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TORSION FREE ABELIAN GROUPS
QUASI-PROJECTIVE OVER

THEIR ENDOMORPHISM RINGS

C. VlNSONHALER AND W. J. WlCKLESS

Certain classes of torsion free abelian groups which are
quasi-projective as modules over their endomorphism rings are
characterized. The main results concern completely decompos-
able and strongly indecomposable groups.

1. Preliminaries. Abelian groups which are quasi-projective
over their endomorphism rings have been characterized by Fuchs in the
torsion case. His methods have been extended by Longtin to the
algebraically compact and cotorsion groups [5]. In this paper, we
investigate some other classes of groups with this property. Specifically:

DEFINITION. A (left) module M over a ring R is quasi-projective
provided the natural map HomR(M, M)—>HomR(M,MAK) is epic for
every submodule K, of M.

An abelian group G will be called £-quasi-projective (Eqp) pro-
vided G is quasi-projective as a module over E =
End (G). Henceforth, the word group will denote a'torsion free abelian
group. Other notation follows Fuchs [4], in particular, t(G) - type G
for any group G of rank 1.

The following simple lemmas will be quite useful.

LEMMA 1.1. Let G be Eqp and K a fully invariant subgroup of
G. Then G/K is a quasi-projective E-module.

Proof. See Proposition 2.1 in Wu and Jans [9].

LEMMA 1.2. Let G be Eqp and K a fully invariant subgroup. Then
ZE, the center of E, maps onto HomE(G/K, G/K).

Proof Let Π: G —» G/K be the factor map. Since G is Eqp, for
every θ GHom £ (G/X,G/X), there exists a G Hom£(G,G) = ZE such
that Πα = ΘU.

LEMMA 1.3. Let G be Eqp and K a fully invariant subgroup such
that G/K is torsion. Then if ZE is countable, G/K is bounded.
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Proof. If G/K is unbounded and torsion, then HomE(G/K, G/K)
is uncountable: it must contain either a copy of Q* (the ring of p-adic
integers) for some prime p, or a direct product of an infinite number of
cyclic groups. Hence the result follows from Lemma 1.2.

2. D e c o m p o s a b l e g r o u p s . In this section, some classes of
decomposable Eqp groups are characterized, including completely de-
composable and homogeneous separable groups.

We begin with completely decomposable groups, those groups G
isomorphic to a direct sum of rank one groups.

LEMMA 2.1. If G = 0 I E J ΣA, is a direct sum of rank one groups,
then G is indecomposable as an E-module if and only if given any two
summands A, and A}, there is a finite sequence A, = AM, Ai2, , Aln = A}

such that t(Alk) is comparable to t(Alk^) for k = 1,2, , n - 1.

Proof. If S is a subset of the set {A;},G/, define I(S) = {A, | t{A{) is
comparable to t(Am) for some Am in S} and In(S)= I(Γ\S)). Then it
is easy to see that for a fixed Aw 0 Σ { A , | A, E U; = 1 I

n(Ak))} and
0 Σ { A , I A, §L U*= 1 I

n(Ak) are £-submodules whose sum is G. The
lemma follows immediately.

LEMMA 2.2. If G = 0 Σ A , is completely decomposable and inde-
composable as an E = E n d ( G ) module, then ZE C Q.

Proo/. Maps in Z E must commute with projections and maps
Ax->Ar The fact that G is E-indecomposable and Lemma 2.1 imply
that any map in ZE multiplies each A, by the same rational number.

THEOREM 2.1. Let G = 0 J G / A, be a direct sum of rank one groups
such that G is indecomposable as an E-module. Then the following are
equivalent:

1. G is Eqp.
2. The type set T = {tι\tι — t(At) for some i} satisfies :
(a) // tn tj G T and tn t} ^ tk for some tk E Γ, then tn t} ̂  t{ for some

h G T ;
(b) Countable descending chains in T are bounded below
(c) // ti G T is finite at an infinite set of positions {py}, then 3tk E Γ

5wc/ι ί/iαί ίfc /s 0 αί an infinite subset of {pj}.

