WEYL'S INEQUALITY AND QUADRATIC FORMS ON THE GRASSMANNIAN

PATRICIA ANDRESEN AND MARVIN MARCUS

This paper is concerned with the largest absolute value taken on by an m-square principal subdeterminant in any unitary transform of an *n*-square complex matrix *A*. For **m = 1 this maximum coincides with the numerical radius of** *A.* **The results obtained constitute generalizations of the Gohberg-Kreϊn analysis of the case of equality in WeyΓs inequalities relating eigenvalues and singular values.**

Introduction. Let A be an n -square complex matrix with eigenvalues $\lambda_1, \dots, \lambda_n, |\lambda_1| \geq \dots \geq |\lambda_n|$, and singular values $\alpha_1(A) \geq \dots \geq$ $\alpha_n(A)$. The *numerical radius* of *A, r(A),* is the maximum absolute value assumed by a diagonal element in any unitary transform of of A, i.e., in any matrix unitarily similar to *A.* Of course,

$$
(1) \t\t\t |\lambda_1| \leqq r(A) .
$$

Matrices for which equality holds in (1) are called *spectral.* In this paper we consider $r_{d,m}(A)$, the largest absolute value taken on by an m-square principal subdeterminant in any unitary transform of *A.* As we shall see in the sequel

$$
(2) \t\t\t |\lambda_1 \cdots \lambda_m| \leqq r_{d,m}(A) .
$$

For $m = 1$, (2) collapses to (1). Matrices for which equality holds in (2) will be called *m-decomposably spectral.* One of the purposes of this paper is to examine the structure of matrices *A* which are m-decomposably spectral for each $m = 1, \dots, n$. Such results are related to the inequalities of Weyl [5],

$$
(3) \qquad \qquad |\lambda_{_1}\cdots\lambda_{_k}|\leqq \alpha_{_1}\!(A)\cdots\alpha_{_k}\!(A),\, k=1,\,\cdots,\, n\,\,,
$$

and to the case of equality in (3) for $k = 1, \dots, n$ discussed by Gohberg and Kreϊn [1]. We also examine the case where *A* is m-decomposably spectral for a particular m and, in fact, show that if *A* has *s* eigenvalues of maximum modulus $|\lambda_1|$, $s > m$, then spectral and m-decomposably spectral are equivalent. To examine the concept of m -decomposably spectral we require the machinery of induced maps on the mth Grassmann space.

2. Preliminary notions and theorems. Let V be an n -dimensional unitary space with an inner product (x, y) . Let $T: V \rightarrow V$ be

a linear transformation with eigenvalues $\lambda_1, \dots, \lambda_n, |\lambda_1| \geq \dots \geq |\lambda_n|$, and singular values $\alpha_1(T) \geq \cdots \geq \alpha_n(T)$. Let $E = \{e_1, \dots, e_n\}$ be an o.n. basis of *V* and let $A = [T]_{\kappa}^{\kappa}$, the matrix representation of *T* with respect to E . We will consider A as a linear transformation on $Cⁿ$, the space of complex *n*-tuples. For each $m, 1 \leq m \leq n$, let $\bigwedge^m V$ be the mth Grassmann space over *V* where the inner product induced on $\bigwedge^m V$ by (x, y) is defined by

$$
(x_1 \wedge \cdots \wedge x_m, y_1 \wedge \cdots \wedge y_m) = \det [(x_i, y_j)]
$$

for any decomposable tensors x^{\wedge} and y^{\wedge} in $\bigwedge^m V$, i.e., $x^{\wedge} = x_1 \wedge \cdots \wedge x_m$, $y^{\wedge} = y_1 \wedge \cdots \wedge y_m$ where x_i and y_i are in V, $i = 1, \cdots, m$. The space ^{*m}V* has an ordered o.n. basis $E^{\wedge} = \{e_{\omega(1)} \wedge \cdots \wedge e_{\omega(m)} = e_{\omega}^{\wedge} : \omega \in Q_{m,n}\}\$ </sup> where $Q_{m,n}$ is the totality of strictly increasing sequences ω of length $m, 1 \leq \omega(1) < \cdots < \omega(m) \leq n$, and where the ω 's are assumed to be ordered lexicographically. The compound $C_m(T)$: $\bigwedge^m V \to \bigwedge^m V$ is defined by

$$
C_m(T)x_1\wedge\,\cdots\,\wedge\,x_m=\,Tx_1\wedge\,\cdots\,\wedge\,Tx_m
$$

for any decomposable $x^{\wedge} \in \bigwedge^m V$. Let $C_m(A) = [C_m(T)]_E^{\kappa}$. Then $C_m(A)$ has eigenvalues $\lambda_\beta = \lambda_{\beta(1)} \cdots \lambda_{\beta(m)},$ $\beta \in Q_{m,n}$ and singular values $\alpha_r =$ $\alpha_{r(1)}(A) \cdots \alpha_{r(m)}(A), \gamma \in Q_{m,n}$.

