completely continuous nonlinear operator equations.
By purely local bifurcation results, unrelated to those of Rabinowitz,
the author [13] has extended M. S. Berger’s [1] variational techniques
to find small periodic solutions of systems of second order nonlinear
differential equations. In this paper we combine the two methods
and develop Rabinowitz’s global analysis for nonlinear operators whose
linearized part is a polynomial in A\ and apply these results to the
existence of large periodic solutions of second order differential
equations of the form

u’ + Av + Bu + F(w, w', w') =0
v+ Au’ + By + Fy(w, w', w’) =0

where w = (u, v).

1. Global analysis. We consider the existence of continua of
solutions of equations of the form

(1.1) x = MLz + G(\, )

where L is a completely continuous linear map of a real Banach
space X into itself and G(\, x) is a completely continuous map [12,
p. 9] of R x X— X satisfying G(\, ) = o(J|x]]) for x near zero,
uniformly on bounded X\ intervals. A solution of Eq. (1.1) is a point
(n, ) e R X X satisfying Eq. (1.1) and will be called trivial if x = 0.
A e R is said to be a bifurcation point if every neighborhood of
(N, 0) contains nontrivial solutions of Eq. (1.1). The closure of the
set of nontrivial solutions of (1.1) will be denoted S.

A », e R will be called a characteristic value of a linear operator
L if there exists a nonzero xz,€ X such that x, = A\, Lx,, The set of
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characteristic values of L will be denoted 7(L). The domain, range
and null space of an operator B will be denoted by D(B), R(B) and
N(B) respectively. For convenience we will let N,(B)= N(B*), N.(B) =
2. N(B%), and R,(B) = R(B*). The smallest integer & > 0 such that
N,(B) = N.(B) will be denoted a(B). The algebraic multiplicity,
M\, L), of Nyer(L) is dim N..(I — »L).
Suppose that G is not globally defined. Then by employing an
obvious modification of E. N. Dancer’s work [4, Corollary 2] we can
obtain the following extension of Rabinowitz’s Theorem 1.12 in [10].

THEOREM 1.1. Let P = {\, -+, \,} be a set of consecutive charac-
teristic values of L, N < =+« < \p, and suppose >, M(\,, L) is odd.
If 2 is a bounded open set in Rx X containing [N, N,] X {0} and G(\, x)
1s completely continuwous on 2 them S possesses a maximal subcon-
tinuum Cp such that (\;, 0)eCp for some N;€ P and C, either

(i) meets 02 or

(ii) meets (X, 0) e 2, where X< (r(L) — P).

By a subcontinuum of S we mean a subset of S which is closed
and connected in R x X. By 02 we mean of course the boundary
of Q.

With Theorem 1.1 we can obtain global results for G(\, z) globally
defined but now L is just a bounded linear map of X into X such
that for all e R, R(I — \L) is closed and N.(I — L), N.(I — \L*) <
oo, L* the conjugate of L. With these assumptions on L we have the
lemma

LEmMA 1.2. If k= a( — \L) then R.(I —\L) is closed, X =
NI — ML) R, (I — \L) and I — AL is a one-one map of R,(I — \L)
onto R(I — L) with bounded inverse.

Proof. See [14].

Lemma 1.2 implies that if 1/x is in the spectrum of L then A e
(L) and (L) is discrete.

THEOREM 1.3. Let L and G be as described above and let P =
{M, oy N} De a set of comsecutive characteristic values of L, N,
< eee < Ny Suppose S MO\, L) is odd. Then S contains a
maximal subcontinuum Cp such that (\;, 0) € Cp for some ;€ P and
C, is either

(i) wnbounded in R x X or

(ii) meets (X, 0), where %€ (r(L) — P).
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Proof. The theorem will be proved by repeated applications
of Theorem 1.1. For each positive integer n define I, = (\, — %, N, +n)
and S, = {z€ X|||z|| < n}. Let X, -+, A, -+, A, be the characteristic
values of L contained in I,. Then by Lemma 1.8, X = N@ R, where

N=NI—-ML)D - DN, —\L)
ke=a(l —NL), i=1,---s8

and
R = R((I — ML) -+« (I — N\ L)) .

Thus 2 € X can be uniquely expressed as x = % + v where w € N and
ve R. Moreover, for all \e R, I —AML: N— N,R— R and G = Gy +
Gr where Gye N and Gp,€ R. Thus our problem is equivalent to
that of finding solutions (A, w + v)e R X (N@ R) of the system of
equations

(1.2) % — MNLu = Gy(\, u + v)
(1.3) v — ALY = GO\, w + v) .

