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COMPLETELY SEMISIMPLE INVERSE A-SEMIGROUPS
ADMITTING PRINCIPAL SERIES

P. G. TROTTER AND TAKAYUKI TAMURA

A A-semigroup is a semigroup whose lattice of congruences
is a chain with respect to inclusion. A completely semisimple
inverse A-semigroup that admits a principal series is cha-
racterized here as a semigroup that results from a particular
series of ideal extensions of Brandt semigroups by Brandt
semigroups. A characterization is given of finite inverse
A-semigroups in terms of groups, Brandt semigroups, and one to
one partial transformations of sets.

1. Introduction. A A-semigroup is a semigroup whose lattice
of congruences is a chain with respect to inclusion. Schein [8] and
Tamura [11] showed that a commutative A-semigroup is either a quasi-
cyclic group A, or a commutative nil semigroup B with the divisibility
chain condition, or A°, or B'. We study here the structure of com-
pletely semisimple inverse A-semigroups with principal series. Such
semigroups will be characterized in terms of A-groups, idempotent
properties, and ideal extensions of Brandt semigroups by Brandt semi-
groups.

In [11] it was shown that the least semilattice congruence on a
A-semigroup has at most two classes. We begin by characterizing
completely semisimple inverse semigroups admitting principal series and
having this property.

In the final section we show that each finite inverse A-semigroup
determines a set of structure data that involves groups, Brandt semi-
groups and one to one partial transformations of sets. Conversely the
semigroup can be reconstructed from the structure data.

2. Preliminaries. We call a semigroup S an %, or %»-
semigroup if the smallest semilattice congruence on S has one, or two
congruence classes respectively. S isa A-semigroup only if it is an &;- or
-semigroup. In this section we characterize completely semisimple
inverse -, or ¥,-semigroups that admit principal series.

A subsemigroup H of a semigroup S is S-unitary if and only if
whenever HxyH C H for x, y € S'then Hx, yH C H. Notice that if E is a
semilattice and efg = e in E then ef = e = ge. Hence, any class of a
semilattice congruence on S is F-unitary. Let #* denote the least
congruence on S containing Green’s relation #. For a € § let J, be the
F-class of a and J(a)= S'aS".
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THEOREM 2.1. Let S be a regular semigroup. The following are
equivalent:

(i) S is an &\-semigroup.

(i) F*=SxS.

(i) Each $-unitary subsemigroup of S that is a union of ¢ -classes is
an ideal.

Proof. Howie and Lallement [2] have shown that ¢* is the least
semilattice congruence on S. Hence (i) and (ii) are equivalent.

(ii) implies (iii). Let H be an $-unitary subsemigroup that is a
union of $-classes but is not an ideal. Suppose xay € H for some
x,yE€S', a€S. Then HxayH C H so Hxa CH. Hence HxaH CH
so aH CH and HaHC H. 1If J, = J,, b € S, then there exists r,s € S’
so that HxrbsyH C H and similarly HbH C H. So HJ,H C H. Since H
is not an ideal and is %-unitary there is a d€S so that
HdH{Z H. Define

C.={a€S; xJ,y N H#[ for some x,y € S'} and

M A
Cu={d€ES;d& Cy}.

Let py denote the equivalence relation on S with classes Cy and Cy If
a € Cy then we have HI,H C H C Cy. Furthermore, since H is &-
unitary, HabH C H if and only if HaH, HbH C H, for a,b € S'. Hence
Cy is a unitary semigroup, Cy is an ideal, and p, is a nonuniversal
semilattice congruence.

(iii) implies (ii). Since a ¢ *-class is -unitary, it is an ideal. But
ideals of S intersect nontrivially.

The next theorem is an immediate consequence of results in [5], [6]
or [9].

THEOREM 2.2. For any semigroup S the following are equivalent:

(1) S is an &-semigroup.

(i) Each ideal of S is an ¥,-semigroup.

(iii) S is an ideal extension of an &\-semigroup I by an ¥,-semi-
group T.