The *numerical radius* of A is defined by

$$
r(A) = \max_{\|x\|=1} |(Ax, x)|.
$$

and the *spectral norm* of A by

$$
\alpha_{\scriptscriptstyle 1\hspace{-0.1ex}}(A)=\max_{\scriptscriptstyle 1\hspace{-0.1ex}|x\hspace{-0.1ex}| \scriptscriptstyle 1=1}\hspace{-0.1ex}|A x|\hspace{-0.1ex}| \ .
$$

The Grassmannian in $\bigwedge^m V$ is the set

$$
G_m = \left\{ x^{\wedge} \in \bigwedge^m V : ||x^{\wedge}|| = 1 \text{ and } x^{\wedge} \text{ is decomposable} \right\},
$$

and the *decomposable numerical radius* of *C^m (A)* is defined by

(4)
$$
r_d(C_m(A)) = \max_{x \wedge e G_m} |(C_m(A)x^{\wedge}, x^{\wedge})|.
$$

In (4) we may assume without loss of generality that for each $x^{\wedge} =$ $x_1 \wedge \cdots \wedge x_m$ the vectors x_1, \cdots, x_m are o.n. Since the α, β entry of $C_m(A)$ is det $A[\alpha|\beta]$, where $A[\alpha|\beta]$ indicates the submatrix of A lying in rows α and columns β , α , $\beta \in Q_{m,n}$, we see that by taking $Ue_i = x_i, i = 1, \dots, m, U$ unitary, we have

$$
r_d(C_m(A)) = \max_{x \wedge e G_m} |(C_m(A)x \wedge x \wedge)|
$$

=
$$
\max_{U \text{ unitary}} |(C_m(A)C_m(U)e_1 \wedge \cdots e_m, C_m(U)e_1 \wedge \cdots \wedge e_m)|
$$

$$
= \max_{U \text{ unitary}} |\det U^* A U[1, \dots, m | 1, \dots, m]|
$$

= $r_{d,m}(A)$.

Of course if $m = 1$, $r_d(C_m(A)) = r(A)$. In general,

$$
(5) \t\t\t r_d(C_m(A)) \leq r(C_m(A)) .
$$

It is possible to have strict inequality in (5) as the following example shows. Let

$$
A = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}
$$

so that

$$
C_{\scriptscriptstyle 2}(A)_{\scriptscriptstyle \alpha,\,\beta} = \begin{cases} 1, \, \text{ if } \, \alpha = (12), \, \beta = (34) \\ 0, \, \text{ otherwise } . \end{cases}
$$

 $\text{If} \;\; x^{\wedge} \in G_m \;\; \text{then} \;\; x^{\wedge} = \sum_{\alpha \in \mathcal{Q}_{2,4}} p(\alpha) e^{\wedge}_\alpha \;\; \text{where}$ $\begin{pmatrix} 0 \end{pmatrix}$ |jKα)r = l

and the $p(a)$ satisfy the quadratic Plücker relations [4]:

(7)
$$
p(\alpha)p(\beta)=\sum_{t=1}^m p(\alpha[s, t:\beta])p(\beta[t, s:\alpha], s=1, \cdots, m
$$

where $\alpha[s, t; \beta]$ is the sequence $(\alpha(1), \dots, \alpha(s-1), \beta(t), \alpha(s+1), \dots,$ $\alpha(m)$ and $p(a)$ is defined for any sequence α of length m by skewsymmetry. We have for $x^{\wedge} \in G_m$

$$
|(C_2(A)x^\wedge, x^\wedge)| = |p(12)p(34)|
$$

\n
$$
= |p(32)p(14) + p(42)p(31)|
$$
, (from (7) with $s = 1$)
\n(8)
\n
$$
\leq |p(23)| |p(14)| + |p(24)| |p(13)|
$$

\n
$$
\leq \frac{1}{2} (|p(23)|^2 + |p(14)|^2 + |p(24)|^2 + |p(13)|^2)
$$

\n
$$
= \frac{1 - |p(12)|^2 - |p(34)|^2}{2}
$$
, (from (6)).

Thus

$$
(|p(12)| + |p(34)|)^2 \le 1,
$$

\n
$$
(|p(12)| + |p(34)|) = c \le 1,
$$

\n
$$
|p(12)| |p(34)| = |p(12)| (c - |p(12)|),
$$

and

$$
|(p(12)p(34)| \leqq \frac{c^2}{4} \leqq \frac{1}{4}.
$$

From (8) we see that

$$
r_d(C_{\scriptscriptstyle 2}(A))\leqq \frac{1}{4}.
$$

If we consider the quadratic form evaluated on the indecomposable unit tensor $1/\sqrt{2}(e_1 \wedge e_2 + e_3 \wedge e_4)$ we have

$$
\Big(C_{2}(A) \frac{1}{\sqrt{2}}(e_{1} \wedge e_{2} + e_{3} \wedge e_{4}), \frac{1}{\sqrt{2}}(e_{1} \wedge e_{2} + e_{3} \wedge e_{4}) = \frac{1}{2},
$$

so that

$$
r(C_{\scriptscriptstyle 2}(A))\geqq \frac{1}{2}\;.
$$

The explanation of this phenomenon is that not every tensor on the unit sphere in $\bigwedge^2 V$ is decomposable.