Since I — AL has a bounded inverse on R for all xe I, and (I — \L)™
is continuous in N\ for all 1/n in the resolvent of L (as a mapping
of R—R) [5, p. 257], (\, w + v)e 2, = I, x S, is a solution of (1.2),
(1.3) if and only if (\, 4 + v) is a solution of the system

(1.4) % = ANLuw + Gy(N, w + )
1.5) v = (I — MNL)'Gp(N, w + v) .

As (I — AL)'Gx(\, w + v) is a completely continuous map of 2, into
R and dim N < <o, Egs. (1.4), (1.5) satisfy the hypothesis of Theorem
1.1. Thus for some 1< j < p and each integer =, 2, contains a
maximal closed connected subset C, of S such that (»;, 0)eC, and
C, either meets the boundary of 2, or meets (X, 0), Xe(r(L) — P).
As the union of connected sets containing a common point is connected,
an application of Zorn’s lemma [8, p. 62] will show that S contains
a unique maximal subcontinuum C; meeting (\;, 0). Thus U3, C, cC;,
and our theorem is proved.

REMARK. If G is not globally defined but is instead completely
continuous on the closure of an open bounded set 2 c R X X, con-
taining [\, N\,] X {0}, and L and P are as in Theorem 1.3, then by
replacing the 2, by 2 we can readily prove that if 3,2, M(\;, L) is
odd, S possesses a maximal subcontinuum C,c 2 such that C,n
(P % {0})) # @ and either (i) meets 2 or (ii) meets (X, 0)c 2, where
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e (r(L) — P).

If we consider (1.4) and (1.5) and modify Rabinowitz’s proof of
Theorem 1.16 in [1], (as was done in [4]) for C, in a sufficiently large
2, we can readily verify

THEOREM 1.4. Suppose the hypotheses of Theorem 1.3 are satisfied
and (i) does nmot occur. Then Cp meets a point (N, 0) such that e
(r(L) — P) and M(N, L) is odd.

REMARK. Similarly we could show that when a G is not globally
defined and (i) of the above remark does not obtain then C, meets
a (N, 0) and M\, L) is odd.

The existence of continua of nontrivial solutions can also be
shown for completely continuous operator equations of the form

(1.6) x=N\"4, + - + M)z + G\, x)

where G(\, z) is o(]|x||) for « near zero, uniformly on bounded X intervals
and A4, ---, A, are completely continuous linear operators of a real
Banach space X into itself. We will call A, a characteristic value of an
operator polynomial A(\) = A4, + -+ 4+ NA, if there exists a nonzero
vector x,€ X such that A(\)x, = %,. The set of such characteristic
values will be denoted 7r(4).

The geometric multiplicity of »,€7(4) is dim N(I — A(\,)). To
define its algebraic multiplicity we consider the associated matrix of
operators W + V: X» — X", where

0 - - - 0 A4,

1.7 W =

0 0 A4
and

0 0 0

I 0 0
1.8) V=]|0 I 0

o - « - I 0

If e=(, -, 2,), 2, +++, x,€X, then the operator equation x =
MW + V) is the system of equations
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2, = MNA,Z,
z, = MA,_x, + )

xn = )’(Alxn + xn—l) *

Thus it is clear A\, € 7(4) if and only if M\ye (W + V). We therefore
define the algebraic multiplicity M(\,, A) of A, to be the

dim N.(I — N(W +V)) .

REMARK. Our definition is an analog of the one given for finite
dimensional square matrices. The algebraic multiplicity of a charac-
teristic value )\, of a matrix A is the multiplicity of the eigenvalue
B, = 1/\, as a root of the characteristic equation det |BI— A|=0[7, p.
104]. Correspondingly, the algebraic multiplicity of a characteristic
value A\, of a matrix polynomial A(\) is the multiplicity of B, = 1/\,
as a root of the equation

det |B"I — A, — -+ — B"'A,|=0.

Moreover, by the Jordan canonical form the algebraic multiplicity
of a characteristic value )\, of a matrix A4, is equal to dim N, (I — \A4).
Similarly, the algebraic multiplicity of a characteristic value X\, of
A(\) is dim N(I — M(W +V)). Indeed dim N..(I —n(W + V)) is equal
to the multiplicity of B, = 1/A, as a root of the characteristic equation
det |8 —W —V|=0. But
det |BI — W —V|=det|B"[— A, — -+ — B"'A4,]

since by elementary row operations we have

det |8 — W — V|
BI 0 - - - —A4,
-IB8I - - - —A,_,

0 —I BI— A,
BI 0 - - - —A,
0 IBI —B—lAn - A'rz—l

0 0 - - « BI—B"™A" — ... — A,
=det|B"I— A, — --- — " A,].



