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ON THE HAUSDORFF-YOUNG THEOREM
FOR INTEGRAL OPERATORS

BERNARD RUSSO

A sharp inequality of Hausdorfϊ-Young type is proved for
integral operators. Applications are made in operator theory and
in harmonic analysis on locally compact groups.

In recent work the author stated an inequality of Hausdorίϊ-Young
type for integral operators which proved to be useful in obtaining Lp

estimates on certain locally compact unimodular groups. The present
paper is devoted to a closer analysis of that inequality together with some
applications to operator theory and to Lp-Fourier analysis on locally
compact groups.

In the first place, the proof given previously in [15 I], for the
inequality is incomplete, so this paper will begin in §2 with a correct proof
of the inequality (Theorem 1). Also shown in §2 is the nonexistence of
extremal functions in a particular instance (Prop. 8). In §3 the results of
§2 are applied to obtain estimates for the norm of the Lp-Fourier
transform on certain unimodular groups. Here some of the machinery
from [10] is used in the examples, one class of which (Prop. 13) does not
depend on Theorem 1. This has happened before, see [151: §3]. For
certain members of this class however, it is shown that a better estimate
can be obtained using Theorem 1 (Prop. 15). In §4 the study of
Hausdorff-Young inequalities on nonunimodular groups is initiated. In
view of the recent work on Plancherel formulas for nonunimodular
groups such inequalities with constant 1 might be considered routine. It
is shown here using Theorem 1, that the natural Hausdorfϊ-Young
inequality on the "ax + 6" group has a constant less than 1 (Prop.
19). In §5 an operator valued analog of the Fourier transform on
Abelian groups is introduced, which is motivated by preceding sections,
and it is shown, using Theorem 1, that it behaves in some respects like the
Fourier transform (Prop. 20).

2. The Hausdorff—Young Theorem for integral
operators. Let X be a σ-finite measure space, k E L2 (X x X), and
let K be the integral operator with kernel fc, i.e.,

(1) Kf(x) = j k(x,y)f(y)dy, f E L\X\ x E X.
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242 BERNARD RUSSO

For 1 ̂  p, q < °o the mixed norms (cf. [3]) are defined by

(2)

with the obvious meaning if p or q is », and A: * is defined by
k*(x, y) = k(y,x). For any bounded linear operator T on L2(X)

(3) || Γ||Γ = {tr(Γ*Γ)r/2}1/r, 1 ̂  r <oo,

and ||T||oo = the operator bound of T. Then cp denotes the set of
operators T with | |Γ | | P <oo.

THEOREM i. Let \ < p < 2, p' = p/(p - 1) and let k G L\X x X)

where X is a σ-finite measure space. If K is the integral operator with
kernel fc, then

The proof will be preceded by five lemmas, the first three of which
are proved by standard measure theoretic techniques.

LEMMA 2. If p, gG[l,°o) and || k ||p, q < °°, then there exist simple
functions {sn} on XxX (independent of p and q) such that
II k - S n | | p , 9 - * 0 and ||fc* - s*n\\p,q - » 0 .

LEMMA 3. Let E be a measurable subset of XxX such that
IIΛΈ \\p, q < °° for some p,q G [1, °o). Then

lim H^FLI, = 0

FCE

where \F\ is the measure of F and χF is the characteristic function ofF.

LEMMA 4. For each measurable subset E of Xx X of finite measure
and each δ > 0, there exists a set F which is a finite disjoint union of
measurable rectangles such that | £ ' Δ F [ < δ .

For the convenience of the reader it is remarked that the sequence
{sn} in Lemma 2 is just the usual one [7: (11.35)], Lemma 3 is a
consequence of dominated convergence, and Lemma 4 can be reduced to
the case of a finite measure space whence the proof follows by showing
that the collection of sets with the desired property is a monotone class.
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LEMMA 5. Let Z = X x X and define φ E L\Z x Z) by φ(z, w) =
k{zu Wι)k*(z2, w2) for z = (zu z2), w = (wu w2)EZ. Let Φ be the in-
tegral operator on L\Z) with kernel ψ. Then

(1) lklU = lk*IU = ||/c|U||/c*|U/orp^e[l,oo].
(2) ||Φ||, = 11*11?/" l ^ r ^ .