The following results are well known [3]:

(i) For *M* any principal sub-matrix of A,

$$
(9) \t\t\t r(M) \leqq r(A) .
$$

(ii) (The Elliptical Range Theorem.) For a 2×2 matrix the numerical range is an ellipse with foci the eigenvalues of the matrix; if $A = \begin{bmatrix} \Delta_1 & a \\ 0 & \Delta \end{bmatrix}$ then the semi-minor axis of the ellipse has length $|a|/2$. (iii)

(10)
$$
|\lambda_1| \leqq r(A) \leqq \alpha_1(A).
$$

We may generalize (10) for $1 \leq m \leq n$ to

(11)
$$
|\lambda_1 \cdots \lambda_m| \leq r_d(C_m(A)) \leq r(C_m A)) \leq \alpha_1(A) \cdots \alpha_m(A).
$$

The first inequality may be seen as follows. Let

$$
U^*AU=\begin{bmatrix} \lambda_1 & * \\ & \ddots & \\ \bigcirc & \lambda_n \end{bmatrix}.
$$

Then *C^m {U*AU)* is also upper triangular and

$$
\lambda_{_1}\cdots\lambda_{_m}=C_{_m}(U^*AU)_{\scriptscriptstyle(1\cdots,m),\, (1,\cdots,m)}=(C_{_m}(A)u^{\scriptscriptstyle\wedge},\, u^{\scriptscriptstyle\wedge})
$$

for an appropriate $u^{\wedge} \in G_m$. If A is normal then equality holds throughout (10) and (11). A proof of the Weyl inequalities (3) is

now immediate. The first follows from (10) and the subsequent ones from (11). $r_{n,m}(A) = r_d(C_m(A))$ we will say that $C_m(A)$, $1 \leq m \leq n$, is decomposably spectral if

$$
|\lambda_1 \cdots \lambda_m| = r_d(C_m(A)) .
$$

M. Goldberg, E. Tadmor and G. Zwas [2] have shown that if $|\lambda_1|$ = $\cdots = |\lambda_{s}| > |\lambda_{s+1}| \geq \cdots \geq |\lambda_{n}|$ then *A* is spectral iff *A* is unitarily similar to a matrix of the form $T + B$ where

(12a)
$$
T = \begin{bmatrix} \lambda_1 & \bigcirc \\ \cdot & \cdot \\ \circ & \cdot \\ \cdot & \cdot \\ \cdot & \cdot \end{bmatrix}, \qquad B = \begin{bmatrix} \lambda_{s+1} & * \\ \cdot & \cdot \\ \circ & \cdot \\ \cdot & \cdot \\ \cdot & \cdot \\ \cdot & \cdot \end{bmatrix}
$$

and

$$
(12b) \t\t\t r(B) \leq |\lambda_1|.
$$

THEOREM 1 (Gohberg and Kreϊn). *Equality holds in* (3) *for* $k = 1, \dots, n$ iff A is normal.

We include a proof of this theorem based on properties of the Grassmann algebra which suggests a proof of the following stronger result:

THEOREM 2. For each
$$
m = 1, \dots, n
$$

(13) $|\lambda_1 \cdots \lambda_m| \leq r_d(C_m(A)), \quad m = 1, \dots, n$.

Equality holds in (13) *for* $m = 1, \dots, n$ *iff A is normal. Equivalently, the largest absolute value taken on by an m-square principal subdeterminant in any unitary transform of A is at least* $|\lambda_1 \cdots \lambda_m|$, $m = 1, \dots, n$. This largest absolute value is equal to $|\lambda_1 \cdots \lambda_m|$ for $m = 1, \dots, n$ if A is normal.

We will also investigate the case of equality in a single one of the inequalities in (13).

THEOREM 3. *Assume that A has s eigenvalues of maximum* $modulus, s > m$:

 $|\lambda_1| = \cdots = |\lambda_s| > |\lambda_{s+1}| \geq \cdots \geq |\lambda_n|.$

Then C^m (A) is decomposably spectral iff A is spectral.