542 DAVID WESTREICH

The closure of the set of nontrivial solutions of Eq. (1.6) will
be denoted by S. A )\, eR will be a bifurcation point if every
neighborhood of (A, 0) contains nontrivial solutions of Eq. (1.6). It
is clear that if ), is a bifurcation point of Eq. (1.6) then )\, € r(A4).
To see this we note that by the Fredholm theory [11, Chaps. IV, V]
if N, ¢ r(4) then I — A()\) is invertible for all » near A, with uniformly
bounded inverse. Writing (1.6) for x # 0 in the form

ofl| x|l = (I — AN)TGON, @)/ ]|

we see )\, is not a bifurcation point of Eq. (1.6) as G = o(||z|[).
We can show

THEOREM 1.5. Let P = {\, ---, \,} be a set of consecutive charac-
teristic values of AMN), N, < -+ < \,, and suppose >.7-, M(\,, A) is
odd. Then S contains a maximal subcontinuum Cp such that (\;, 0) €
C, for some N;€ P and Cp is either

(i) wunbounded in R x X or

(ii) meets (X, 0) where X e (r(4) — P).

Proof. Showing the existence of C, is equivalent to showing
the existence of a maximal continuum of solutions C, of

(1.9) z =MW +V)z + GO\, 2)
in X", where
(1.10) GO, @) = G, @y <+, ) = (0, -+ -, 0, GO\, ,))

We will show Eq. (1.9) satisfies the hypotheses of Theorem 1.3. By
(1.10) G(:, ) is completely continuous and G(\, ) = o(||z]|) for « near
zero, uniformly on bounded X\ intervals. In addition, dim N.(I —
MW+V)), dim N (I — MW +V)*) < e and R(I — MW +V)) is closed
for all real N. Indeed, one can readily verify V"' = 0. Thus as
(W +V) =K, +V™ for all positive integers m, where K, is com-
pletely continuous, it follows that (V + W)** is completely continuous.
Moreover

N (I —MW +V)C NI — N (W +V)").

Thus by the Riesz-Schauder theorem [11, p. 183 and p. 219], dim N (I —
MW 4+ V))is finite. Similarly as (W + V)*)** is completely continuous,
dim N(I — MW +V)*) < . Lastly, as (V +W)** is completely
continuous it readily follows that R(I — MW + V)) is closed [6, p. 705].

Hence Eq. (1.9) satisfies the hypothesis of Theorem 1.3 and the
result follows.
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An argument analogous to that of the proof of Theorem 1.5 will
show that if G is not globally defined and A(\) and P are as in
Theorem 1.5 then

THEOREM 1.6. If 2 is a bounded open set in R X X containing
[N Nl X {0} and G(N, %) is completely continuous on 2 and 32, M(\,, A)
is odd then S possesses a maximal subcontinuum Cp Q2 such that
(\;, 0) e C, for some n;j€ P and Cp either

(i) meets 02 or

(i) meets (X, 0) € 2, where X e (r(A) — P).

By arguing as in the proof of Theorem 1.5 and applying Theorem
1.4 or the remark following Theorem 1.4 we can verify

THEOREM 1.7. Suppose the hypotheses of Theorem 1.5 (1.6) are
satisfied and (i) does mot occur. Then C, meets a point (N, 0) such
that N e (r(A) — P) and M(X, A) is odd.

Theorem 1.6 can be used to show the existence of bifurcation
points of operator equations which are not completely continuous.
Suppose A4,, ---, A, are closed linear operators of X into X such that

» . D(A,) = X and ), is a characteristic value of A4, + --- + NA,.
Let us further assume G(\, x) is a continuous map of a neighborhood
of (A, 0)e R x X into X satisfying

(L.11) GO\, @) — GO\ ) || = A, @) [, — 2, ]

for (\, x,), (A, x,) near (A, 0) and where &(a, b) is a function indepenent
of )\ tending to zero as both a and b tend to zero. If we define W
and V by (L.7) and (1.8) and let S be the closure of the set of
nontrivial solutions of

(1.12) z=A"4, + -+ + M)z + GO\, )

we can prove

THEOREM 1.8. If I— (W + V) is a closed Fredholm operator of
index zero [4] and M0\, A) is odd then N\, is a bifurcation point of
Eq. (1.12) and S contains a maximal subcontinuum meeting (\, 0).