Proof. (1) is immediate from the definition of the mixed norms and
(2) is immediate once it is noticed that Φ = K(g)K*.

REMARK 6. If K = Σ Λ έ <8>Ψ«, λ< > 0, {£}, {Ψt} ON sets in L2(X), is
the "spectral" decomposition of K in the sense of [16], then Φ =
Σ(ι,y)λ,λy(£ xΨj)0(Ψt x ξj) is the "spectral" decomposition of Φ.

The following crude estimate was known to the author in 1972 and
appears in [14].

LEMMA 7. Let k =ΣT=ιatχAiXB, where α , G C and {A, xβ,}*i ore
pairwise disjoint measurable rectangles in X x X. Then for 1 < p < 2,

(5) || K||p^21/"'max (||k ! ! „ , || fc •!!„.)•

The proof of (5) is an adaptation of a standard interpolation
argument inspired by [3: §7] and based on the validity of (4) at the
endpoints p = l,2. The crudeness of the result and the neces-
sary modifications are due to the circumstance that although ||fc | | l i X (resp.
||fc*||i,oo) and ||fc||2,2 interpolate to \\k\\p,p> (resp. ||fc*||p,p<) it is prob-
lematical whether max (|| k ||i „, || k * ||i «) and || k ||2 2 interpolate to
O(max || || !!

Proof of Lemma 7. Assume that | |k | | p , p ^ 1 and \\k*\\PtP.^1. For
ξ EC define a function kξ by the rule

(6) fcf(JC, y) = I fc(x, y)|(2"ί)p/2sgn k(x, y)M(x, y ) - ^ ^ ^ v 2

when /c(x, y ) / 0 and fc^(jt, y) = 0 if fc(jc, y) = 0 where M(x, y) =
max(||fc(jc, )||p, ||k( ,y)||P). The function /ĉ  is supported on a set of
finite measure and bounded for ξ in the strip Ω: 0 ^ i R e £ ^ l . Thus
kξ E L\X x X) for ξ E Ω and so defines an integral operator Kξ which is
at least Hubert Schmidt. Let A be a finite rank operator on L2(X) with
polar decomposition A = V\ A | and assume \\A \\p S 1. Set

A ξ = V\A\i2-ξ)p/2 for £ E C
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so that Aξ is Hubert Schmidt and KξAξ is trace class for ξ E Ω. Thus
F(ξ) = tr (KξAξ) exists for ξ E Ω and we have

It is easily verified that F is analytic in the interior of Ω and continuous
and bounded on Ω. For t real, \\Aιt ||, = | |Λ | | ^ 1; ||feIf | | K a c g 1, and

i k - = 1. Thus (7) with p = I, ξ = it and the case p = 1 of (4) imply
/ f ) | ^ l . Again for t real, | |A1+I, \\l = \\A \\p

p^ 1, and ||ik1+lf | | ^ 2 , the
latter since

fc1+1,1
2 = I k \'M'-",

where 5 = {(x, y ) G X x X : ||fe(x, ) | |p ^ ||fe( , y)| |p} and T = X x X - S,
so that

k(x,y)\?\\k(x,-)\\p

P~
Pdxdy

•j jτ

Finally (7) with p = 2, ^ = 1 + /ϊ and the case p = 2 of (4) imply
|F(1 + i ί ) | ^ V 2 . By the three lines theorem \F(s + it)\^(V2)5 for
every real 5, 0 ^ 5 ^ 1. Putting 5 = 21 p' and ί = 0 results in |tr(JKΆ)| =
I F(2/p') I ̂  2W so that || K ||p. = sup {| tr (KA) |: || A ||p ^ 1, A finite rank} ^
21/p and (5) is proved.