3. Proofs and examples.

Proof of Theorem 1. Clearly if *A* is normal then $|\lambda_1 \cdots \lambda_k|$ =

 $\alpha_{\scriptscriptstyle{A}}(A) \cdots \alpha_{\scriptscriptstyle{k}}(A), \, k = 1, \, \cdots, \, n. \; \; \text{Suppose now that} \; |\! \; \lambda_{\scriptscriptstyle{1}} \cdots \lambda_{\scriptscriptstyle{k}} \! | = a_{\scriptscriptstyle{1}}(A)\! \cdot \! \cdot$ $\alpha_k(A), k = 1, \dots, n$. By Schur's theorem we may assume

$$
A = \begin{bmatrix} \lambda_1 & * \\ & \ddots & \\ & \ddots & \\ & & \lambda_n \end{bmatrix}.
$$

Let

$$
|\lambda_1| \geq \cdots \geq |\lambda_t| > 0 = |\lambda_{t+1}| = \cdots = |\lambda_n|,
$$

for some $t, 1 \leq t \leq n$. We have

$$
\begin{aligned} (AA^*)_{\scriptscriptstyle 11} = |\lambda_{\scriptscriptstyle 1}|^{\scriptscriptstyle 2} + |\hspace{0.1cm} a_{\scriptscriptstyle 12}|^{\scriptscriptstyle 2} + \, \cdots \, + |\hspace{0.1cm} a_{\scriptscriptstyle 1n}|^{\scriptscriptstyle 2} \\ \leq \alpha_{\scriptscriptstyle 1}^{\scriptscriptstyle 2}(A)\,. \end{aligned}
$$

Since $|\lambda_i| = \alpha_i(A)$ we must have $a_{li} = 0$, $i \neq 1$ and

$$
A_{\scriptscriptstyle(1)}=\lambda_{\scriptscriptstyle 1} e_{\scriptscriptstyle 1} \ .
$$

 $(A₍₁₎$ is the first row of A_p, i.e., the n-tuple $(a₁₁, ..., a_{1n})$.) Applying this argument to $C_m(A)$, $1 \leq m \leq n$, we have

(14)
$$
C_m(A)_{(1)} = A_{(1)} \wedge \cdots \wedge A_{(m)} = \lambda_1 \cdots \lambda_m e_1 \wedge \cdots \wedge e_m.
$$

Assume now that we have shown

$$
(15) \qquad \qquad A_{\scriptscriptstyle(i)}=\lambda_{\scriptscriptstyle i}e_{\scriptscriptstyle i},\, i=1,\,\cdots,\,k-1,\,k\leqq t\,\,.
$$

Then

$$
(16) \qquad \begin{array}{c} A_{\scriptscriptstyle(1)}\wedge \,\cdots \,\wedge\, A_{\scriptscriptstyle(k)} = \lambda_{\scriptscriptstyle 1} \cdots \,\lambda_{\scriptscriptstyle k-1} e_{\scriptscriptstyle 1}\wedge \,\cdots \,\wedge\, e_{\scriptscriptstyle k-1}\wedge \left(\lambda_{\scriptscriptstyle k} e_{\scriptscriptstyle k} + \sum\limits_{\scriptscriptstyle i=k+1}^n a_{\scriptscriptstyle k i} e_i\right) \\ \phantom{a_{\scriptscriptstyle k} = \lambda_{\scriptscriptstyle 1}} \cdots \lambda_{\scriptscriptstyle k} e_{\scriptscriptstyle 1}\wedge \cdots \wedge e_{\scriptscriptstyle k} + \lambda_{\scriptscriptstyle 1} \cdots \lambda_{\scriptscriptstyle k-1} \hspace{-3pt} \left(\sum\limits_{\scriptscriptstyle i=k+1}^n a_{\scriptscriptstyle k i} e_{\scriptscriptstyle 1}\wedge \cdots \wedge e_{\scriptscriptstyle k-1}\wedge e_i\right). \end{array}
$$

Since the representation of $A_{(1)} \wedge \cdots \wedge A_{(k)}$ with respect to the basis E^{\wedge} is unique and since $\lambda_1 \cdots \lambda_k \neq 0$, (14) and (16) imply $a_{ki} = 0$, $i =$ $k + 1, \dots, n$. We have

$$
A = diag(\lambda_1, \ldots, \lambda_t) \dotplus B
$$

where

$$
B=\left[\begin{matrix}0 & & * \\ & \ddots & \\ \bigcirc & & 0\end{matrix}\right].
$$

However, $|\lambda_1 \cdots \lambda_{t+1}| = \alpha_1(A) \cdots \alpha_{t+1}(A)$ implies that

$$
\alpha_{i+1}(A) = \cdots = \alpha_n(A) = 0.
$$

Thus AA^* , and hence A, has rank t so that $B = 0_{n-t}$. Thus A is normal.