Note that T has zero divisors.
CoOROLLARY 2.3. Let S be a regular semigroup with a principal
series. S is a &;-semigroup if and only if each 0-simple principal factor of

S has a zero divisor.

- Proof. By Theorem 2.2, the condition is clearly necessary.
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Conversely let S,CS,C ---CS, = S be a principal series. Since S,
is simple it is an ¥;-semigroup. Continuing by induction, assume S;_; is
an %-semigroup and S,/S.., has zero divisors for some i, 1=i=
n.  S;/8.-, is 0-simple so is an ¥;-semigroup. Hence, by Theorem 2.2
(iii), S, is an ¥;-semigroup.

Let B(G,I) denote the Brandt semigroup that is a Rees matrix
semigroup over the group with zero G° and with the identity I X I
sandwich matrix. We call G the basic group of B(G,I). B(G,I) has
zero divisors if |I|>1 and is isomorphic to G° if [I|=1. Since an
inverse semigroup is completely [0]-simple if and only if it is a group
[Brandt semigroup], we have from Corollary 2.3:

COROLLARY 2.4. Let S be a completely semisimple inverse semi-
group with principal series S,CS,C ---CS, = S. Sisan ¥,-semigroup if
and only if (i) S, is a group, and (ii) S;/S;-;= B(G, L) with |I,|>1 for

l=i=n

We conclude this section with a similar result for inverse %,-
semigroups.

THEOREM 2.5. Let S be a completely semisimple inverse semigroup
with principal series S,CS,C ---CS,=S. S is an &,-semigroup if and
only if (1) S, is a group and (ii) S;/S..;=B(G, I,) for 1=i=n where
|I|=1 for exactly one r, 1=r=n.

Proof. We first observe that if |I,|=1 and J, = S,\S,.;, ISr=n,
then J, is an S-unitary subgroup of § that is a $-class but not an
ideal. As in the proof of Theorem 2.1 there is a semilattice congruence
p;. with classes C;, C;, defined as in (1).

Assume that S is an ¥,-semigroup then S, is a group and by
Corollary 2.4 there exists an r, 1 =r = n, so that |I,|=1. Suppose also
that |I,|=1,1=t=n. Then p, = $*=p,. Hence C, = C, and since
J, J, are $-classes, r =t.

Conversely assume (i) and (ii). As in the proof of Theorem 2.1, C,,
is a unitary subsemigroup and C,, is an ideal of S. Then the $-classes of
C, and the $-classes of C, are $-classes of S. Since S,C C, and
J,C C, are the only #-classes that are groups then C,, C, are ¥
semigroups. Hence p, = #*.

3. Characterization. In this section completely semisimple
inverse A-semigroups with principal series are characterized.

The following Lemma is an immediate consequence of results of
Preston [7]. Parts (i) and (ii) are also corollaries of Tamura [10].
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Lemma 3.1. Let S = B(G,I) be a Brandt semigroup.

(i) S is A-semigroup if and only if G is a A-group.

(i) Each congruence of S is idempotent separating or universal.
(iii) S is primitive.

We need some further results.

LEMMA 3.2. Let S be an inverse semigroup with ideal I. Any
congruence p' on I extends to a congruence p on S so that

ap’ fa€l
apzi

{a} if aE€S\L

In particular, any ideal of an inverse A-semigroup is an inverse A-
semigroup.

Proof. Let A and B be congruence classes of p’. Suppose xay €
B for some x,yE€S' a€A. Since xaa'aa'ay €B and
xaa~',a'ay €I then xaa 'Aa™'ay CB. IfcE€ A thenaa'ca'a€ A
and xcc'aa'ca'ac”'cy = xaa'‘ca’'ay € B so xcc'Ac”'cy CB. In
particular xcy € B. Hence xAy C B. Since I is an ideal the result
follows.

If S is an inverse semigroup with semilattice E, let C(E) denote the
centralizer of E in S.