Proof of Theorem 1. By an approximation argument using Lem-
mas 2, 3, 4 (and described in [15-1: p. 301]) (5) holds for arbitrary
k E L\X x X). For a given k define Xfl = X x X , t 0 4 and for n ^ 1,
Xn = X . , x X n _ b fcπ(z, w)=fcn_1(z1,w1)fcί_1(22, w2) for z = ( z , , z 2 ) and
M/=(wi,w 2)6Xn. Let Kn be the integral operator on L2(Xn) with
kernel kn. By Lemma 5

\\Kn\\p, = \\Kn^\\2

p, π = l ,2,

I I ^ L p ' = l | k ϊ L p ' = l | fc- iLpΊ | fc :- i lL n = i ,2 , -

and by L e m m a 7

fcn!U.,||/c:||p,p.) n = 0 , 1 , 2 , .
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It follows that

||x||p^(21/"T"(llfeLp'llfe*Lp')1/2 n = i,2,-

and (4) follows by letting n—>oc.
For the first application consider kernels of the following sort: let /

and g be measurable functions on R" and let k(x, y) = f(x - y)g(y) so
that the corresponding operator K has the form K = LfMg, Lf =
convolution by /, Mg = multiplication by g. The following inequality,
valid for 1 < p < 2, 1/p + 1/p' = 1, can be obtained from Theorem 1 or by
using a known interpolation theorem [11: Th. 3]:

(8) IlL.Mj^ll/UJglU

Although it is not known if 1 is the best constant in (8) the following
result seems to indicate that it is not.

PROPOSITION 8. If the two sides of (8) are equal and finite, thenf = 0
a.e., or g = 0 a.e.

Proof. Note first that || k ||p, p. = || / ||p || g ||p< and by a change of variable
and Minkowski's integral inequality, that

(J pip'

By assumption \\K\\p, = \\k ||p,p^ so by Theorem 1

p = ||K||P- and so there is equality in (9), whence [5: p. 148]

g ( * - y ) l p = <p(*)ψ(y) a e ( χ ' y ) T h i s f o r c e s / = 0 a e ' O Γ

g = 0 a.e.

REMARK 9. Since it is not known if extremal functions exist in
general or even in this example it cannot be asserted at this point that

3. U n i m o d u l a r groups . In this section Lp estimates are
obtained for some examples of unimodular groups whose Plancherel
formulas were derived in [10].

If G is a locally compact separable group and ω is a multiplier on G,
then the set of equivalence classes of irreducible ω -representations of G
is denoted by Gω. If the group G(ώ) has a type I regular representation
and if G is unimodular then there is a measure μ = μa ω on Gω such that
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(10) ί \\πξ(f)\\ldμ(ξ)=ί \f(x)\2dx, f E L\G) Π L\G),
Jό" JG

where πξ E ξ for μ -almost all ξ. This is the unimodular version of the
projective Plancherel theorem of Kleppner and Lipsman [10 I: Th.
7.1]. As an immediate consequence of (10) and [12: Th. 3] one has:

PROPOSITION 10. Let G be a locally compact separable unimodular
group with normalized multiplier ω such that G(ώ) has a Type I regular
representation. Then for Kp<2 there is a constant | |^ P (G, ω ) | | ^ 1
such that

) W / f \ι/P

s||^(G,ω)«(J |/(*)|'<lx)

forfELp(G), where l/p + l/p'=l.

REMARK 11. It is natural as a generalization of [15] to try to
improve the estimate || &P(G, ω)|| ̂  1 as G and ω vary. This question is
not pursued here. For the example G = R2 and ω = ωy presented in [10
I, p. 490] one can easily show, using Theorem 1, that ||^P(R2, ωy)\\^Ap

(<1). It is also clear that the exact value of ||^,(R2, ωy)|| can be
obtained once ||0P(R)|| is known (see §5).

PROPOSITION 12. Let G be unimodular and of type I and separable
and let N be the center of G. Suppose that for all y E N, the group {GIN)
(ώy) is of type I. Then

| |S (G) | | s i | |0 (N)|| for I g p 5 i 2 .

Proof. For groups G satisfying the hypothesis the Plancherel
formula is described in [10 I: Th. 8.1]. That and an interpolation
argument as in Prop. 10 imply

for φ E LP{G\ 1< p < 2, 1/p -f 1/p = 1, N = Cent G. Recall from [10
I] that ττ%σ = γ'(g)σ" where γ ' is an ωΎ-representation of G which

extends γ E N and σ" is the lift of σ E (G/N)ώ- to G and ωy is the
multiplier on G/N corresponding to γ. It follows that
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πyσ(ψ)=ί φ(g)Ύ'i8)<r"(g)dg = I ί φ(ng)y'(ng)σ"(ng)dndg
JG JGIN JN

φ(ng)ωy(n, g)γ(n)y'(g)σ(g)dndg
JGIN JN

= σ(Ψy) where Ψy(g) = [<p( g R ( ,g)γ'(g)]Λ(- γ).

