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WEYL'S INEQUALITY AND QUADRATIC FORMS
ON THE GRASSMANNIAN

PATRICIA ANDRESEN AND MARVIN MARCUS

This paper is concerned with the largest absolute value
taken on by an m-square principal subdeterminant in any
unitary transform of an ^-square complex matrix A. For
m = 1 this maximum coincides with the numerical radius of
A. The results obtained constitute generalizations of the
Gohberg-Kreϊn analysis of the case of equality in WeyΓs
inequalities relating eigenvalues and singular values.

Introduction* Let A be an ^-square complex matrix with eigen-
values λx, , λn, |λj ^ ^ | λ j , and singular values ax(A) ^ ^
cxn(A). The numerical radius of A, r(A), is the maximum absolute
value assumed by a diagonal element in any unitary transform of
of A, i.e., in any matrix unitarily similar to A. Of course,

(1) | λ J ^ r ( A ) .

Matrices for which equality holds in (1) are called spectral. In this
paper we consider rdtm(A), the largest absolute value taken on by an
m-square principal subdeterminant in any unitary transform of A.
As we shall see in the sequel

(2) Iλ^. λ J ^ r U A ) .

For m — 1, (2) collapses to (1). Matrices for which equality holds
in (2) will be called m-decomposably spectral. One of the purposes
of this paper is to examine the structure of matrices A which are
m-decomposably spectral for each m = 1, , n. Such results are
related to the inequalities of Weyl [5],

( 3 ) Iλj. λfcl ^ at(A) ak(A), k = 1, , n ,

and to the case of equality in (3) for fc = 1, , n discussed by Gohberg
and Kreϊn [1]. We also examine the case where A is m-decomposably
spectral for a particular m and, in fact, show that if A has s eigenvalues
of maximum modulus |λj, s > m, then spectral and m-decomposably
spectral are equivalent. To examine the concept of m-decomposably
spectral we require the machinery of induced maps on the mth
Grassmann space.

2* Preliminary notions and theorems* Let V be an ^-dimen-
sional unitary space with an inner product (x, y). Let T:V—>V be

277
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a linear transformation with eigenvalues λlf , λΛ, \\\ ^ Ξ> | λ j ,
and singular values a^T) ^ ^ ccn(T). Let i7 = K, , en) be an
o.n. basis of V and let A = [T]|, the matrix representation of Γ with
respect to E. We will consider A as a linear transformation on Cn,
the space of complex ^-tuples. For each m,l^m^n, let l\mV be
the mth Grassmann space over V where the inner product induced
on λmV by (#, v) is defined by

(a?! Λ Λ xm, yγ A Λ ym) = det [(xif y,)]

for any decomposable tensors xA and #A in AmV, i.e., a ̂ ^ Λ Λ ^ ,
yA — yi A - — A ym where xt and #* are in F, i = 1, , m. The space
Λ m F has an ordered o.n. basis JS^ = {eω[1) A Λ βω(w) = βA: ω eQWfΛ}
where Qm>% is the totality of strictly increasing sequences ω of length
m, 1 ^ ω(l) < < <*>(m) ̂  w, and where the ω's are assumed to be
ordered lexicographically. The compound Cm(T): AmV ~^ AmV ϊs
defined by

for any decomposable xA e AmV. Let Cm(A) = [CTO(Γ)]|ΛA. Then Cm(A)
has eigenvalues λ̂  = Xβω λ/j(w), /9 e QWtΛ and singular values α'r =
α r ( 1,(il) ar(m)(A), 7 e Qm>n.

The numerical radius of A is defined by

r(A) = max | (Ace, #) | .
11*11=1

and the spectral norm of A by

= max |1 Ax|| .
| | a ; | | = l

The Grassmannian in AmV is the set

Gm = \xA e XV: \\xA\\ = 1 and xA is decomposable! ,

and the decomposable numerical radius of Cm(A) is defined by

( 4) r.ίCίil)) - max | {Cm(A)xA, xA) \ .
*eG

In (4) we may assume without loss of generality that for each xA —
XiA Λ xm the vectors xu , xm are o.n. Since the a, β entry
of Cm(A) is detA[a\β], where A[α'|/S] indicates the submatrix of A
lying in rows a and columns β, a, β e Qm>n, we see that by taking
Uβi = xu i = 1, , m, U unitary, we have

= m2ix\(Cm(A)xA,xA)\

= max I (Cm(A)Cm{ TJ)eγ A emf Gm{ ϋ)e1 A Λ em) \
U -unitary
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= max I det £7* A U[l, , m 11, , m] \
U unitary

Of course if m = 1, rd(Cm(A)) = r(A). In general,

( 5 ) rd(Cm(A)) ^ r(Cm(A)) .