Proof of Theorem 2. If *A* is normal then obviously equality holds in (13) for $m = 1, \dots, n$. Conversely, assume that (13) is equality, $m = 1, \dots, n$. Without loss of generality we can assume

$$
A = \begin{bmatrix} \lambda_1 & * \\ \cdot & \cdot \\ \bigcirc & \lambda_n \end{bmatrix}.
$$

Suppose there exists an a_{1i} , $i \neq 1$, such that a_{1i} is nonzero. Then from (9),

$$
|\lambda_{1}| = r(A) \geqq r \begin{bmatrix} \lambda_{1} & a_{1i} \\ 0 & \lambda_{i} \end{bmatrix} \geqq |\lambda_{1}|,
$$

so that by the Elliptical Range Theorem $a_{1i} = 0$ and

 $A_{\scriptscriptstyle(1)} = \lambda_{\scriptscriptstyle 1} e_{\scriptscriptstyle 1}$.

Let

$$
|\lambda_1| \ge \cdots \ge |\lambda_t| > 0 = |\lambda_{t+1}| = \cdots = |\lambda_n|
$$

for some $t,$ $1 \leqq t \leqq n,$ and suppose we have shown that

 $A_{(i)} = \lambda_i e_i, i = 1, \dots, k-1, k \leq t$.

Let $1 \le r \le n - k$ and consider the function

$$
\begin{aligned} e(u,\,v) & = \left(C_k(A)e_1 \wedge \, \cdots \, \wedge \, e_{k-1} \wedge \, (u e_k \, + \, v e_{k+r}) \right., \\ & e_1 \wedge \, \cdots \, \wedge \, e_{k-1} \wedge \, (u e_k \, + \, v e_{k+r}) \right) \end{aligned}
$$

 \sim

 $\text{where } |u|^2 + |v|^2 = 1. \quad \text{Then}$

 $e(u, v)$

$$
= \left(\lambda_1 \cdots \lambda_{k-1} \left(u\lambda_k e_1 \wedge \cdots \wedge e_{k-1} \wedge e_k + v \sum_{i=k}^{k+r} a_{i,k+r} e_1 \wedge \cdots \wedge e_{k-1} \wedge e_i\right),\right.\\ \left.u e_1 \wedge \cdots \wedge e_{k-1} \wedge e_k + v e_1 \wedge \cdots \wedge e_{k-1} \wedge e_{k+r}\right)\\ = \lambda_1 \cdots \lambda_{k-1} \left\{\|u\|^2 \lambda_k + v \overline{u} a_{k,k+r} + \|v\|^2 \lambda_{k+r}\right\}.
$$

Let

$$
C=\begin{bmatrix} \lambda_k & a_{k,k+r} \\ 0 & \lambda_{k+r} \end{bmatrix}.
$$

If $a_{k,k+r} \neq 0$ then from the Elliptical Range Theorem $r(C) > |\lambda_k|$, i.e., there exist u and v , $|u|^2 + |v|^2 = 1$, such that the expression in curly brackets on the right side of (17) has absolute value greater than $|\lambda_k|$. Since $\lambda_1 \cdots \lambda_{k-1}$ is nonzero we conclude that $|e(u, v)| > |\lambda_1 \cdots \lambda_k|$. But $e(u, v)$ is a value of the quadratic form associated with $C_k(A)$ on a decomposable tensor of unit length, and thus it follows that $r_d(C_k(A)) > |\lambda_1 \cdots \lambda_k|$. Therefore $a_{k,k+r} = 0$, $r = 1, \cdots, n-k$ and thus

$$
A = \mathrm{diag} \, (\lambda_1 \cdots \lambda_t) \dotplus B
$$

where

$$
B=\left[\begin{matrix}0&&*\\&\ddots&\\&&0\end{matrix}\right].
$$

Next assume $a_{t+1,i} \neq 0$ for some $i > t + 1$. Then the $(1, \dots, t, t + 1)$, $(1,\ \cdots,\ t,\ i)$ element of $C_{t+1}(A)$ is $\lambda_1 \cdots \lambda_t a_{t+1,i} \neq 0.$ Letting x^{\wedge} be the $\text{decomposable unit tensor } \mathbb{1} \sqrt{2} \left(e_i \wedge \cdots \wedge e_t \wedge e_{t+1} + e_i \wedge \cdots \wedge e_t \wedge e_i \right)$ we have

$$
(C_{t+1}(A)x^{\wedge}, x^{\wedge}) = \frac{1}{2} \Big(\lambda_1 \cdots \lambda_t e_1 \wedge \cdots \wedge e_t \wedge \Big(a_{t+1, i} e_{t+1} + \sum_{j=t+2}^n a_{j i} e_j \Big),
$$

$$
e_1 \wedge \cdots \wedge e_t \wedge e_{t+1} + e_1 \wedge \cdots \wedge e_t \wedge e_i \Big)
$$

$$
= \frac{1}{2} \lambda_1 \cdots \lambda_t a_{t+1, i}
$$

$$
\neq 0.
$$

 $\text{But then } r_d(C_{t+1}(A)) \geq 1/2\, |\, \lambda_1 \cdots \lambda_t a_{t+1,i}\,| > |\, \lambda_1 \cdots \lambda_t \lambda_{t+1}| = 0, \ \text{contradicting}$ the assumption that (13) is equality for $m = t + 1$. Thus

