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WEYL’S INEQUALITY AND QUADRATIC FORMS
ON THE GRASSMANNIAN

PATRICIA ANDRESEN AND MARVIN MARCUS

This paper is concerned with the largest absolute value
taken on by an m-square principal subdeterminant in any
unitary transform of an n-square complex matrix A. For
m =1 this maximum coincides with the numerical radius of
A. The results obtained constitute generalizations of the
Gohberg-Krein analysis of the case of equality in Weyl’s
inequalities relating eigenvalues and singular values.

Introduction. Let A be an n-square complex matrix with eigen-
values Ay, *+*, Ny, [N = -+« = |\ |, and singular values a,(4) = --- =
a,(4). The numerical radius of A, r(A), is the maximum absolute
value assumed by a diagonal element in any unitary transform of
of A, i.e., in any matrix unitarily similar to A. Of course,

(1) M= r(4).

Matrices for which equality holds in (1) are called spectral. In this
paper we consider 7,,(A), the largest absolute value taken on by an
m-square principal subdeterminant in any unitary transform of A.
As we shall see in the sequel

(2) Ny eee M| = 70,m(4)

For m =1, (2) collapses to (1). Matrices for which equality holds
in (2) will be called m-decomposably spectral. One of the purposes
of this paper is to examine the structure of matrices A which are
m~decomposably spectral for each m =1, ---, n. Such results are
related to the inequalities of Weyl [5],

(3) Meeeml S a(d) - a(A) k=1, -0y,

and to the case of equality in (8) for k = 1, -- -, n discussed by Gohberg
and Krein [1]. We also examine the case where A is m-decomposably
spectral for a particular m and, in fact, show that if A has s eigenvalues
of maximum modulus |\,|, s > m, then spectral and m-decomposably
spectral are equivalent. To examine the concept of m-decomposably
spectral we require the machinery of induced maps on the mth
Grassmann space.

2. Preliminary notions and theorems. Let V be an n-dimen-
sional unitary space with an inner product (z,y). Let T:V—V be
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a linear transformation with eigenvalues N, -+, Ny, M| 2= -0+ 2 (N1,
and singular values a(T)= --- = @, (T). Let E = {e, --+, ¢,} be an
o.n. basis of V and let A = [T]%, the matrix representation of T with
respect to . We will consider A as a linear transformation on C*,
the space of complex n-tuples. For each m,1 < m < n, let A™V be
the mth Grassmann space over V where the inner product induced
on A"V by (z, y) is defined by

@A oo ATy Yy A oo+ A Yum) = det [(2;, ¥5)]

for any decomposable tensors 2" and ¥ in A™V, i.e., 2" =, A +++ ATy,
Yy =y, A -+ ANy, wherez,and y,arein V,4 =1, ---, m. The space
A™V has an ordered o.n. basis B = {60y A *** A Cotm = €4 @ E Q)
where @Q,,, is the totality of strictly increasing sequences w of length
m,1 < w(l) < -+ < w(m) =< n, and where the w’s are assumed to be
ordered lexicographically. The compound C,(T): A"V — A"V is
defined by

Cm(T)xl/\ ce. /\xm: Tx1/\ e A Twm

for any decomposable 2" ¢ A™V. Let C,(4) = [C.(T)]2%. Then C,(4)
has eigenvalues As = Np) ** * Ngem)y B € @, and singular values «, =
a;(4) « - Qe (A), 7€ Qu e

The numerical radius of A is defined by

r(4) = max [(Az, 2)] .
x)]=1
and the spectral norm of A by
a(A) = max || Ax|| .
Hzll=1