It is possible to have strict inequality in (5) as the following example
shows. Let

Ό 0 1 0

0 0 0 1

0 0 0 0

_0 0 0 0.

so that

1, if a = (12), β = (34)

0, otherwise .

If xAeGm then xA = Σ«e«2f4p(α)β£ where

( 6 ) β Σ |jKα)r = l

and the p(ά) satisfy the quadratic Plϋcker relations [4]:

( 7 ) V{a)p(β) = g p(α[ 8 f ί: /S]M/9[ί, β: α], s = 1, , m

where α[s, ί: /S] is the sequence (α(l), , α(s - 1), /5(ί), α(s + 1), ,
a(m)) and p(α) is defined for any sequence a of length m by skew-
symmetry. We have for xA e Gm

( 8 )

= |2>(12)ί>(34)|

= \p(32)p(U) + p(42)p(31)\ , (from (7) with 8 = 1)

, (from (6))

Thus
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and

From (8) we see that

rd(C2(A)) ^ \

If we consider the quadratic form evaluated on the indecomposable
unit tensor ljV^2{e1 A e2 + β3 Λ β4) we have

(C 2 (A)- 7 =(e 1 Λ β2 + β3 Λ β4), - τ γ ( β i Λ β2 + β3 Λ β4) = —)- 7 =(e 1 Λ β2 + β3 Λ β4), - τ γ ( β i Λ β2 + β3 Λ β4) = — ,

so that

r(C2(A)) ^ -^
Δ

The explanation of this phenomenon is that not every tensor on the
unit sphere in Λ 2 ^ is decomposable.

The following results are well known [3]:
( i ) For M any principal sub-matrix of A,

( 9 ) r(M) ^ r{A) .

(ii) (The Elliptical Range Theorem.) For a 2 x 2 matrix the
numerical range is an ellipse with foci the eigenvalues of the matrix;

if A = Q 1 ^ then the semi-minor axis of the ellipse has length |α|/2.

(iii)

(10)

We may generalize (10) for 1 ^ m ^ n to

(11) I λ, λm I ̂  rd{Cm(A)) <L τ(CmA)) ^ ax{A) . . . am{A).

The first inequality may be seen as follows. Let

U*AU =

-O

Then Cm{U*AU) is also upper triangular and

for an appropriate ^ Λ 6 Gm. If A is normal then equality holds
throughout (10) and (11). A proof of the Weyl inequalities (3) is
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now immediate. The first follows from (10) and the subsequent
ones from (11). Since τd,m(A) = rd(Cm(A)) we will say that Cm(A),
1 5g m ^ n, is decomposably spectral if

Iλx λ J = rd(Cm(A)).

M. Goldberg, E. Tadmor and G. Zwas [2] have shown that if |λ j =
• = I \ I > I \+i I ̂  ^ I λΛ I then A is spectral iff A is unitarily
similar to a matrix of the form T + B where

(12a)

and

(12b)

T =

LO

O"
r>

_O

r(B)£

THEOREM 1 (Gohberg and Kreϊn). Equality holds in (3) for
k = 1, , n iff A is normal.

We include a proof of this theorem based on properties of the
Grassmann algebra which suggests a proof of the following stronger
result:

THEOREM 2. For each m = 1, , n

(13) IX1 Xm I 5ΞJ rd(Cm(A)) , m = 1, , n .

Equality holds in (13) for m = 1, , n iff A is normal. Equivalently,
the largest absolute value taken on by an m-square principal subde-
terminant in any unitary transform of A is at least \\ m Xm\,
m == 1, , n. This largest absolute value is equal to |λx λw | for
m = 1, , n iff A is normal.

We will also investigate the case of equality in a single one of
the inequalities in (13).

THEOREM 3. Assume that A has s eigenvalues of maximum
modulus, s > m:

Then Cm(A) is decomposably spectral iff A is spectral.

3* Proofs a n d examples*

Proof of Theorem 1. Clearly if A is normal then |λ x ••• \k\ =



282 PATRICIA ANDRESEN AND MARVIN MARCUS

oc^A)'' cch(A), k = 1, , n. Suppose now that | \ Xk | = a^A)}-
ak(A), k = 1, •••, n. By Sehur's theorem we may assume

Let

for some t, 1 5ί t ^ n. We have

λ(|>

" \ *

-O K.

0 = |λ ί + 1

^ a\{A).

Since | Xt \ — a^A) we must have au = 0, i 9̂  1 and

A ( 1 ) = λiβ,..

(A(1) is the first row of A9 i.e., the w~tuple (an, •• ,α1 %).) Applying
this argument to CW(A), 1 <; m ^ π, we have

(14)
Cm(A)(1) = A D Λ Λ A{m)

= λi λmβ2 Λ Λ em .