Therefore

\\Φ\l=\ ί_ \\σ(
JN J(G/N)*y

§ ί \\Ψy\\ϊdγ = ί ( ί
JN JN \JG

a / Γ

G/N

P'lP

G/N
Mι>gK(n,g)γ'(«)|'<fπiig

ί \ψ{ng)Ydndg)P'P =
JN /

' *

GjN

This result is meaningful only if | | ^ P (N) | | < 1, i.e., N = Cent G has
no compact open subgroups, e.g., if G is a connected simply connected
real nilpotent group. It can also be applied to certain solvable groups
e.g. the oscillator group, and to an example of a semi-direct product given
in [10 II: §3 (c)] which gives rise to the Weil representation. The
estimates given by Prop. 12 for these examples are still crude. For
example, for the Heisenberg group Γ3 with one dimensional center it is
already known that | | ^(Γ 3 ) | | ̂  A2

P< Ap = | |^P(R)||. Note that Theorem
1 was not used in the proof of Proposition 12. The next example
satisfies the hypothesis of Proposition 12 but has a compact
center. However a meaningful estimate can still be obtained by using
Theorem 1.

EXAMPLE 13. Let Gλ = G/D where G is the three dimensional
Heisenberg group and D is the subgroup

D =
1
0
0

0
1
0

2τra λ

0
1 .

\
: nEZ

I
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The Plancherel formula is given in [10 I: p. 514]. It reads

(13) = ί
J R 2

for φ E:L\Gλ)ΓiL\Gλ), where for n^O the kernel of the integral
operator πn(φ) is kn(x, u) = φ(x - u, , ) Λ ( - nu, - n) (Fourier transform
on R x T ) and τr0,σ is just the character on R2 given by σER 2 .
Interpolating (13) yields

\Φ
JR

Now

Σ = Σ |n I ί ( ί

= Σ ί (ί \
nϊo JR \ JR

s( f (Σ ί
\ JR \ n^o JR

^ (F(x)-

P'/p

=| |F-G U

where F(x) = ||φ(jc, , )1l?: and G ( X )

F-G^O so by [7: (13.9)], | | F | | p / p ^ | | F - G | | p / p .

o,0)|"'du. But

, Thus

"(I (L

p'/p

P'/P

Similarly

llp/p'

and therefore
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:̂  ί
JR

1/2
*\\p'
n \\p,p'

P'IP

since

o, σ (φ ) \pdσ = I I I TΓo, (ω, v)(φ ) \p dω dv

= ί I \φ(ω,v,0)\p'dωdv

P'IP

We conclude:

PROPOSITION 14. For ί/ι̂  grow/? G] of the preceding example

4. Nonunimodular groups. The result of this section is
worked out for the two-dimensional solvable group G known as the
"αx + ft" group. It is clear that a calculation virtually identical to that
given below will establish similar results for all of the solvable groups
considered in [8: Ch. 4]. Before describing which realization of G will
be used it is noted that in this section the Fourier transform on R" is
defined by

/ ( y ) = ί
JR

and therefore
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(14) ((-ΔYnf)*(x) = (2*\x\Yf(x) [17: p. 117]

where Δ is the Laplacean.
Let G = R x Rΐ with group operation (λ, s) (μ, t) = (λ + sμ, st) right

Haar measure dRx = dλ ds/s, and modular function δG(λ, s) = 1/s. The
Piancherel formula for G may be stated as follows [13: Th. 4] (cf. [101,8,
9]): there is an operator M in-L2(G) such that

(15) | | Ψ | ^ | | π + ( Ψ ) | g + ||7r-(Ψ)||2
2= f

J

for Ψ E C%G). This M is determined in Proposition 15 and {τr+, τr_}
are the two infinite dimensional members of the unitary dual G of G,

PROPOSITION 15. Let G be the "ax + ft" group, and let K p ^ 2 ,
l/p + l/p'= 1. Then

where Mp = (2τr)l/pJ(- Δ)"l/2p'(g)/. Equality holds (for all Ψ) /or p = 2.