LemMMA 3.3. Let S be a completely semisimple inverse semigroup
with principal series {0} CS,CS and with semilattice E. Then on S

(i) Each non idempotent separating congruence has S, or S as a
congruence class if and only if for any e, f € E so that e € S\S,, f € $;\0
there exists a € S so that a ‘ea = f and so that fa =0 if ¢ > f.

(i)) Each idempotent separating congruence is the identity equiva-
lence on S\S, if and only if C(E)N(S\S,)CE.

Proof. (i) Suppose the non idempotent separating congruences
have S; or S as congruence classes. If a € S;\O then S,=J(a). If
b & J(a) then considering the Rees congruence modulo J(b) we see that
J(a)CJ(b)=S. Hence the principal ideals of § are chain
ordered. Let 7 be the least congruence so that for some e # f in E\0,
(e,f)€r. Assume that e€S\S, and f&€S,, Then 7+ s
universal. Since 0 € fr then by Teissier [12] there exists x;, yi, """, X,
y. € S' so that

f = xlilyl, x1j1y1 = XQizyz, e, xnjnyn =0
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where i,j, €{e,f}, p=1,---,n. But (x,i,y,) ' (xi,y,) = z,'i,z, where
2, = X,'%,y,. So

— -1 -1 o -1; -1, —
f=zz, zi'izi=2z37'h20 0, ZaJ2.=0.

Deleting repetitious terms we may assume that z,'i,z, # z,'j,z,, and
that z,'i,z, > z,'j,z, (otherwise replace z, by z,z,'i,z, forp=q=n). If
e > f,then z,'ez, = z,'fz,,s0 i, = e, j, = f. Furthermore, by Lemma 3.1
(iii) we have f = zi'ez,>z{'fz;=0. Hence (fz{)'(fz;)=0so fz,=0.

Conversely, suppose e# f in E. If e € S\S,, and f € S,\0, then
a'ea=f for some a€S, so J(f)CJ(e)=S. Let 7 be the least
congruence with (e, f) € 7. "By Lemma 3.1 (ii), if e, f € S;, then er D
S,. If e,fES\S,, then, by Lemma 3.1 (iii)), ef€ S, and efEer. If
e€S\S, and fE€S,, then 0€E er since either e >f and 0=a 'fa =
a'ea = f for some a €S, or ef =0 by Lemma 3.1 (iii). Then er
J(e)=S.

(ii) By [1] the greatest idempotent separating congruence on S has
group kernel normal system {H, N C(E); e € E} where H, is the ¥#-class
of e.

LEMMA 3.4. Let S be a completely semisimple inverse ¥,-semigroup
with principal series {0}CS,CS. S is a A-semigroup if and only if

(i)  the Brandt semigroups S/S, and S, have A-basic groups,

(i) each non idempotent separating congruence of S has S, or S as a
congruence class, and

(ili) each idempotent separating congruence of S is the identity
equivalence on S\S,.

Proof. Let S be a A-semigroup. By Lemmas 3.1 (i) and 3.2, (i) is
satisfied. Comparing congruences with the Rees congruence modulo S,
we see that (iii) holds and that any non universal congruence has its
classes in S; or S\S;. Hence, applying Lemma 3.1 (ii) to S,, we see that
(i) holds.

Conversely, by (i), (iii) and Lemma 3.1 (i) applied to S,, the
idempotent separating congruences are chain ordered. By (ii) the other
non universal congruences have S, as a class and are then chain ordered
since, by (i), $/S, is a A-semigroup. Hence, by (iii), S is a A-semigroup.

LEMMA 3.5. Let S be a completely semisimple inverse &,-semigroup
with principal series {0} CS,CS. Sisa A-semigroup if and only if S, is an
&\-A-semigroup, S\S, is a A-group and S satisfies conditions (ii) and (iii)
of Lemma 3.4.