Proof. As in the proof of Theorem 1.5 it suffices to show X, is
a bifurcation point of
(1.18) =MW +V)x + GO, x)

in X, where G is defined by (1.10). By hypothesis one can readily
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verify that X" = N, (I — MW +V)) D R, (I — »(W +V)) where p =
a(I — (W +7V)) [14]. Thus for x€ X", 2 = w + v where u € N,(I —
MW 4 V) and ve R(I — MW +V)) and G = Gy + G, where Gy e
N,(I - MW +V))and Gpe R,(I—N(W +V)). Moreover I — MW+ V)
is invertible on R,(I — (W +V)) for all A near A\, Thus finding
solutions of Eq. (1.12) is equivalent to finding solutions of the system

=MW +V)u + Gy(n, u + v)

(1.14) v =TI — MW +V)'Galn, u + ) .

An application of the contraction mapping principle [5, p. 260] to Eq.
(1.14) shows the existence of a uniquely determined continuous function
v(n, w) such that v\, u) = (I — MW + V))'G(\, u + v(\, w)). Hence
our problem is reduced to that of solving the equation

=MW +V)u + Gs(\, u + v(\, w)) .

As the equation satisfies the hypotheses of Theorem 1.6 there is a
unique maximal subcontinuum of meeting (A, 0) and the result follows.

2. Second order systems. Let us consider autonomous systems
of ordinary differential equations of the form

2.1) w’' + Aw' + Aw + Flw, w', w") =0

where w denotes the n-vector (w.(t), - -+, w,(t)) of real-valued functions,
w' = (dw,/dt, - -, dw,/dt), A, and A, are real n X n matrices, F' is a
continuous function of 3n variables satisfying F(x) = o(|z]) (x| =
(@} + -+ + 22,)"®) and for any matrix A and vector v by Av we mean
the vector (A-v%)* with ¢ denoting the transpose. We wish to determine
when the existence of periodic solutions of the linearized part,

(2.2) w'+ Aw + Aw =0,

implies the existence of periodic solutions of (2.1) and the relationships
between the periodic solutions of Eq. (2.2) and those of Eq. (2.1).

Using classical results from the theory of ordinary differential
equations [3], one can readily verify that Eq. (2.2) has a solution of
period 27\, for some A, > 0 if and only if A, is a characteristic value
of the matrix polynomial A(\) = iNA, + M4, [13]. From the results
of §1 and [13], [1], one might expect Eq. (2.1) to have periodic solutions
when A(\) has real characteristic values of odd algebraic multiplicity.
However it will be shown in §8 that unless we make further restric-
tions on A,, A, and F', (2.1) may have no periodic solutions even though
A(\) has only simple characteristic values.

Let us therefore assume A, and A, are of the special form
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0 A,
e a-[2 4
A, 0
e a2 0]

where /fl is an r X ¢ matrix, 4, a ¢ X r matrix, /L a nonsingular
r X r matrix, and 4, a ¢ X ¢ matrix with 0 <¢<nand0< r = n.
Thus if

w = (u, v) = (u,, ---,'u,, Vi, **ey Vyg) -
system (2.1), can be expressed
(2.5) W+ A + A+ Fi(u, v, w, v, ", v") =0
(2.6) v+ Au + Aw + Fyu, v, w', v, u,v")=0.
We further assume
F(u, —v, =/, o', u", —v") = Fi(u, v, w', V', ", v")
Fyu, —v, =/, v, u”’, —v") = —Fyu, v, ', v, u", v").

If A\, is a positive characteristic value of A(\) let S(\,) be the set
of all different positive characteristic values, \,, - - -\, of A(\) satisfying
M/N; = integer (§ =1, ---, N). We define .Z(\) = 3i3;es00 M5, 4).

THEOREM 2.1. Suppose S(\,) has N elements, .Z(\) ts odd,
and that | F(x) — F(y)| < h(x, y)|x — y| for x, y € R*™ near zero, where
h(z, ¥)— 0 as (z, y)— 0. Then for each sufficiently small 0 there
exists a nontrivial periodic solution w,(t) = (u,(t), v,(t)) of Egs. (2.5),
(2.6) with period 2w, such that w,t)— 0 and N;— N, as 6 — 0.