The Grassmannian in A™V is the set
G, = {x’\ € 7\V: lz*)] = 1 and 2" is decomposable} ,

and the decomposable numerical radius of C,(A) is defined by

(4) rdCa(4)) = max | (CulA)s", 2] -

In (4) we may assume without loss of generality that for each 2" =
@ A -+ A x, the vectors =, ---, x, are o.n. Since the @, 8 entry
of C,(A) is det A[a|B], where A[a|B] indicates the submatrix of A
lying in rows « and columns B, @, 8¢Q,.., we see that by taking
Ue, =, 1=1, ---, m, U unitary, we have

rCu(4)) = max [(Ca(A)z?, 27)]
= max |(CalA)Ca(U)e, A ++ €, Cal U)es A =+ A €4)]

U unitar,
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=Um?,x |detU*AU[L, ---, m|1, -+, m]]
unitary

= r4m(4) .
Of course if m = 1, r4(C,.(4)) = r(4). In general,
(5) rdCu(4)) = 7(Cu(4)) .

It is possible to have strict inequality in (5) as the following example
shows. Let

0 010
0

A 0 0 1

0 0 0 O

0 0 0 0

so that

1, if = (12), B = (34
CZ(A)a,ﬁ = )

0, otherwise .
If " e@G, then 2" = Diace,, P(@)es Where

(6) > p@f =1

@€ Qg,4

and the p(a) satisfy the quadratic Pliicker relations [4]:
(1) p@)p() = 3 plals, t: ADp(BLL, 5:0), s =1, -+, m

where afs, t: 8] is the sequence (a(1), - -+, a(s — 1), B(t), a(s + 1), -+ -,
a(m)) and p(@) is defined for any sequence @ of length m by skew-
symmetry. We have for z" ¢ G,

[(Cy(A)z", a")| = | p(12)p(34)|
= |p(32)p(14) + p(42)p(31)|, (from (7) with s=1)
(8) = [p(23)] | p(14)] + |p(24)| [p(13)]

= —;—(110(23)12 + (14 + [p(24)[° + [p(18)[*)

_1- |1r>(12)122 = 12BYF " (trom (6)).

Thus
(I2(12)| + |p(84) | =1,
(Ip(12)] + |p(B4)) =¢c =1,
Ip(12)| | p(34)| = |p(12)|(c — |p(12)]),
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and

I(p(12)p(34)| < & < 7}‘_ :

62
4
From (8) we see that

rdC(A)) < 11? .

If we consider t_y_e quadratic form evaluated on the indecomposable
unit tensor 1/ 2 (e, A e, + e; A e,) We have

Ne +eAe)=

’

<CZ(A)_17]:_2—_(61 A e + e A ey),

po |

__];_(el
V' 2
so that

7(Cy(4)) =

Do |

The explanation of this phenomenon is that not every tensor on the
unit sphere in A2V is decomposable.

The following results are well known [3]:

(i) For M any principal sub-matrix of A,

(9) r(M) £ r(A) .

(ii) (The Elliptical Range Theorem.) For a 2 X 2 matrix the
numerical range is an ellipse with foci the eigenvalues of the matrix;
if A= B)“l )ﬂ then the semi-minor axis of the ellipse has length |a /2.

2

(iii)

(10) M| = r(4) = a(4) .
We may generalize (10) for 1 < m < n to
(11) [Ny e s M| S 7d(Cn(4)) = 7(CLA4)) = ay(4) --- a,(4).
The first inequality may be seen as follows. Let
Ny *
U*AU = .
O N\

Then C,(U*AU) is also upper triangular and
R Cm( U*AU)(l---,m),(l,-u,m) = (Cm(A-)uA’ u/\)

for an appropriate u*e€@G,. If A is normal then equality holds
throughout (10) and (11). A proof of the Weyl inequalities (3) is
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now immediate. The first follows from (10) and the subsequent
ones from (11). Since 7,.(4) = 74(C.(4)) we will say that C,(A),
1< mZ n, is decomposably spectral if

N | = 7(Cu(4))

M. Goldberg, E. Tadmor and G. Zwas [2] have shown that if |\,| =
coe =N > Ngpu| = o+ = |\, | then A is spectral iff A is unitarily
similar to a matrix of the form 7 4+ B where

Ny O Not1 *
(122) r=| . |, B=| °.
O N O M
and
(12b) r(B) = [\ .