Assume now that we have shown

(15) AH) = λ ^ , i = 1, , k — 1, & ̂  ί .

Then

(16)
A D Λ Λ Aik) = λx λ ^ A Λ Λ e ^ ! Λ (λfcβfc

\
+

Λ Λ ek + λi k_A Σ ι Λ Λ A _i Λ β<) .
/

Since the representation of Aω Λ Λ Aik) with respect to the basis
EA is unique and since λL Xk Φ 0, (14) and (16) imply αΛ< = 0, i =
fc + 1, , w. We have

- diag(λL, - . . , ^ )

where

τ>

0

Lo oj
However, | Xι λί+11 = a^A) at+ι(A) implies that
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= cxn(A) = 0 .

Thus AA*, and hence A, has rank t so that B = 0Λ_t. Thus A is
normal.

Proof of Theorem 2. If A is normal then obviously equality
holds in (13) for m = 1, •••, n. Conversely, assume that (13) is
equality, m = 1, •••, n. Without loss of generality we can assume

A =

_o
Suppose there exists an au, i Φ 1, such that au is nonzero. Then
from (9),

0
^ \\\ ,

so that by the Elliptical Range Theorem au = 0 and

Aω = X1eι .

Let

for some t9l ^ t ^ n, and suppose we have shown that

Let 1 ^ r ^ n — k and consider the function

β(^, i?) = ( C ^ A ) ^ ! Λ Λ βfc-i Λ (wβfc + ^βfc+?.) ,

0i Λ Λ βfc.i Λ (uek + 1;^+,.))

where \u\2 + \v\2 = 1. Then

e(w, v)

/ / k+r

\ \ - 1 ϊ=fc l ' k + r

βi Λ Λ efc_! Λ efc + ve, A Λ ek_γ A ek+Λ

= λx ••• λfc.JIw^λfc + vΰak>k+r + \v\2Xk+r} .

Let

(17)
*_i Λ

C =
0 λ»+r.
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If a>k,k+r Φ 0 then from the Elliptical Range Theorem r(C)> \xk\f i.e.,

there exist u and v, \u\2 + l^l2 = 1, such t h a t the expression in curly

brackets on the r ight side of (17) has absolute value greater than

I Xk |. Since λx X^ is nonzero we conclude t h a t | e(u, v)\>\\ Xk\.

But e(u, v) is a value of the quadrat ic form associated with Ck(A) on

a decomposable tensor of unit length, and thus it follows t h a t

rd(Ck(A))>\x1

where

Therefore akyk+r = 0, r = 1,

A = diag (λL Xt) + B

0

-,n — k and thus

Lo o
Next assume α ί + l ι ί Φ 0 for some ί > ί + 1. Then the (1, , t, t 4- 1),
(1, •••,£, i) element of Cί+1(A) is λ!
decomposable unit tensor lV~2{e1 A
we have

λ tα t 0. Letting xA be the
Λ ^ Λ et+ί + ^Λ Λ et A et)

(Ct+1(A)xA, ex Λ
2

_ l

But then rd{Ct+ι{A)) ^ 1/21 \ λtαt+ι>< >

Λ ^ Λ

+ ex A et /\eλ

= 0, contradicting
the assumption that (13) is equality for m = t + 1. Thus

Suppose that we have shown

A u + r ) = 0 , r = 1 , • • - , & - 1 .

If there exists an element at+k,ίf i> t + Jc, which is nonzero we see
that the (1, , ί, t + k), (1, , ί, ΐ) element of Cί+1(A) is λL Xtat+kyiΦθ.
Let xA = l/VΎfa A Λ βf Λ βf+fc + ex Λ Λ β* Λ e%) 6 Gί+1 and note
that

(Ct+1(A)x\ xA) = -ίλ t λ«αί+JM
Δ

contradicting the fact that r,,(Ct+1(.A)) = 0. We conclude that B = 0B_t
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and hence that A is normal.

Proof of Theorem 3. Once again we may assume that

A =

O

so that Cm(A) is also upper triangular. Let aeQmt8f 7eQm>n, and
assume 7>a, i.e., 7 follows a in the lexicographic ordering. Moreover
suppose that \a Π 7| — m — 1, i.e., Ima and Im7 overlap in m - 1
places. Then if | s |2 + 1112 = 1, se£ + tef e Gm and

(18) I (Cm(A)(8e£ + ίβr

Λ),

\(Cm(A)(se£

te?) \ ̂  \ \ . - - λm |

= \s\2Cm(A)a,a + stCm(A)ΐ>a

+ tsCm(A)a,r + \t\*Cm(A)r,r

where p(7) - Cw(A)α,r;

where | \ | = | λt | and c Φ 0. From (18) we have

ts
c

Applying the Elliptical Range Theorem to the matrix

tells us that unless p(Ύ) — 0 there exists an s and t, \ s |2 + 1112 = 1,
for which | | s |% + ts/cp(y) + | i |%-| > \\\. Thus

Cm(A)α,r = 0 if ae Qm,s, 7 > α, and |α n 7| = m - 1 .