3. If K is a fully invariant subgroup of G such that G/K is torsion,
then G/K is bounded.

Proof. (1) φ (2). Let t , ί/? 4 E T such that ίi? t, ̂  ίk. Suppose
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there is no t} such that ί, ^ tn tr Let K = 0 Σ{Am | ίw ^ f, and
r w ^ ί,}. Then K is a fully invariant subgroup of G, and G/K is a direct
sum of two E-modules, G/K = Bλ 0 B2 where Bi = 0 Σ{Am | tm S £•} + X
and B2

 = 0 Σ{Am | tm ^ t}} + K But multiplication by integers nλ on £?!
and n2 ¥=• nx on B2 is an jE-map of G/i£ to G/K which is not induced by a
map in ZE. By Lemma 1.2, this is a contradiction.

Now suppose tn ^ ί/2 g is a countable descending chain of types in
T which is not bounded below. Let p be a prime not dividing Aπ and
define K to be sum of {A^t^Q and {p*A711, ^ ί/k, ίy^ ίIk+I, k =
1,2, }. Then i£ is fully invariant and G/K is an unbounded torsion
group. Since G is £-indecomposable, by Lemmas 2.2 and 1.3, this is a
contradiction.

Finally, assume t0 E T is finite at an infinite set of positions {p}}, and
suppose no tι ^ t0 is zero on an infinite subset of {/?,}. Then for each
tt === /0, choose x, E A, such that ^-height xt ^ 1 /or α///?r Now let // be
the minimal fully invariant subgroup containing the JC,. Since
homomorphisms do not decrease height, (l/py)x0 £ H for any pr Thus
Ao/Afl Π // contians a copy of Z(p}) for each p r By Lemma 1.3 this is a
contradiction.

(2) φ (3). Let H be fully invariant in G such that G/H is
torsion. Suppose first that for some An At/Ai Π H is unbounded, with
nonzero /?fc-component for an infinite set P = {pk} of primes. Note that
AJAι ΠH contains no Z(px) since rank A, = 1 and Aι Π H is fully
invariant in A,. We may, therefore, assume that tx is finite and positive
at all pk E P. By condition 2(c), there exists t} < tt such that t, is zero at
an infinite subset of P. Since H is fully invariant and t} < tt, A, Π ί ί C
pkA, implies A ; Π H C pkA} for all pk E P. This is impossible since tf is
zero at infinitely many pk.

Now if G/H is unbounded, choose a countable sequence A,,, A,2,
such that 0 Σ*=1 Alr/Alr Π H is unbounded. By conditions 2(a) and 2(b)
there exists a fixed A, with ί, ^ ίIr, for all r ^ 1. It follows that AJAt Π H
must be unbounded. This is impossible, as above.

(3) φ (1). It is easy to show that if G/K is bounded for all fully
invariant K with G/K torsion, then Hom E (G, G/K) = {nU\ n E Z}
where Π : G - > G / K is the natural factor map. It follows that
Homg(G, G IK) = {n Π | n E Z}, for any fully invariant K

The above theorem characterizes the completely decomposable Eqp
groups since any completely decomposable group G may be expressed as
a direct sum 0 Σ G , of E-indecomposable subgroups which are com-
pletely decomposable, and in this decomposition End(G t ) = J5|Gl.

COROLLARY 2.1. Let G be completely decomposable of finite rank
with type set T. Then G is Eqp iff Tsatisfies 2(a) and minimal types in T
are idempotent.
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Proof. T is finite so that minimal types are idempotent iff 2(c)
holds. Since 2(b) holds vacuously, the result follows.

COROLLARY 2.2. Let G = 0l€Ξ/ ΣA with {A, | i G /} rigid [4]. Then
G is Eqp i/f ί(A.) is idempotent for all i G /.

Proof If {A,} is rigid, (a) and (b) hold vacuously and (c) holds iff
each t(At) is idempotent.

REMARK. Since E is commutative if {A,} is rigid, Corollary 2.2 can
also be derived from a trivial modification of a result of Arnold ([1],
Theorem 1.1).

EXAMPLE. The following is a nontrivial (uncountable E-
indecomposable) example of a completely decomposable group satisfying
2(a), 2(b) and 2(c) of 2 in Theorem 2.1.

Define a relation on the set / of all infinite subsets of the natural
numbers by S ^ T iff S \ T is finite. Let {Sa} be a maximal chain in
/. It is easy to see that {Sa} is uncountable. For each α, define a type ta

by ta = [<JC Γ>] x°! = 1, i £ S α ; xΓ = 0, /£ Sa. It is easy to see that {ta}
satisfies 2(a) and (b) of Theorem 2.1. By the maximality of the chain
{Sα}, {ta} also satisfies 2(c). Let A = 0 Σ A , where Aα is of rank one
and type ta. Then A is Eqp by Theorem 2.1.