Proof. By Theorem 2.5 just one of S,\0 or S\S, is a
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group. Assume S is a A-semigroup. The #-classes of S are chain
ordered [11]. If §$,\0 is a group then, as in the proof of Theorem 2.5, #*
has classes {0}, S\0. But then #* is not comparable with the Rees
congruence modulo S,. Hence S\S, is a group while $,\0 is not. The
remainder of the proof is as for Lemma 3.4.

The following theorem is the main result. Together with the results
2.4, 2.5, 3.1(i), 3.3, 3.4 and 3.5, it provides a characterization of
completely semisimple inverse A-semigroups with principal series in
terms of A-groups and idempotent properties.

THEOREM 3.6. Let S be a completely semisimple inverse semigroup
with principal series S,CS,C ---CS, = S. Sisa A-semigroup if and only
if

(i) Soisa A-group; S,={0} if n >0,

(i) S, is a Brandt semigroup with A-basic group if n >0,

(iii) S,/S.-; is an & -A-semigroup for i =2,---, n—1,

(iv) S./S.-, is an &,-, or F-A-semigroup.

Proof. Say S is a A-semigroup. S and S, have the same maximal
group homomorphic image and if n >0 the only such group is trivial
[11]. Hence, by Lemmas 3.2, 3.1(i), (i), 3.4 and 3.5, we see that
(1), - - -(iv) are satisfied.

Conversely we prove that for any congruence p on S and some i,
0<i=n, then ap=3S, for a €S, epNE ={e} for e €(Si.\S)NE
where E is the semilattice of S, and ap = {a} for a € S\S,,;,. Then S will
be a A-semigroup. The result holds for n =0 or 1, by Lemma 3.1
(ii). Continue by induction, assuming the result for n =1t Since
S,+1/S,-1 is a A-semigroup, then the congruences of S,,, that have their
classes in S, or S..,\S, are of the required form by Lemmas 3.4,
3.5. Suppose p is a congruence on S, with (a,b)Ep, a € S...\S,
b €S. Then the congruence on the A-semigroup S,.,/S,-, induced by p
is universal by Lemmas 3.4, 3.5. Hence there exists h € S\S,-,, k € S,
so that (h, k) € p. But then, by the induction assumption, S, C hp. Since
S.+1/S,-; is a A-semigroup, then, by Lemmas 3.4, 3.5, ap = S,...

4. Further study of finite case. We now investigate cir-
cumstances under which the extensions of Theorem 3.6 are possible for
finite inverse semigroups. Some further information is required.

ExamprLE 1. Let Hx be the subgroup of the symmetric group Px
whose elements displace a finite number of elements of the set X. The
alternating group Ay is a simple normal subgroup of Hy with index 2 (see
[3]) for | X|#4. Hence Hy is a A-group. In particular if | X| is finite
then Py is a A-group.
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ExaMpLE 2. The symmetric inverse semigroup $x, | X| finite, is a
A-semigroup. To see this, let D(a), R(a) denote the domain and range
of a € $x respectively. Any ideal of Fx is of the form I, = {a € Fy;
|D(a)| = n}. Since $x is finite it has a principal series and is completely
semisimple. If @ is an idempotent its H#-class is {8 € $x; D(B)=
R(B) = D(a)} (see [4]), which is the symmetric group on D(a). So for
some a a non group principal factor has A-basic group isomorphic to
Py, If a, y are idempotents so that | D(a)|>|D(y)| =1 then there is
a B € Iy so that B'aB =7y and |[D(B'yB)|<|D(y)|. If a is not an
idempotent there is an idempotent B so that |[D(a)|—|D(B8)|=1 and
Ba# aB. JFx can now be seen to satisfy the requirements of Lemmas
3.3, 3.4 and Theorem 3.6.

Let Z, denote the set {1,2,---,n}. If X =2, write P,=Px and
I, = Ix.

Suppose S is a finite A-semigroup with {0}CS,CS, S,=B(G, Z,)
and S/S,=B(H,Z,). Let (GXZ,xZ,)U{0} denote the set of el-
ements of S, with the binary operation (x, i, j)(y, h, k) = (xy, i, k) if j = h,
and 0 if j# h.