Proof. We first introduce a change of variables and set ¢ = \s,
where X\ is a real constant to be determined. The resulting system
is then

2.7) @ + NAW + NA,0 + ME(, ) =0
where
F(v, 0) = (Fi(\, @), B\, 0) = (Fo, V', V20", Fiy(w, V'@, v0"))

and @ = (¢, V) = (&, *=+, Uy, ¥y, +++, V). It suffices to determine the

2m periodic solutions of (2.7) as they correspond to 27\ periodic solu-
tion of (2.1).

Even 27 periodic functions are of the form g = g, + ¢#*, where
2T

pr = 1/272:8 p(s)ds, the mean value of g, and g, is of mean value
0
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zero. Thus Eq. (2.7) can be expresed equivalently as

2.8) At + -217 | B0w t46) + 17, w(s)ds = 0
¢4 NAY M Aty + B, 1+ 7, 9)
2.9) L o
— 2[R m(s) + 7, ws))ds | = 0
7T 0
(2.10) V' + NG+ N[Ap + BN o + 15, 9)] = 0.

To apply Theorem 1.8 we introduce the appropriate Banach spaces.
Let &, be the space of twice continuously differentiable, 27 periodie,
even 7r-vector functions of mean value zero and %%, the space of
twice continuously differentiable, 27 periodic, odd g-vector functions.

Then let & be the Banach space defined by & = &, X &, with
the norm

llolll = [[[(@, -+, @[]l = max {[of]]}
i;o”l’z'/"'
where ||@{® || = SUPyg<:- | @ (t)|. Note that there is a ¢ =0 such

that for all we <, |||w||| £ ¢ max;_,,... {||®}||}. Indeed if f(¢) is a
twice continuously differentiable 27 periodic function of mean value
zero then there exist ¢, and %, such that f(¢,) = f'(¢,) = 0. Therefore
for each ¢

fOI =1, — fEI =t -t ['OI =1t =l T =&l [ FE)],

where ¢ lies between ¢, and ¢, and ¢, lies between ¢ and ¢,, Hence
O = 2z f'@)]] = 4=*|| f"(®)]|. Thus

(2.102) llolll = ¢ max {[|o;]]}.

Let H, be the Hilbert space of absolutely continuous, 27 periodic,
even 7-vector functions of mean value zero such that Szz()a{)(s)z)ds < oo
and H, the Hilbert space of absolutely continuous, 277:0 periodic, odd
g-vector functions such that Szn(v'(s)z)ds < . Let H= H, x H, with
inner product defined by (=, g;} = 2”oc’(s)-y’(s)ols, x = (¢, v). And
lastly let X* be the space of the ja* with Euclidean norm. For
conveAnience we express (¢, + p*,v) as x + p*.

A, is nonsingular and we consider now finding solutions of the
operator equations

(2.11) pe o+ A RO, o) + e, 2s))ds | = 0
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(2.12) r— XN —MNF N+ p)=0

in R X X* X & where % (\) = M + M.%% and for e R and xe
&, Mz, S4x and F (\, x) are defined to be the unique element in
& such that

213) (5, 9) = | "Aw'(e) - yo)ds, (540, v) = |, 4:0(s)-y()ds
and
@1) (ot ), ) = | Fo, a6 + )y,

for all ye H.
It is clear that if (A, x + #*) is a solution of Egs. (2.11) and (2.12)
then it is a solution of Eq. (2.7) as we have

Szz(x” + N2+ NAx + vﬁ’(x, z+p*), y=0
0

for all y ¢ H.
Now &, o4 and & satisfy the equations

d.xlds = — Az, d*.%x/ds* = — A
and

PF (N @+ p*))ast = —F(\, @ + v%) + %SF .
0
Thus an application of the Ascoli-Arzela theorem will verify that

7 and .9 are compact maps of & into . By Eq. (2.10a) it follows
~ 2T A
( ;1[1/271'8 Fl], " ) is a continuous nonlinear map of RxX X* X &
0
into X* x & satisfying Eq. (1.11).

In the course of proving theorem 1.5 it was shown that
I — (W +V) is a closed Fredholm operator of index zero whenever
A, .-, A, are compact. Thus by Theorem 1.8 the proof of Theorem
Theorem 2.1 will be complete once we have shown that A\, is a
characteristic value of odd algebraic multiplicity of the linearized

part of (2.11), (2.12),
0 0 :|
o e

(which is a mapping of X* x & into X* X &). It suffices to show
M(\, &) is odd. To this end we prove the lemma
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LEMMA 2.2. Under the hypotheses of Theorem 2.1, M(\, &) ts
odd.