We next characterize homogeneous separable Eqp groups ([4], §87).

LEMMA 2.3. Lei G fee homogeneous and separable. Then ZE C O

Proof. This is an easy exercise. (See [4], Problem 12, page 235.)

LEMMA 2.4. Let G be homogeneous and separable. Then, for all
nonzero fully invariant K C G, we have G/K is a torsion group.

Proof Let 0 / K be fully invariant in G. Choose 0 ̂  x G
X. Since G is homogeneous separable we can write G = OO*0G',
where (*}* denotes the pure subgroup generated by x. If G' C K, then
GIK = (x)*l{x)*C\ K and G/K is torsion. Otherwise, choose y €Ξ
G'\G'0K. Since G' is also homogeneous separable, write G =
(*)*Θ(y)*Θ G". Since G is homogeneous, there exists a G £, n G Z +

with α(x)= ny. Thus, ny G K Since y was an arbitrary element of
Gf\GfΠK, we have G/K = (x)J(x)*Π KQG'/G'nK is torsion.

REMARK. The claim made in Problem 13, page 235 of [4] is
incorrect. Any rank one group of nil type will sei e as a
counterexample.
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A group G is called strongly irreducible iff for all nonzero fully
invariant JKΓC G, G/K is bounded. (See [7].)

THEOREM 2.2. Let G be a homogeneous separable group. Then G
is Eqp iff G is strongly irreducible.

Proof. If G is homogeneous, separable and Eqp, Lemmas 1.3, 2.3
and 2.4 show that G is strongly irreducible.

Conversely, let G be strongly irreducible, homogeneous and
separable. Let K/ (0) be fully invariant in G and θ E
Hom(G, G/K). Write G/K in its primary decomposition, G/K =
®Σ?=](G/K)Pι. Say, for some fixed p} E {pt | ί = 1 N}, we have
(G/K)P/ = 0 Σ α e Λ > f t ) with order (αα) = p;

s«, sa ^ s, (Here ά =
a + K). Since 0 is an £ map and G is homogeneous separable, it is
easy to show that, for some fixed m} E Z + , we must have θ(aa) = rnfia for
all a E A,-. Choose m E Z+with m = nijipfij = 1 -N. Then Πm =
ft

The final results of this section deal with groups G which can be
written as a sum of two groups related in a special way. We will need
the notions of outer type (OT) and inner type (IT) of a group as defined in
Warfield [8].

THEOREM 2.3. Let G = A®B where IT (A) > OT(B) and let E =
End(J3). Then G is Eqp iff B is Eqp and rank ZE = 1.

Proof. ( Φ ) Let K be an E-submodule of B. Then A φ K is an
£-submodule of G since Hom(A, J3) = 0. Therefore, any E-map
θ: B-^B/K, induces an jE-maρO0 0: A 0 J B - * A 0 B / Λ 0 K which
must lift to a map in ZE of the form αφjS, where α: Λ ~> A,
/3: B->B. It follows that̂  0 is an £-map which lifts θ.

Now suppose rank ZE > 1. Choose γ E Z £ and b E B, such that
6, γ(6) are independent. Then 0 φ γ : Λ φ β - ^ ( Λ (&B)IA is an £
map and lifts as above to a map of the form a 0 β in ZE. Since
IT(A)>OT(B), there exists δEHom(B,A) such that δ(b) = 0 and
S(y(b))^ 0. But then 0 = αS(/?) = <5/3(6) = δγ(b) ̂  0, a contradiction.

(<=) Let K be a fully invariant subgroup of G, and θ: G—»G/l£
an E-map. Then iC = K Π A 0 K Π β and 0(i?) C B/B Π X so that (9
restricted to B may be lifted to a map α G Z E C Q . Since ΓF(A)>
OT(B), A = U/ B^Λ Image /. It follows that α: A -» A must be a lifting
of ΘU

REMARK. This theorem may be generalized slightly to the case
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COROLLARY. // G = D φ R where D is divisible and R is reduced,
then G is Eqp iff R is E(R)qp and rank ZE(R)= 1.