$$
A_{\scriptscriptstyle (t+1)} = 0 \; .
$$

Suppose that we have shown

$$
A_{\scriptscriptstyle (t+r)} = 0, \, r = 1, \, \cdots, \, k-1 \; .
$$

If there exists an element $a_{t+k,i}$, $i > t + k$, which is nonzero we see $\text{that the } (1, \cdots, t, \, t+k), \, (1, \cdots, t, \, i) \text{ element of } C_{t+1}(A) \text{ is } \lambda_1 \cdots \lambda_t a_{t+k,i} \neq 0.$ Let $x^\wedge = 1/\sqrt{2} (e_i \wedge \ \cdots \ \wedge \ e_t \wedge \ e_{t+k} + e_{\scriptscriptstyle1} \wedge \ \cdots \ \wedge \ e_{\scriptscriptstyle t} \wedge e_{\scriptscriptstyle i}) \in G_{t+1}$ and note that

$$
(C_{t+1}(A)x^{\wedge}, x^{\wedge}) = \frac{1}{2}\lambda_1 \cdots \lambda_t a_{t+k,i}
$$

$$
\neq 0 ,
$$

contradicting the fact that $r_d(C_{t+1}(A)) = 0$. We conclude that $B = 0_{n-t}$

and hence that *A* is normal.

Proof of Theorem 3. Once again we may assume that

$$
A = \begin{bmatrix} \lambda_1 & * \\ & \ddots & \\ & \ddots & \\ \end{bmatrix},
$$

so that $C_m(A)$ is also upper triangular. Let $\alpha \in Q_{m,s}$, $\gamma \in Q_{m,n}$, and assume $\gamma > \alpha$, i.e., γ follows α in the lexicographic ordering. Moreover suppose that $|\alpha \cap \gamma| = m - 1$, i.e., Ima and Im γ overlap in $m-1$ places. Then if $|s|^2 + |t|^2 = 1$, $se_{\alpha}^{\wedge} + te_{\alpha}^{\wedge} \in G_m$ and

(18)
\n
$$
|(C_m(A)(se_\alpha^\wedge + te_\gamma^\wedge), se_\alpha^\wedge + te_\gamma^\wedge)| \leq |\lambda_1 \cdots \lambda_m| ;
$$
\n
$$
|(C_m(A)(se_\alpha^\wedge + te_\gamma^\wedge), se_\alpha^\wedge + te_\gamma^\wedge)| = |s|^2 C_m(A)_{\alpha,\alpha} + s\bar{t}C_m(A)_{\gamma,\alpha} + t\bar{s}C_m(A)_{\gamma,\gamma} + t\bar{s}C_m(A)_{\alpha,\gamma} + |t|^2 C_m(A)_{\gamma,\gamma}
$$
\n
$$
= |s|^2 \lambda_\alpha + t\bar{s}p(\gamma) + |t|^2 \lambda_\gamma ,
$$

where $p(\gamma) = C_m(A)_{\alpha,\gamma}$;

$$
|(C_m(A)(se_\alpha^\wedge+te_\tau^\wedge),se_\alpha^\wedge+te_\tau^\wedge)|=|\lambda_1|^{m-1}\Big||s|^2\lambda_i+\frac{t\overline{s}}{c}p(\gamma)+|t|^2\lambda_j\Big|
$$

where $|\lambda_i| = |\lambda_1|$ and $c \neq 0$. From (18) we have

$$
\left| |s|^2 \lambda_i + \frac{t\overline{s}}{c} p(\gamma) + |t|^2 \lambda_j \right| \leq |\lambda_1|.
$$

Applying the Elliptical Range Theorem to the matrix

$$
\begin{bmatrix}\n\lambda_i & \frac{p(\gamma)}{c} \\
0 & \lambda_j\n\end{bmatrix}
$$

tells us that unless $p(\gamma) = 0$ there exists an *s* and $t, |s|^2 + |t|^2 = 1$, for which $||s|^2\lambda_i + t\bar{s}/cp(\gamma) + |t|^2\lambda_j| > |\lambda_1|$. Thus

$$
C_m(A)_{\alpha,\gamma}=0 \quad \text{if} \quad \alpha\in Q_{m,s}, \, \gamma>\alpha, \quad \text{and} \quad |\alpha\cap\gamma|=m-1 \; .
$$

The elements of row α of $C_m(A)$ are the Plucker coordinates of the $\text{decomposable tensor}~~ A_{\alpha^{(1)}} \wedge \ \cdots \ \wedge \ A_{\alpha^{(m)}} \ \ \text{and} \ \ \text{therefore} \ \ \text{satisfy} \ \ \text{the}$ quadratic Plucker relations:

(19)
$$
p(\alpha)p(\gamma)=\sum_{t=1}^m p(\alpha[s, t:\gamma])p(\gamma[t, s:\alpha]), \quad s=1, \cdots, m.
$$