THEOREM 1 (Gohberg and Krein). Equality hkolds in (3) for
k=1, --,n iff A is normal.

We include a proof of this theorem based on properties of the
Grassmann algebra which suggests a proof of the following stronger
result:

THEOREM 2. For each m =1, ---, n
(13) }NI.--Nmiérd(Cm(A)), m:l,-..’n.

Equality holds in (13) for m=1, ---, n if Ais normal. Equivalently,
the largest absolute value taken om by an m-square principal subde-
terminant in any wnitary transform of A is at least |\, ««+ N,
m=1, «+-,n. This largest absolute value is equal to |\, -+- N, | for
m=1 -+, n 1ff A is normal.

We will also investigate the case of equality in a single one of
the inequalities in (13).

THEOREM 3. Assume that A has s eigenvalues of maximum
modulus, s > m:

]>\’1| = = !k'sl > l)"s+ll = e = I)"n| .
Then C,(A) is decomposably spectral iff A is spectral.

3. Proofs and examples.

Proof of Theorem 1. Clearly if A is normal then [N\, -+« N\ =
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a(A)---a A, k=1, -, n. Suppose now that |\, <+ N;| = a,(4)]
a(A), k=1, -+, n. By Schur’s theorem we may assume

Ny *
A=

O N
Let

[7\’11 = e 2 [>"t| >0= M’t+1l = = [)"n| ’
for some ¢, 1 <t <n. We have

(AA*)u =

Nl 4 el + oo e 4 e
= aj(4) .

Since |\, = @(4) we must have a,, = 0,7 % 1 and
A(n = A€ o

(A, is the first row of A, i.e., the n-tuple (a,,
this argument to C,(4),1 =< m < n, we have

a9 N
Assume now that we have shown

(15) Ay =Neyt=1,--- k-1, k=t.
Then

Ap A s NAm =N oo Mgy A vos A gy A (7\%% + > a’kie'>
i=k+1
(16) \
=N Mg A At N M 3 ane A Aa Ay
i=lk+1
Since the representation of 4, A --- A A, with respect to the basis

E* is unique and since X, --- N, == 0, (14) and (16) imply a,, =0, 2 =
E+1, .-+, n. We have

A = diag (\,, -

) )"t) + B
where

B = ..
O 0
However, [\, « ¢ Ny | = @(4) - -+ @, (A) implies that

-+, a,).) Applying
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at+1(A) = .. =a,(4)=0.
Thus AA*, and hence A, has rank ¢ so that B=0,_,., Thus A is

normal.

Proof of Theorem 2. If A is normal then obviously equality
holds in (13) for m =1, ---, n. Conversely, assume that (13) is
equality, m =1, ..., n. Without loss of generality we can assume

Ay *
A= ", .
O N
Suppose there exists an a,, 7 # 1, such that a,, is nonzero. Then
from (9),

N Qg
R e R ETE
so that by the Elliptical Range Theorem a, = 0 and
Ay = Ne, .
Let
Mz e 2 I >0 =[N | = oo0 = [N,
for some ¢,1 <t < %, and suppose we have shown that
Ay =Neyt=1, - k—1LEZE.
Let 1 =7 =n — k and consider the function

e(u, v) = (CA)e, A =+ A ey N (ue, + vey,,),
e N\ 2o A ey N (ue, + ve,y,))
where |#|* 4+ |v[> = 1. Then

e(w, v)

k+r N
= <)\*1‘ ¢ ')\*k—1(u7\4k31/\ cee A ek—1/\ek + vZkai,k+'rel/\ LEEIVAN ek—l/\ 6i> ’
(17)
UZ2WANRER A ey N\ e, + ve N\ «-- /\6,,_1/\6;,_,_,.)