Denote the semigroup of right translations of S, by P(S,) and for
a €S define p* € P(S,) by bp®=ba for all b€ S,. Since inverse
semigroups are left reductive there is a unique homomorphism
6: S — P(S,) so that the restriction of 6 to S, is the regular represen-
tation of S, (by [6; III.1.12]). 6 is given by af =p° a €S, and
(S,)6 =S,. Since S is a A-semigroup then, by Lemma 3.4 or 3.5, 6 is
injective. Call 6 the extension homomorphism of S.

Let 1 denote the identity of G. For u € S, i € Z, define D(u) =
{j€Z,;1,ijue#0}. Byl[6;V.3.6and V.54]there exists ¢, € F, with
domain D(¢,)= D(u) and a map a,: D(u)— G so that

(x(au), i, j.) if j € D(u),

(x, 4, j)ud = {
0 if j & D (u).

Furthermore the map given by uf — (a, ¢,) defines an isomorphism
between (S)6 and the semigroup {(a, ¢.); u € S} with the binary
operation (a,, ¢,)(a,, ¢,) = (a, - a,, .¢,) where j(a, - a,) = (ja.)(jo.a,).
Since 6 is an isomorphism then (a,,, ¢..) = (a, * a,, p.¢,). Note that with
the operations - and composition of maps, the sets {a,; u € S} and
{¢.; u € S} respectively are homomorphic images of S. For conveni-
ence we will identify u6 and (a,, ¢.) for each u € S.

Clearly v € S, if and only if | D(¢,)|= 1. Since @, is a bijection for
u€S then {vE€S;|D(d,)|=|D(¢.)|} is an ideal of S. Hence for
u,v€S\S,, |D(¢.)|=|D(¢,)|; call this number the rank of
S/S,. Clearly e is an idempotent of S\0 if and only if (D(¢.))a. = {1}
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and ¢, is an identity map. A product of distinct idempotents e, f € S is
in $;s0 | D(¢.)N D(¢;)|=1. Henceif S\S, is not a group then the rank
of S/S, is bounded above by [(n + 1)/2].

DEerINITION 4.1.  For integers m and n, 1 <m =n, let "I',, denote
the largest number so that {Y; |Yi|=m, i=1,---,"T,} is a family of
subsets of Z, with | Y,NY;|=1fori#j. Foranintegerr,1<r="T,,let
o ={X;;|X;|=m, i € Z,} be a family of subsets of Z, with | X; N X;|=1
for iZj. Let

A*={a € F,;a=0 or D(a),R(a)€E A}
with a binary operation * so that

af if R(a)=D(B)
ax*xf=
{ 0 if R(a)#D(B).

LEMMA 4.2. Let S be a A-semigroup with principal series {0} CS,C S
so that S,=B(G, Z,) and S/S,= B(H, Z,) has rank m. Then

(i) either 1<m=[(n+1)/2]) and 1<r="T, or 1<m =n and
r=1,

(ii) H is embeddable in the symmetric group P,.

Proof. Part (i) follows from the preceding commets and
definition. Let Q =(S\S,) U {0} and define a binary operation * so that
u*v=uv if uv € S\S,, and 0 otherwise. Then Q =B(H,Z,). Let
A ={D(¢.); u € S\S,}. The map 8: Q > A* given by ué=¢, is a
homomorphism. If u# v in S\S, and ¢, = ¢, then |D(p.,)|>1 so
uv~'is a non idempotent element of S\S,. But then for any idempotent
e €S, it can be readily shown that (euv )8 = (uv'e)d so euv'=
uv~'e. This contradicts Lemmas 3.3 and 3.4 or 3.5. Hence § is
injective. If e # 0 is an idempotent of Q then it can be easily shown that
the #-class of e in Q is H, ={u € Q; D(¢,)= R(¢.)= D(¢.)}. Then
(H.)6 =H,=H. Part (ii) follows since the elements of (H,)8 are
permutations of D(4.).