For $\gamma > \alpha$, $|\alpha \cap \gamma| = m-1$, we have seen that $p(\gamma) = 0$. Let $\gamma > \alpha$, $|\alpha \cap \gamma| \neq m - 1$. Pick s in (19) so that $\alpha(s) \notin \text{Im } \gamma$. Then $| \alpha[s, t: \gamma] \cap \alpha | = m - 1$ so that the first factor in each summand of (19) is zero. Since $p(\alpha) = \lambda_{\alpha(1)} \cdots \lambda_{\alpha(m)} \neq 0$ we have $p(\gamma) = 0$, i.e.,

(20)
$$
(C_m(A))_{\alpha,\gamma}=0, \alpha\in Q_{m,s}, \alpha\neq\gamma.
$$

From (20),

$$
A_{\scriptscriptstyle \alpha (1)}\wedge \,\cdots\,\wedge\, A_{\scriptscriptstyle \alpha (m)} = \scriptstyle \lambda_{\scriptscriptstyle \alpha (1)}\, \cdots\, \lambda_{\scriptscriptstyle \alpha (m)} e_{\scriptscriptstyle \alpha (1)}\wedge\, \cdots \,\wedge\, e_{\scriptscriptstyle \alpha (m)}\,,
$$

which in turn implies the equality of the subspaces spanned by the two sets of vectors, i.e.,

(21)
$$
\langle A_{\alpha(1)},\cdots,A_{\alpha(m)}\rangle=\langle e_{\alpha(1)},\cdots,e_{\alpha(m)}\rangle,\,\alpha\in Q_{m,s}
$$

 $(\langle x_1, \cdots, x_m \rangle)$ means the linear span of x_1, \cdots, x_m). Since $s > m$, for each $i \in \{1, \ldots, s\}$ there exist sequences $\alpha_{1}, \ldots, \alpha_{m} \in Q_{m,s}$ such that $\{i\} = \bigcap_{j=1}^m \mathrm{Im}\,\,\alpha_j$. If $\alpha \in Q_{m,s}$ then each $\alpha(i) \in \{1, \ldots, s\}, i = 1, \ldots, m$, so that there exist sequences $\alpha_1, \dots, \alpha_m$ such that $\{\alpha(i)\} = \bigcap_{j=1}^m \text{Im } \alpha_j$. Therefore,

$$
A_{\alpha(i)} \in \bigcap_{j=1}^m \langle A_{\alpha_j(i)},\ \cdots,\ A_{\alpha_j(m)} \rangle = \bigcap_{j=1}^m \langle e_{\alpha_j(i)},\ \cdots,\ e_{\alpha_j(m)} \rangle , \text{(from (21))} \\ = \langle e_{\alpha(i)} \rangle \ .
$$

Hence $A = T + B$ where

$$
T=\text{diag }(\lambda_{_1},\;\cdots,\;\lambda_{_s}),\,B=\left[\begin{smallmatrix}\lambda_{_{s+1}}&&*\\&\ddots&\\&&\lambda_{_{n}}\end{smallmatrix}\right].
$$

Finally, suppose there exists $u \in C^{n-s}, ||u||\!=\!1,$ such that $|(Bu, u)|\!>|\lambda_{1}|.$ Let

$$
x_i = e_i, i = 1, \dots, m - 1,
$$

\n
$$
x_m = 0 + u = (0, \dots, 0, u_1, \dots, u_{n-s}).
$$

Then

\(C^m (A)x\ χ-)\ = det **O** * ... * *(Bu, u)_ λ>m-i(Bu, %)* **I**

contradicting the hypothesis that $C_m(A)$ is decomposably spectral. Therefore $r(B) \leq |\lambda_1|$ and by (12), *A* is spectral.

To prove the converse, observe that $r_d(C_m(A)) \geq |\lambda_1|^r$. Suppose $r_d(C_m(A)) > |\lambda_1|^m$. Then there exists $x^{\wedge} \in G_m$ such that

 $\vert C_m(A)x^\wedge, x^\wedge)\vert > \vert \lambda_{\scriptscriptstyle 1}\vert^{\,m}$.

Without loss of generality we can assume x_1, \dots, x_m are o.n. Let $Ue_i = x_i$, $i = 1, \dots, U$ unitary, and compute that

$$
|(C_m(A)x^{\wedge}, x^{\wedge})| = |(C_m((U^*AU)e_1 \wedge \cdots \wedge e_m, e_1 \wedge \cdots \wedge e_m)|
$$

= |det U^*AU[1, \cdots, m|1, \cdots, m]|.