=N N{| U PN 4 VB e [V N )

Let
C = [7\% ak,k+1} -
0 )"k+r
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If a4, # 0 then from the Elliptical Range Theorem 7(C) > |\, i.e.,
there exist w and », |%|* + |v|* = 1, such that the expression in curly
brackets on the right side of (17) has absolute value greater than
[Ng|. Since N, -+« \,_, is nonzero we conclude that |e(u, v)| > |\, <+« N, ].
But e(u, v) is a value of the quadratic form associated with C,(A4) on
a decomposable tensor of unit length, and thus it follows that
rC(4)) > [N, ++» Np|. Therefore a, ., = 0,7 =1, .-+, n — k and thus

A = diag(A, -+ \,) + B

where
0 *
B= .
O o0
Next assume a,.,; # 0 for some 2 > ¢ + 1. Thenthe(d, -, ¢, ¢ + 1),

@, ---, t, 7) element of C, ,(4)is A+« M@y, = 0. Letting 2" be the
decomposable unit tensor 11/ 2(e; A +++ Ne;Nep + e A+ ANeNe;)
we have

(Ct+1(A)xA, xh) = %(7\'1 e Ny, N\ cee AN e N <a’t+1,iet+l +j=zt+2ahej> ’

GN NGt e N AeAe)
1
E')\‘l"' NeQyiy, g

#0.

But then 7,(Cy,(A)) = 1/2| N+« Na@yprs| > [Ny = = » Mhi iy | =0, contradicting
the assumption that (13) is equality for m = ¢ + 1. Thus

A—(t+1) =0.
Suppose that we have shown
A(t+r) :O’T: 17 "'915_ 1.

If there exists an element a,.,; ¢ > t + k, which is nonzero we see
that the (1,---,¢, t+k), (1,-- -, t, %) element of C,,(A) is N\, « « Ny, 70,
Let2" =1/1/2(e, A +++ A e, A ey + 6, A -+ Ne, A e)eG,,, and note
that

(Ci1i(A)z?, 2") = —;—)\'1 co Nlhyyg,

0,

contradicting the fact that r,(C,.,(4))=0. We conclude that B=0,_,
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and hence that 4 is normal.

Proof of Theorem 3. Once again we may assume that
Ny *
A. - ) * . ’
O M

so that C,(A) is also upper triangular. Let a¢e@,. 7€®Q.., and
assume 7>, i.e., 7 follows @ in the lexicographic ordering. Moreover
suppose that |lanNvY|=m — 1,i.e., Ima and Im7Y overlap in m — 1
places. Then if |s|* + |t]? = 1, se} + te} € G, and
(18) [(Cu(A)(ser + tel), sea + tef)| = [Ny o v Myl ;

[(Cu(A)(ser + tep), sex + te)| = |$"Cu(A)a,a + sTCH(A);,a

+ t8Cu(A)a,r + [L[PCu(A);,;
= [8["Ne + 8p(7) + [t]N,

where p(7) = C,(A)..1;

(Ca(A)(sea + te)), ser + tep)| = [\ "

3 [
[+ Ep() + (8]
where [\ = |\ | and ¢ # 0. From (18) we have

[1sn + Lop) + (810

=M.

Applying the Elliptical Range Theorem to the matrix

M\, 20) }
Cc
0

tells us that unless p(7) = 0 there exists an s and ¢, [s|* + [t? =1,
for which [[s®\; + t5/ep(Y) + |t|®N;]| > |N,|. Thus

Cu(l),; =0 if @aecQ,,v>a, and |an¥|=m—1.

The elements of row a of C,(A) are the Pliicker coordinates of the
decomposable tensor A,;, A -+ A A.. and therefore satisfy the
quadratic Pliicker relations:

19)  p@p() = 3, plls, t: Dot sal), s=1, 0, m.