3. Strongly indecomposable groups. In this section we
characterize the strongly indecomposable Eqp groups of finite
rank. We start by characterizing the strongly indecomposable, strongly
irreducible ones. Recall that a group G is called strongly indecompos-
able if it admits no nontrivial quasi-decompositions ([4], §92).

THEOREM 3.1. Let G be strongly indecomposable, strongly irreduc-
ible of finite rank. Then G is Eqp iff G / PkG is a cyclic E module for all
nonzero prime ideals P CE.

Proof. Suppose G is Eqp. Since G is strongly indecomposable
and strongly irreducible, we can conclude that £ is a subring of an
algebraic number field F with QE = F. (See [7].) Note that E is
Noetherian and P^ (0) prime in E implies P is maximal. (Since
QE = F, every nonzero ideal I QE contains a nonzero rational
integer. Thus, Ell is finite.)

We show G/PkG is a cyclic E module for all nonzero prime ideals
P CE. If not, let X = {x{ xn} be a minimal set of E generators for
G/PkG, where jc, = xι + PkG. Let H be given by Ex, Π ΣU Ex> =
H/PkG. Then H is fully invariant and G/H = Λ φ β with A = Eϊu

B = Σΐ=2EXn where jξ = x-x + H. This is a nontrivial direct sum decom-
position because of the minimality of X.

Let /, g be the projections from G/H onto A, B and Π: G —> G/H
the natural map. Let f,gGE be such that Π/ = /Π, Ug =
gΠ. Finally, let I = {a E E\a(G)QH}. Then Pk C /, so iCp
(primes in E are maximal). Clearly fg E / C P, so / E P or g E P. If
/ E P, PA = A. Thus, PkA = A, so /A = A. But /A = (0) and A ̂  (0)
— a contradiction. A similar contradiction arises from the assumption
g£P. Thus G/PkG is cyclic.

Conversely, let G be strongly indecomposable strongly irreducible
of finite rank with G/PkG cyclic for all nonzero primes P CE. We
show, for all positive rational integers n, G/nG is E cyclic. Let
nGZ+. Since (0)/(n)CE and E is Noetherian we have (n)D
Pkι Pi?* with the P.'s nonzero prime ideals in E ([10], page 200). Now
the ideals Pff, i = 1 s, are co-maximal in £ ([9], page 176) and, by
assumption, G/Pk G is E-cyclic. It is easy to show (using the Chinese
Remainder Theorem in E) that G/(UPki)G is E-cyclic. Thus, G/nG is
E -cyclic.

Now let θ: G-+G/K be an E map, (0)^K a fully invariant
subgroup of G. Since G is strongly irreducible, nG C K for some
positive integer n. Thus G/K is £-cyclic, say G/K =
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E(g + K). Choose a E E with θ{g) = a(g + X). We claim that a is a
lifting of θ. To show this, it only remains to show that Θ{K) = (0). Let
G InG = E(/ι + nG). Then for any /c E X, k = βh + nx for some
0 E E, x E G. Now β/ι E K, so, since £ is commutative, β{G)Q
K. Thus, 0j3(G) = j3θ(G) = (O) in G / K Finally, 0(fc) =
0|3(/ι)+n0(jc) = O + K This shows that G is Eqp and completes the
proof.

We now consider the general case, and begin with a more general
definition of quasi-projectivity which is invariant under quasi-
isomorphism.

DEFINITION. If R is a ring, an R -module M is almost quasi-
projective, if there exists a positive integer t such that the image of
HomR (M, M) in HomR (M, M/N) is bounded by t for every submodule N
of M.

LEMMA 3.1. If M — Nare {quasi-isomorphic) R modules, and M is
almost quasi-projective, then N is almost quasi-projective.

Proof. Without loss of generality, assume nM C N C M for some
positive integer n. Let K be a submodule of N and
f:N->N/KL Then nf:M->MIK lifts to a map / E Horn* (M,M)
such that Uf = tnf where Π: M->M/K. Then n/ E Hom*(N, N) and
is a lifting of tn2f. Hence N is almost quasi-projective.

LEMMA 3.2. Lei G be strongly indecomposable and almost
Eqp. Then there is a g E G suc/i f/iαί G/Eg is bounded.

