ON EXTREME POINTS OF THE JOINT NUMERICAL RANGE OF COMMUTING NORMAL OPERATORS

PUSHPA JUNEJA

Let $W(T) = \{\langle Tx, x \rangle : ||x|| = 1; x \in H\}$ denote the numerical range of a bounded normal operator T on a complex Hilbert space H. S. Hildebrandt has proved that if λ is an extreme point of $\overline{W(T)}$, the closure of W(T), and $\lambda \in W(T)$ then λ is in the point spectrum of T. In this note, we shall prove an analogous result for an *n*-tuple of commuting bounded normal operators on H.

2. Notations and terminology. Let $A = (A_1, \dots, A_n)$ be an *n*-tuple of commuting bounded operators on H and \mathcal{U} , the double commutant of $\{A_1, \dots, A_n\}$. Then \mathcal{U} is a commutative Banach algebra with identity, containing the set $\{A_1, \dots, A_n\}$. We shall need the following definitions [3] and [4].

A point $z = (z_1, \dots, z_n)$ of \mathcal{C}^n is in the joint spectrum $\sigma(A)$ of A relative to \mathcal{U} if for all B_1, \dots, B_n in \mathcal{U}

$$\sum\limits_{j=1}^n B_j(A_j-z_j)
eq I$$
 .

The joint numerical range of A is the set of all points $z = (z_1, \dots, z_n)$ of \mathscr{C}^n such that for some x in H with ||x|| = 1, $z_j = \langle A_j x, x \rangle$ i.e.,

$$W(A) = \{ \langle Ax, x \rangle = (\langle A_1x, x \rangle, \cdots, \langle A_nx, x \rangle) \}$$

We say that $z = (z_1, \dots, z_n)$ is in the joint point spectrum $\sigma_p(A)$ if there exists some $0 \neq x \in H$ such that

$$A_j x = z_j x$$
 , $j = 1, \cdots, n$,

and that z is in the joint approximate point spectrum $\sigma_{\pi}(A)$ if there exists a sequence $\{x_n\}$ of unit vectors in H such that $||(A_j - z_j)x_n|| \rightarrow 0$ as $n \rightarrow \infty$, $j = 1, \dots, n$.

Bunce [2] has proved that $\sigma_{\pi}(A)$ is a nonempty compact subset of \mathscr{C}^{n} .

If $A = (A_1, \dots, A_n)$ is an *n*-tuple of commuting normal operators, then the extreme points of $\overline{W(A)}$ are in the joint approximate point spectrum $\sigma_{\pi}(A)$. This is immediate from the fact that for such A_j 's,

$$\overline{W(A)} = ext{closed convex hull of } \sigma(A) \ = ext{closed convex hull of } \sigma_{\pi}(A) \;,$$

and that every compact set contains the extreme points of its closed

convex hull [1, Cor. 36. 11, p. 144]. We show in the following theorem that something more can be said about the extreme points of $\overline{W(A)}$, see Hildebrandt [5].

THEOREM. Let $A = (A_1, \dots, A_n)$ be an n-tuple of commuting normal operators on H. If $\lambda = (\lambda_1, \dots, \lambda_n)$ is an extreme point of $\overline{W(A)}$ and $\lambda \in W(A)$, then $\lambda \in \sigma_p(A)$.

Proof. Firstly, we shall prove the result for commuting self-adjoint operators.

It is sufficient to show that if $(0, \dots, 0)$ is an extreme point of $\overline{W(A)}$ and $(0, \dots, 0) \in W(A)$, then $(0, \dots, 0) \in \sigma_p(A)$.

Since $(0, \dots, 0)$ is an extreme point of $\overline{W(A)}$, we may assume that

(1)
$$\overline{W(A)} \subset \{z = (\alpha_1, \cdots, \alpha_n) \in \mathscr{C}^n; \operatorname{Re} \alpha_n \geq 0\}$$

As A_1, \dots, A_n are commuting self-adjoint operators, there exists a measure space (X, μ) and a set of bounded measurable functions $\mathcal{P}_1, \dots, \mathcal{P}_n$ in $L^{\infty}(X, \mu)$ such that each A_j is unitarily equivalent to multiplication by \mathcal{P}_j on $L^2(X, \mu)$. Thus

$$A_j f = \varphi_j f$$
, for all $f \in L^2(X, \mu)$

and for each $j = 1, 2, \dots, n$ [3].

Because of the assumption (1), and since $\sigma(A) \subset \overline{W(A)}$, we have

$$\sigma(A) \subset \{z = (\alpha_1, \cdots, \alpha_n) \in \mathscr{C}^n; \operatorname{Re} \alpha_n \geq 0\}$$

It follows that $A_n \ge 0$ and so $\varphi_n(x) \ge 0$ a.e. Let, if possible, $(0, \dots, 0) \notin \sigma_p(A_1, \dots, A_n)$. Then $|\varphi_j(x)| > 0$ a.e. for at least one $j = 1, 2, \dots, n$. Let

$$E_1 = \{x \in X; \text{ Im } \varphi_j(x) \ge 0\}$$

and

$$E_2 = \{x \in X; \operatorname{Im} \varphi_j(x) < 0\}$$
.