/. The representation τr± can be realized as acting on
L2(Rΐ, ds/s) by (π±(/i, ί)g)(s) = e^^gίs ί) , g e L2(R*, ώ/s), (/i, ί ) e G ,
5ERί . Then τr±(Ψ) is an integral operator with kernel fc±(ί, s) =
ψ( , /)Λ (± 51/"1). Letting Σ denote summation over { + ,-},

< y (\\k \\p' \\k*\\p' V/2

= Z^ Ml ̂ illp pΊI κ ± IIP P'/

/ ^ . \ 1/2 / -^ \ 1/2

< y lit Hp' i / y ιιt*i|p' ι

Now

(ΣJo

α
00 / f30 \PiP'dt\P'iP

t (jχ |Ψ( ,0 A (λ) |λ |-" |''dλ) f )
= (f
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The same inequality holds for Σ||fcί||£p and the result follows.

5. Analog of the Fourier transform. Let G be a locally
compact Abelian group with dual group G. For a measurable function
F on G x G consider the kernel feF, kF(a, β) = F(a - β, )A(β\ a, β G G
and the corresponding integral operator KF defined by KFφ(β) =

kF(a, β)φ(β)dβ. Using the estimates \\KF\\X^\\F\\X and ||tfF||2 = | |F | |L 2

and the general theory of interpolation one obtains a mapping
ϋp(G):Lp(GxG)^cp

norm ^ 1: | | K F | | ^ | |F
p(G):Lp(GxG)^cp(L2(G)l where K p < 2 , l/p + l/p '=l , of

| | P .

This type of kernel appears in the Fourier decomposition of the
Heisenberg group, see §2 (cf. [4: §2], [15 II: §2]).

PROPOSITION 16. Let G be a locally compact Abelian group and let
1< p < 2. Then

(1) \\0p(G)\\^\\9p(G)\\
(2) ||ί?p(G)|| = 1 // and only if G has a compact open subgroup.
(3) If\\KF ||p. - || ®p(R)|| || F\\p and pr is an even integer then F = 0

a.e. (G = R).

Proof. (1) Using Minkowski's integral inequality and changing
variables one obtains that ||fcF||p,P' and ||fc*||p,P' are both ^ | | ^ P ( G ) | | | | F | | P

so (1) follows from Theorem 1. (2) If | | β , ( G ) | | = l then by (1),
||^p(G)|| = 1 so G has a compact open subgroup by [6: §43] or [15 I: Th.
2]. Conversely if G has a compact open subgroup H, then setting
F(α, x) = cχH 1 (a)χH{x) where c is the measure of H one finds that
||1CF||P. = | |F| |P . (3) The assumption implies that ||fcF||p,^ = \\k*F\lP =
||^p(R)| | | |F| |p and hence that F(α, •) is extremal in LP(R) for a.e. a and
that \F(arV(β)\p = Φ(a)Ψ(β). Thus

F(α, β)= c(α)exp{- a(a)β2+ ib(a)β}

where c(α)6C, α ( α ) > 0 and b(a)ER. One finds that

F(α, )Λ(i3) = const c(α)/(α(α))1/2 x exp{ - (6(α) - β)2/4a(a)}
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and and it follows from the above conditions that a(a) and b{a) do not

depend on α. Thus F(α, β) is of the form f(a)g(β), g Gaussian, so that

KF = LfM§ and ||y,(R)||||F||, - ll^Willl/IUigllp = WfίM II, S
\\LfMg ||P' = | |XF|IP' By Proposition 8 / = 0 o r g = 0 a.e. so F = 0 a.e.

REMARK 17. The property (3) in Proposition 16 indicates but does
not prove that the numbers SFP{G) and 0p(G) are either distinct or both
equal to 1.

REMARK 18. The behavior of 0p on products is not as simple as
that of 3FP. In particular the computation of ||(?P(RΠ)|| is not automati-
cally reducible to that of | |0P(R)| | (cf. [2: Lemma 2]).
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