The elements of row a of Cm(A) are the Plucker coordinates of the
decomposable tensor Aa{1) A Λ Aα(m) and therefore satisfy the
quadratic Plucker relations:

(19) p(a)p(7) = Σ p(α[8f ί: γ])p(7[ί, s:a]) , β = 1, , m .

For 7 > α , | α Π 7 | = m - l , we have seen that p(7) = 0. Let
7 > a, |αΓ)7| =£ m - 1. Pick s in (19) so that α(s)glm 7. Then
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\a[s, t: 7] Π cc\ = m — 1 so that the first factor in each summand of
(19) is zero. Since p(a) — λα(1, λβ(m) Φ 0 we have p(Ύ) = 0, i.e.,

(20)

From (20),

(Cm{A))a,r = 0, a e Qm>8, a Φ Ύ .

a[i) Λ Λ ;Q.(TO)βα(1) Λ Λ β«(

which in turn implies the equality of the subspaces spanned by the
two sets of vectors, i.e.,

(21) (A A ) = (e e ) cc eQ

(<X, , xm} means the linear span of xlf , xm). Since s > m, for
each ίe{l, ••-,«} there exist sequences alf , ccmeQm>s such that
{i} = ΠΓ=i I m « J . If α 6 Qm,s then each α(ΐ) 6 {1, . , s}, i = 1, , m,
so that there exist sequences a19 •••,«„ such that {tf(Ό} = Πi^ilm ^i
Therefore,

AaU) 6 Q <Aαi(1), , Aaj[m)) = Π <ββi(D, , β«i(«)>, (from (21))

Hence A = Γ + B where

Finally, suppose there exists ueCn , | | u | | = 1, such that |(Bu, u)\>\\\.
Let

xt = ei9 i = 1, , m — 1 ,

£m - 0 + % = (0, , 0, ulf , nn_8) .

Then

\(Cm(A)x\ χ-)\ = det

O

* . . . * (Bu, u)_

λ>m-i(Bu, %) I

contradicting the hypothesis that Cm(A) is decomposably spectral.
Therefore r(B) ^ \\\ and by (12), A is spectral.

To prove the converse, observe that rd(Cm(A)) ^ | λ j m . Suppose
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rd(Cm(A)) > IλJ*. Then there exists xAeGm such that

\Cm(A)x\ x*)\ > \\r .

Without loss of general i ty we can assume xl9 •• , # m a re o.n. Let
Uet — xi9 i = 1, , U uni tary, and compute t h a t

\(Cm(A)x\ xA)\ = \{Cm{{U^AU)ex A Λ em, ex A Λ em)\

Letting B — U*AU[1, , m | l , , m], we have

I det JBI > \\\m ,

so that B has an eigenvalue λ satisfying | λ | > \\\m

unitary m-square V for which

λ

LO

There exists a

Let W = V + L_m and note that

W*U*AUW =
O

Let X = UW; X{1), the first column of X, is a unit vector and

But this contradicts the fact that r(A) = |λ j . Therefore, rd(CJiA))-

In the second part of Theorem 3 the hypothesis s ^ m is necessary.
For, let

Ί
0

.0

0
0

0

0"
2

0

and note that

1
Λ e3 + ex Λ e2}, = 0 .
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1
0

.0

1
1

0

0
0

0_

Also the hypothesis s > m in the first part of Theorem 3 is necessary
as the following examples illustrate:

A =

CIA) =

then rd(C2(A)) = 1 = W, but r(A) ̂  r([J J]) > 1;

"1
0

_0

0

0

0

0

0

0_

A =

i l r

0 — o

Lo o oJ

1 o o

0 0 0

LO 0 OJ

C2(A) =

then rd(C2(A)) = 1/2 = λxλ2, but r(A) ^ r(\^ λ^J) > 1 A l s o observe
that although Theorem 3 implies that if Gm(A) is spectral, m < s,
then A is spectral, the converse is false. For example, let

1

0

0

0

1

0

0

0 + Lo
2"|

o
Γoh
Lo

2

0

Then r(A) - 1 but τ(C2(A)) ^ r(ΓJ JΊ) = 2 so that C2(A) is not

spectral.
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