Since $(0, \dots, 0) \in W(A_1, \dots, A_n)$, for some $f \in H$ with ||f|| = 1, $\langle A_j f, f \rangle = 0, j = 1, 2, \dots, n$ and

$$egin{aligned} \mathbf{0} &= \langle A_j f, \, f
angle = \int_{\mathbb{X}} arphi_j (x) \, | \, f(x) \, |^2 d\mu \ &= \int_{E_1} arphi_j \, | \, f \, |^2 d\mu + \int_{E_2} arphi_j \, | \, f \, |^2 d\mu \ &= \int_{\mathbb{X}} arphi_j \, | \, \chi_{E_1} f \, |^2 d\mu + \int_{\mathbb{X}} arphi_j \, | \, \chi_{E_2} f \, |^2 d\mu \end{aligned}$$

$$egin{aligned} &= \int_{x} arphi_{j} \, |\, g_{1}|^{2} d\mu \, + \int_{x} arphi_{j} \, |\, g_{2}|^{2} d\mu \ &= \langle A_{j} g_{1}, \, g_{1}
angle \, + \, \langle A_{j} g_{2}, \, g_{2}
angle \; ext{,} \end{aligned}$$

where $g_k x = (\chi)_{E_k}(x) f(x)$, $k = 1, 2, \chi$ denotes the characteristic function. As $A_n \ge 0$ and $\langle A_n g_1, g_1 \rangle + \langle A_n g_2, g_2 \rangle = 0$, it follows that $\langle A_n g_1, g_1 \rangle = 0$

and $\langle A_n g_2, g_2 \rangle = 0.$

(i) Suppose that $|\varphi_n(x)| > 0$ a.e. Then $\langle A_n g_1, g_1 \rangle = 0$ implies that f and φ_n have complementary support which is a contradiction to the fact that ||f|| = 1 and $|\varphi_n(x)| > 0$ a.e.

(ii) If $|\varphi_j(x)| > 0$ a.e for $j \neq n$, then $\langle A_j g_1, g_1 \rangle \neq 0$ for if $\langle A_j g, g_1 \rangle = 0$, then $\langle A_j g_2, g_2 \rangle = 0$ which means that f and φ_j have complementary support which is again not possible as argued in (i). Thus $\langle A_j g_1, g_1 \rangle \neq 0$, $\langle A_j g_2, g_2 \rangle \neq 0$. We write $h_k(x) = g_k(x)/||g_k||, k = 1, 2$ and

$$\lambda = \{\langle A_1 h_1, h_1 \rangle, \cdots, \langle A_n h_1, h_1 \rangle\}$$

and

$$\mu = \{\langle A_{_1}h_{_2},\,h_{_2}
angle,\,\cdots,\,\langle A_{_n}h_{_2},\,h_{_2}
angle\}$$
 .

Thus λ and μ are two points in the joint numerical range with $(0, \dots, 0)$ as an interior point of the line segment joining these two, which is a contradiction. This proves the result for commuting self-adjoint A_j 's.

Now, we consider A_j 's to be commuting normal operators on H. Since each A_j has a unique decomposition

$$A_j=A_{j_1}+iA_{j_2}$$
 , $j=1,\,2,\,\cdots,\,n$,

where A_{j_1} and A_{j_2} are self-adjoint, the 2*n*-tuple

$$\{A_{11}, A_{21}, \dots, A_{n1}, A_{12}, \dots, A_{n2}\}$$

is of commuting self-adjoint operators. Similarly if

$$\lambda_j = \lambda_{j_1} + i\lambda_{j_2}$$
 , $j = 1, 2, \cdots, n$

then $\lambda' = \{\lambda_{11}, \dots, \lambda_{n1}, \lambda_{12}, \dots, \lambda_{n2}\}$ is an extreme point of $W(A_{11}, \dots, A_{n2})$ and $\lambda' \in W(A_{11}, \dots, A_{n2})$. Thus $\lambda' \in \sigma_p(A_{11}, \dots, A_{n2})$. Hence $\lambda = (\lambda_1, \dots, \lambda_n) \in \sigma_p(A_1, \dots, A_n)$ and the result is proved.

The author wishes to thank Professor B. S. Yadav for his help in the preparation of this paper.

REFERENCES

^{1.} S. K. Berberian, Lectures in Functional Analysis and Operator Theory, Springer-Verlag, York.

2. J. Bunce, The joint spectrum of commuting non-normal operators, Proc. Amer. Math. Soc., **29** (1971), 499-505.

3. A. T. Dash, Joint spectra, Studia Math., XLV (1973), 225-237.

4. ____, Joint numerical range, Glasnik Matematicki, 7 (27) (1972), 75-81.

5. S. Hildebrandt, Über den numerischen Wertebereich eines operators, Math. Annalen, **163** (1966), 230-247.

6. C. R. MacCluer, On extreme points of the numerical range of normal operators, Proc. Amer. Math. Soc., 16 (1965), 1183-1184.

Received June 15, 1976.

UNIVERSITY OF DELHI