Letting $B = U^*AU[1, \dots, m|1, \dots, m]$, we have

$$
|\det B|>|\lambda_{\scriptscriptstyle 1}|^{\scriptscriptstyle m}\;,
$$

so that *B* has an eigenvalue $\widetilde{\lambda}$ satisfying $|\widetilde{\lambda}| > |\lambda_{n}|$. There exists a unitary m-square *V* for which

$$
V^*BV = \begin{bmatrix} \tilde{\lambda} & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \bigcirc & \cdot & \cdot \end{bmatrix}.
$$

Let $W = V + I_{n-m}$ and note that

$$
W^*U^*AUW = \begin{bmatrix} \widetilde{\lambda} & & & & \\ \vdots & \ddots & & & \\ \hline & & & & \ddots & \\ \hline & & & & & \\ \hline & & & & & & \\ \end{bmatrix}.
$$

Let $X = UW; X⁽¹⁾$, the first column of X, is a unit vector and

$$
\begin{aligned} |(AX^{\scriptscriptstyle (1)},\,X^{\scriptscriptstyle (1)})| &= |(X^*AX)_{\scriptscriptstyle 11}| \\ &= |\widetilde\lambda\,| > |\lambda_{\scriptscriptstyle 1}|\ . \end{aligned}
$$

But this contradicts the fact that $r(A) = |\lambda_1|$. Therefore, $r_d(C_m(A)) =$ $|\lambda_1|^m$.

In the second part of Theorem 3 the hypothesis $s \ge m$ is necessary. For, let

$$
A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix},
$$

and note that

$$
\frac{1}{2} (C_{\scriptscriptstyle 2}(A) \{e_{\scriptscriptstyle 1} \wedge \, e_{\scriptscriptstyle 3} + e_{\scriptscriptstyle 1} \wedge \, e_{\scriptscriptstyle 2}\},\, \{e_{\scriptscriptstyle 1} \wedge \, e_{\scriptscriptstyle 3} + e_{\scriptscriptstyle 1} \wedge \, e_{\scriptscriptstyle 2}\}) = 1 > \lambda_{\scriptscriptstyle 1} \lambda_{\scriptscriptstyle 2} = 0 \; .
$$

$$
W^* U^* A U W = \begin{bmatrix} \tilde{\lambda} & \cdot & * \\ \circ & \cdot & * \\ \hline & & * \end{bmatrix} \begin{matrix} * & * \\ * & * \end{matrix}
$$

Also the hypothesis $s > m$ in the first part of Theorem 3 is necessary as the following examples illustrate:

$$
A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix},
$$

$$
C_{\text{s}}(A) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix};
$$

 $\text{then } r_d(C_2(A)) = 1 = \lambda_1 \lambda_2, \text{ but } r(A) \geqq r\left(\left|\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array}\right|\right) > 1;$

$$
A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & 0 \end{bmatrix},
$$

$$
C_2(A) = \begin{bmatrix} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix};
$$

 ${\rm th}$ en $r_d(C_z(A)) = 1/2 = \lambda_1 \lambda_2, \ \ {\rm but} \ \ r(A) \geqq r\Big(\big\lfloor \frac{1}{0} \big\rfloor \frac{1}{1/2} \big\rfloor \Big) > 1. \ \ \ \ {\rm Also \ observe}$ that although Theorem 3 implies that $if^{\sim} C_m(A)$ is spectral, $m < s$, then *A* is spectral, the converse is false. For example, let

$$
A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} + \begin{bmatrix} 0 & 2 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 2 \\ 0 & 0 \end{bmatrix}.
$$

 $\text{Then} \ \ r(A) = 1 \ \ \text{but} \ \ r(C_2(A)) \geq r\left(\left\lfloor \frac{9}{4}\right\rfloor 0 \right\rfloor) = 2 \ \ \text{so} \ \ \text{that} \ \ C_2(A) \ \ \text{is} \ \ \text{not}$ spectral.

REFERENCES

1. I. C. Gohberg and M. G. Kreϊn, *Introduction to the Theory of Linaer Nonself ad joint Operators,* translations of Mathematical Monographs, Vol. 18, Amer. Math. Soc, 1969, p. 36.

2. M. Goldberg, E. Tadmor and G. Zwas, *The numerical radius and spectral metrices,* Linear and Multilinear Algebra, 2 (1975), 209-214.

3. P. R. Halmos, *A Hilbert Space Problem Book,* Van Nostrand, 1967.

4. M. Marcus, *Finite Dimensional Multilinear Algebra,* Part II, Pure and Appl. Math. Series, Marcel Dekker, Inc., New York, 1975.

WEYL'S INEQUALITY AND QUADRATIC FORMS ON THE GRASSMANNIAN 289

5. H. Weyl, *Inequalities between the two kinds of eigenvalues of a linear transformation,* Proc. Nat. Acad. Sci., 35 (1949), 408-411.

Received August 12, 1976. Research of the second author was supported by a grant from the Air Force Office of Scientific Research, 72-2164.

UNIVERSITY OF ALASKA AND UNIVERSITY OF CALIFORNIA-SANTA BARBARA