Proof. If n,eS(\,) and (a + b, ¢ + id) with a,be R" and ¢,d €
R? is a characteristic vector corresponding to \,, then by equating
components we have the equalities

MAw — MAd =0
Mdd + A =d
MAD + NMAec=b

NAe — MAb=c.

On the other hand it is clear that for all integers » > 0
(2.15) (a cos ps, B sin ps) = 1/p(A,8 cos ps, — A, sin ps)
(2.16) 7(c cos ps, B sin ps) = 1/p(A,a cos ps, A,B sin ps) .

Thus if », = M/\, (bcos p.s, ¢sin p,s) is a characteristic vector
corresponding to ), if and only if (b, ¢) is a characteristic vector
corresponding to the characteristic value A, of MA, + \A4, where

o 0 A
A = . .
[_Al 0:‘
Moreover from Egs. (2.15) and (2.16) it follows that for
o
I 7

if (y,x)e® X &€ is an element of N.(I — \,L) then y and x must
be of the form

N
Y = Zf («; cos p;s, B; sin p;s) D; = M/N;
=
and
N .
T = Zl(’?'f cos p;s, 0; sin p;s) D; = NfN;
=

and the coefficient vector («;, B;, 7;, 0;) for 7 =1, -+-, N is an element

of N..(I — \;Q), where
0 A,
o=y 3

Conversely, if (a, 8,7, )€ NI — »Q) then (acos p;s, 8sin p;s,
Y o8 Pp;s, 0 sin p;s) € N..(I — \,L). Hence
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(2.17) dim NI — ML) = 3 dim No( — 2,Q) -

For j=1, ---, N, dim N.(I — »,;Q) is equal to the multiplicity of
A; as a root of det|I — A(N)| = 0. Indeed by the remark preceding
Theorem 1.5 it follows that dim N.(I — \;Q) is equal to the mul-
tiplicity of \; as a root of det|I — N4, —\A,|=0. It is easily
verified that if P is a nonsingular square matrix we have the formula

P Q I OHP Q”
[—RP-l I'lr S

(2.18) det = det
= det | P|-det |S — RP7'Q] .

R S

Thus for all but a finite number of A we have
det II - )\lez - %;11) .

= det |I — A4, |-det | (I — M4,) — MNAT — \A) A, |

=det|I — AN)| .
However they are polynomials and so

det |I — \24, — NA,| = det | T — AN .
Hence dim N..(I —);Q) = M(\;, A). Therefore by (2.17) dim N, (I—x,L)
is odd.
With Lemma 2.2 the proof of Theorem 2.1 is complete.

If F depends on w” then .&# need not be completely continuous
and we cannot establish the existence of large periodic solutions of
(2.1). Therefore we now consider the system of ordinary differential
equations.

(2.19) w’' + Aw' + Aw + F(w, w') =0

where A, and A, are as described by (2.3) and (2.4), and F is a
continuous function of 2n variables satisfying

F(x) = O(|x|)r F = (FU FZ), Fl(lu’y A _u"’ ’U,)
= Fl(ur v, ’U;’, ’U/), Fz(u, -, _u’: ’U’) = - 2(’21;, v, u'y 1)’) .

To characterize sets of nontrivial periodic solutions of (2.19) let
E be the set of nontrivial 27 periodic solutions with » > 0, of

(2.20) ®" + VAW + NA + NEO, ) = 0

in R x X* x &, where F(\, ») = F(», \"'@'). Clearly if (A, £*, z) e E
then xz(¢/n) + p#* is a 2\ periodic solution of (2.20). The closure
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of Ein R x X* x & will be denoted by E.
We note that F(\, w) is undefined for A = 0 so that care must
be taken when dealing with solutions with A\ near zero.

THEOREM 2.3. Let N\, be a characteristic value of A(\) and
suppose S(\,) has N elements and _#Z(\) is odd. Then E contains
a maximal set of solutioms, C,, such that C,, meets (A, 0,0), C, is
closed and connected in R X X* X & and either

(i) G, meets a point (N, 0,0) such that for some positive
integer m, No/m is a positive characteristic value of AN), M & SO\,
and A (N/m) is odd or

(ii) G, is unbounded in R x X* X & or

(iii) for each N, > e >0, C; meets a point of the form (¢, (¥, x.).