For v>a,lanY|=m —1, we have seen that p(Y)=0. Let
Y>a, l[anv|#=m — 1. Pick s in (19) so that a(s)¢Im v. Then
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|afs, t: YN a| = m — 1 so that the first factor in each summand of
(19) is zero. Since P(@) = Ngy ** * Moty = 0 We have p(7) = 0, i.e.,

(20) (Cm(A))a,T = 0) (4 4S] Qm,u @ i v .
From (20),
Avy N oo A Apimy = Nty * 0 Natmd@ais A 200 A €aim) »

which in turn implies the equality of the subspaces spanned by the
two sets of vectors, i.e.,

(21) <Aa(1), Y Aa(m)> = <ezx(1)y M) ea(m)>7 Qe Qm,s

Kz, +--, x,» means the linear span of z, ---, 2,). Since s > m, for
each 7€{l, ---, s} there exist sequences «, :---, @, €Q,, , such that
i} =Nt Ime;. If xeQ@,, then each a(i)e{l, ---, s}, =1, -+, m,
so that there exist sequences «,, ---, @, such that {a(7)} = N, Im «;.
Therefore,

Aa(i) € Dl <Aaj(1), ) Aaj(m)> = [31 <eaj(1)y ) erxj(m)>’ (from (21))
= <6a(i)> .
Hence A = T + B where

Negr *
T= dlag (N“ Tty Ns)r B =
Ay,
Finally, suppose there exists u € C* ¢, ||w||=1, such that |(Bu, w)|>|\,].
Let
z,=e,t=1 -, m—1,
Lo = O+u: (Or "':07 WUy * un-—s) .

Then
Ny O

|(CulA)a", &) = |det |

w oo x (Bu, u)
=Ny 2o+ Mpy(Bu, )|
> [)\,1 o )le ,
contradicting the hypothesis that C,(A) is decomposably spectral.

Therefore r(B) < |»,| and by (12), A is spectral.
To prove the converse, observe that 7,(C,(4)) = |»|™ Suppose
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74Cn(A4)) > |\ ™. Then there exists z* € G,, such that
[Cu(A)z?, M) | > [N]™

Without loss of generality we can assume 2, ---, 2, are o.n. Let
Ue, =2,,7=1, ---, U unitary, and compute that

[(Co(A)z", 2M)| = [(Cu((U*ATU)e, A <=+ A emyer A =+ N )]
= |detU*AU[L, -+, m|1, +--, m]| .

Letting B=U*AU]1, ---, m|1, ---, m], we have
| det B| > [ |™,

so that B has an eigenvalue \ satisfying |X| > |\,|. There exists a
unitary m-square V for which

X
V*BV =| .7
O *
Let W=V + I,_, and note that
X
. i}

O |
WU AUW = | oo

Let X =UW; X“, the first column of X, is a unit vector and

[(AX®, X)| = [(X*AX),|
=X >N
But this contradicts the fact that »(4) = |\,;|. Therefore, 7,(C,(4)) =
™

In the second part of Theorem 3 the hypothesis s = m is necessary.
For, let

b

I
© o~
© o o

and note that

';_(Cz(A){% Nes+ e A6l {e, A\e + e N &) =1>Ax\=0.
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Also the hypothesis s > m in the first part of Theorem 3 is necessary
as the following examples illustrate:

1107
A=0 1 o,
0 0 o0
10 0]
C ) =10 0 of;
0 0 o]
then 7(Cy(A)) = 1 = M), but r(4) = 7‘([(1) ﬂ) > 1
o117
A=l0o L o
2
0 o ol
% .
Cy(4) = ;
W=145 0 0
Lo o ol

then 74Cy(A4)) = 1/2 = M\, but 7(4) = r([(l) 11/2]) > 1. Also observe

that although Theorem 3 implies that if C,(A4) is spectral, m <s,
then A is spectral, the converse is false. For example, let

0 0

1
. [0 2 2
aclo 1o+ e 7).
0 01

Then 7(4) =1 but T(CZ(A))g’r([g 8]) =2 so that C,(4) is not
spectral.
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