Proof. Choose {gι, — ',gk} of minimal cardinality with respect to
GjEgλ + Eg2+ - - - + Egk is bounded. This is possible by Lemma
1.3. If k > 1 , let H = Eg! Π Σf=2 Eg,. Then H is fully invariant and
Σfβl E&/H = Eg, + H φ ΣU Eg, + H. Furthermore, Eg, + H is not tor-
sion since ngj E H => nEg! C H, contradicting the minimality of
k. Since G is strongly indecomposable, any a E E is either monic or
nilpotent (see [6]). But if t is a positive integer such that tG C Σf=1 Eg,,
then ί followed by projection onto Σf=2 Eg, + // is a map from G to G/H
which cannot be lifted, as the lifting could be neither monic nor
nilpotent. Thus fe = 1, proving the lemma.

THEOREM 3.2. Let G be strongly indecomposable of finite
rank. Then G is Eqp iff G is strongly irreducible and G/PkG is a cyclic E
module for all nonzero prime ideals P C E.
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Proof. In view of Theorem 3.1, we only need show that strongly
indecomposable Eqp groups of finite rank are strongly irreducible.

By the preceding Lemma nG C Eg C G for some n and Eg = E/L
(as E-modules) for some left ideal L CJ(E), the Jacobson radical of
E. Therefore by Lemma 3.1, E/L is almost Eqp, with associated
integer ί, for some t >0.

Now for any x E E consider

E/L

/a

E/L -> E/Lx + L

Xι = left multiplication by x
Lx + LCJ(E)/E.

Then nα is an E endomorphism of G, hence in ZE. Furthermore
na - tXi: E —> Lx + L, so that na - tx £ί Lx + L. Hence to E ZE +
Lx + L. This implies LtxQL + L2x, so that t2x E Z(E) + L2x +
L. Continuing inductively ίkx E Z(E) + Lkx -f L. Since L is nilpotent
(L C J{E)\ for some m > 0, Lm = 0 arid Λ E Z E + L. Thus
tmECZ(E) + L, and G - E/L - Z(E) +L/L = ZE/L Π ZE, a com-
mutative ring with identity. By ([2], Th. 1.4, Cor. 3.6, Th. 1.13) G must
be strongly irreducible.

COROLLARY 3.1. Let G be finite rank strongly indecomposable with
rank E < rank G. Then G is not Eqp.

Proof. For any O ^ g E G , £g is a fully invariant subgroup of G
with rank Eg ^ rank E < rank G. Thus, G is not strongly irreducible,
so G cannot be Eqp.

4. Groups of rank two. In this section we use the results of
§§1-3 to survey the Eqp property for groups of rank two. This is most
conveniently done by considering the six possibilities for the quasi-
endomorphism algebra, QE(G)= Q <g)zE(G). (See [3].) If QE(G) =

[O]2X2 or JC, y, z E θ\ then G is completely

decomposable. In the first case we have G = A φ A , and in the second
case G = A φ JB with A, B of rank one, t(A)< t(B). In either case
Corollary 2.1 applies; G is Eqp iff t(A) is idempotent. If QE(G) =
0 0 0 , then G is quasi-decomposable G-AφB with t(A), t(B)
incomparable. A slight modification of the arguments of Theorem 2.1
prove that G is Eqp iff t{A) and t(B) are idempotent.

We next consider the strongly indecomposable cases. If QE(G) =
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Q or QE(G)= j ί J x,y E QK then G is strongly indecomposa-
c vy x / J

ble but not strongly irreducible, so G is not Eqp by Theorem 3.2. We
settle the final possibility, QE(G) = Q(VjV), in the following theorem.

THEOREM 4.1. Let G be of rank two with QE(G) = Q ( V N ) . Then
g is Eqp iff G is strongly irreducible.

Proof. If G is Eqp, G is strongly irreducible by Theorem
3.2. Conversely, let G be strongly irreducible and K any nonzero fully
invariant subgroup of G. Write the finite group G/K in its primary
decomposition: G/K = @%χ(GIK)pr Since rank G = 2, K is fully in-
variant, and QE(G)= Q(\/N), it is easy to show, for each pt, either
(G/KX = Z(pf ) for some s, ^ 0 in Z, or (G/K^, = Z(pί-)©Z(p; ) for
some ί, ^ 0 in Z. Moreover, in the latter case we can choose a E G so
that a + K{ and V N α + X, are generators of (G /Kt)Pι. It is now easy to
check that G /K is a cyclic £ module. Thus, Theorem 3.2 applies and G
is Eqp.
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