Proof. Let .84, %% and & (\, x + p¢*) be defined by (2.13) and
(2.14). As &*F (N, @ + p¥))os* = —F(\, @ + p*) + 1/2% S F,, an ap-
0
plication of the Ascoli-Arzela theorem will show that

2T A
(415 18] =)
2w Jo
is completely continuous. The positive characteristic values of .27 (\)
are all of the form Am where m is a positive integer and £ is a
positive characteristic value of A(\). Thus by repeating the proof

of Theorem 2.1 and applying Theorems 1.6 and 1.7 to Egs. (2.11)
and 2.12) on ;. =I1; . x S; for 1 =1, -+, 0 < e <\

L. = {ne <N < g}, S5 = {(e%, ) [ (&7, @) | < g}

there exists a unique maximal closed connected set C;, C E meeting
(M, 0) such that C;.c 2;., C;. either meets 92;. or meets (A, 0, 0),
where )\, is a positive characteristic value of .&7(\) and M(\,, %) is
odd. As the union of connected sets containing a common point is
connected, there is a unique maximal closed connected subset C; of
E meeting (A, 0). Hence U C;,.cC;, and the theorem follows.

If we make the further assumption that F' does not depend on
w then F will be independent of ) and we no longer have to be
concerned with the existence of bounded solutions of (2.1) with periods
tending to zero.

THEOREM 2.4. Let N, be as in Theorem 2.2 and suppose F =
F(w). Then there exists a maximal subset C, of E such that Cy
is closed and connected in both R X X* X & and Rx X*x H
and either
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(i) G, is unbounded in both R x X* X & and R x X* x H or

(ii) C;, meets a point (M, 0, 0) suck that for some positive integer
m, M/m is a positive characteristic value of A(N), & S(\,) and
A (/M) 1s odd.

Proof. It itis readily verified that &7, .4 and .&# are completely
continuous maps of H— H and R X X* x H— H (cf. [1], [2, pp. 155-
156]). Moreover the algebraic multiplicity of A, of .97(\) is same
for . (\) as map of & — % and of H— H. Thus arguing as in
the proof of Theorems 2.1 and 2.8 and applying Theorems 1.5 and
1.7 to (2.11), (2.12) on R X X* X & or R x X* X H there exists a
maximal connected set of nontrivial solutions of (2.20) whose closure,
S, meets (A, 0, 0) and is either unbounded in both R x X* X % and
R x X* x H or meets a (\,, 0, 0) where )\, € (%) and M(\,, -%7) is odd.
Let C;, be the maximal closed connected subset of S meeting (\,, 0, 0)
and containing those solutions (A, #£*, «) such that x = 0. If C;, meets
a point of the form (X, p, 0), u} # 0, then C,, must contain all points
of the form (A, #f, 0), 0 =\, and so C, satisfies (). So suppose C,
does not meet any points of the form (X, zf, 0). Then C,, cannot
meet any points of the form (0, #* x). Indeed, suppose C,, met a
point (0, p#*, ). If z % 0, then as (0, #*, x) is a solution of Eq. (2.20)
we have (x + ¢*)” = 0, which is impossible if = 0. On the other
hand « = 0 implies #* = 0 and so A = 0 is a bifurcation point of (2.11),
(2.12). However as A = 0 is not a characteristic value of the linearized
part of (2.11), (2.12) it cannot be a bifurcation point. Therefore C,,
does not meet any points of the form (0, % x). By the complete
continuity of the operators S is locally compact. Thus unless C; is
unbounded there exists a d > 0 such that if (n, p*, x)eC;, A > 0.
Hence either C;, is unbounded or C;, = S and C,, satisfies (ii).

With a rather strong condition on the derivative of the nonlinear
operators we can show the existence of an unbounded set of solutions
C,. To this end we first show

LEMMA 2.5. Let T(\, z) € C* be a completely continuous map of
R X X* X & — X* x & such that T(\, z) has the same period as
O, 2). Suppose T(n, 2,) = 2z, and every z€ N (I — T.(n, 2)) s 27/m
periodic where m 1s a positive integer. Then all solutions of

wn a neighborhood of (N, z,) are 2r/m periodic.

Proof. As T(\, z) is completely continuous so is the derivative
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T,(x, 2) = T' [12, p. 51]. Thus by the Fredholm theory [11, pp.
179-190,219], a(I — T') = p < oo, dim N,(I — T') < « and X* X & =
N(I-T)YDR,(I—T). Let P be the canonical projection of X* %
% onto R, (I — T"). Then finding solutions of (2.21) is equivalent to
solving

% — PTOv u +v) =0
v— I —P)YTOy, u +2) =0

where we R,(I — T') and ve N,(I — T'). By the implicit function
theorem [5, pp. 265] near (N, v,) there exists a unique function % =
u(n, v) such that w(n, v) = PT(\, u(h, v) + v). Moreover u(), v) is
found by an iteration of 2z/m functions and so is itself 27/m periodic.
Thus all solutions of (2.21) near (\,, z,) must be of the form v+ u(\, v)
and the result follows.

THEOREM 2.6. Let N, < --- < \g be the real characteristic values
of AN). Suppose there exist H conmsecutive positive characteristic
values Npyy < oo Mwwy L S b < K such that >S5, M(\.; A) is odd,
ON; € N Nl (=1, %+ =5 T=ZE), Nn <20t SOt 1) =N} (=1, - -, H)
and for 0 < N; &[Ny, Mearl, A2 (V) is even.

(i) If F = F(w), E contains a maximal set of solutions Ci,.,
such that, 1 =1 = H, C,,,, meets (N4, 0, 0), Cy, ., is closed and con-
nected in both R X X* X & and R x X x H and either C,, , s
unbounded in both R X X* x & and R x X* x H or meets a point
(v, 0, 0) such that N;/m is a positive characteristic value of A(N)
for some integer m > 1 and _#Z(\;/m) is odd.

(i) If in addition FeC' and at any nontrivial solution
Ow, 45, ) of (2.11), (2.12), the derivitive with respects to (s, ,)
1 2n
(I A5 Pl o) + s | 0 ]
v = 2m > |
0 I~ .57 () = oy + 1)

is such that (u#*, 2(s)) € N.(¥) implies x(s) has the same period as
xy(s), then C,, . ts unbounded.

Proof. The characteristic values Ny, ---, 7»,,+,[qare the only
characteristic values of o7 (\) in [Ny, Mesrn] and by Lemma 2.2
L M(\rj, -&7) is odd. Thus arguing as in the proof of Theorem
2.4 there exists a maximal subset C, . of E with the properties of
(i). To complete the proof we suppose that F' is as described in (ii)
and Czkﬂ is bounded and meets a points of the form (n, 0, 0) where
M/m is a characteristic value of A(N) and m is an integer > 1. As
&7 (\) and & map 2x/h periodic functions into 27/k periodic functions
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it follows from Lemma 2.5 that C, . contains both 27 and 2z/m
periodic solutions. By the connectedness of C, . there must exist a
2r/m periodic solution (\,, 14, x,) € C,,,; such that every neighborhood
of (\, m¥, x,) containg 27 periodic solutions of (2.11), (2.12). But by
our hypotheses and Lemma 3.5 this is impossible hence the result.

REMARK. Suppose (2.1) has the form
(2.22) w"' + Aw + Fw, w', w"') =0

where A, is an n X n matrix and F(—w, ', —w") = — F(w, w', w")
then if & and H are replaced by &, and H, proofs similar to those
of Theorems 2.1, 2.3, and 2.4 will show that these theorems are also
true for (2.22)

3. A counterexample. We give an example to show that unless
some additional restrictions are imposed the system z"” + Az’ + Ax +
F(x) = 0 may fail to have any periodic solutions even though \A4, +
iNA, has only simple eigenvalues.

Consider the system

3.1) 2+ 8y +4x+ 9y =0
(3.2) y'— 8¢ +4y —x*=0.

The characteristic equation

4 0 0 3] 1 0

. o, ~0
[0 J vis| g o= Al 1”
has four distinct roots =1, +=4. Hence N = 1, 1/4, is a simple charac-
teristic value of A?4,+1iMA,. On the other hand the system (3.1), (3.2),
has no nontrivial periodic solutions. Suppose (x(t), ¥(¢)) is a periodic

solution of (3.1), (3.2) of period a. Multiply (38.1) by ¥ and (3.2) by
2. Then integrate the resulting equations by parts over [0, ¢], noting

Sax’x = S“y’y = yz/z‘“ = 0. If we now subtract we obtain
0 0 0

det

Say“-%x“:o.
0

This implies ¥y = £ = 0 and hence there do not exist nontrivial periodic
solutions of (3.1), (3.2).

After this work was completed, G. I. Ize’s doctoral dissertation
[9] was brought to our attention. In it he gives an alternate, analytie,
definition of the algebraic multiplicity of a characteristic value and
with his definition proves theorems similar to our Theorem 1.5.
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