Let B*={a,; u € S\S;} U{0} with a binary operation * so that
a,*a, = a, *a, if uv €8$\S,, and 0 otherwise. Since 8 is injective, if
¢, = ¢, for u,v € S\S, then u=v so a, =a, Hence there is a
homomorphism A: (Q)8 — #B* given by ¢.A = a, if u € S\S; and 0A =
0. The set H = {(ubA, ud); u € Q} with the binary operation so that
(udA, ud)(véA, vA) = ((u * v)8A, (u * v)8) is then a semigroup isomorphic
to Q.
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DEFINITION 4.3. A structure data set is a set {n, r, m, G, H} defined
as follows:

(i) n, r and m are integers so that either 1 <m =[(n + 1)/2] and
l1<r="T',,orl<m=n and r =1.

(i) G is a A-group.

(i) Let & ={X;;|X.|=m, i € Z,} be a family of subsets of Z, so
that | X, N X;|=1if i#j. Let H be a A-subgroup of the symmetric
group P,. Let K be a subsemigroup of & * so that K = B(H, Z,). Let
A K— B* be a surjective homomorphism so that for ¢ € K,
¢A: D(¢)— G is a map and so that for j € D(¢ * ) then j(¢ *¢)A =
(J(#A))(jo(¥Ar)). Define H = {($A, ¢); ¢ € K} with a binary operation
so that (@A, @) (YA, )= (¢ * ¥)A, & * ). Write dA * YA = (¢ * )A.

Notice that in the terminology of [6], H satisfies this definition if and
only if H is a subsemigroup of the right wreath product of G and K so
that the map H — K given by (¢A, ¢)— ¢ is an isomorphism.

We have seen that any finite inverse A-semigroup S with principal
series {0} CS,CS determines a structure data set {n,r,m, G, H}. Call
this a structure data set of S. We say that structure data sets
{n,r, m, G, H} and {n',r',m',G', H'} are equivalent if and only if n = n’,
r=r', m=m’' and there exists an isomorphism a: G°—(G')° and a
bljectlon B: Z,— Z, so that the map y: H— H' given by (a, ¢)y =

(B 'aa, B7'¢B) is a bijection.

LEMMA 4.4. Let S and T be finite inverse A-semigroups with princi-
pal series {0}CS,CS and {0} CT,CT respectively. Then S =T if and
only if the structure data sets of S and T are all equivalent.

Proof. Lable the elements of S, and T, so that S;,=
(Gx2Z,x2Z,)U{0} and T,=(G'*x Z, x Z,)U{0}, with binary opera-
tions as defined after Example 2. Then structure data sets {n,r, m, G, H}
and {n',r',m',G',H'} of S and T respectively can be uniquely deter-
mined by the method described above. Depending on the labelling of
the elements of S,, each structure data set of S can be so
determined. Let 65 and 6; be the extension homomorphisms of § and T
respectively and let n: S — T be an isomorphism. Then n=n',r=1r’
and the restriction of 1 to S, determines-an isomorphism a: G°— (G')°
and a bijection 8: Z, — Z, so that (x,i,j)n = (xa, iB, jB) € T,. The map
ubs, u € S, is given by v(ubs) = vu for all v € S,. Let unbr = (bun, Yun)
and v = (x, i,j) then

(x(a.))e, iB, jé.B) = (v(ub.))n = (vn)(unbr) = ((xa)jBb.,, iB, jBur)-

So (x(ja.))a = (x(jBb.,)a )a. Since D(u)B = D(un) then a,=
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Bb.,a'. Likewise ¢,8=pB¢.,. Thus m=m' and since H=
{(as, #.); u € S\S;} U {0} then the structure data sets are equivalent.

Conversely, given that {n,r,m,G,H} and {n',r',m',G',H'} are
equivalent structure data sets, let a: G°—(G’)° be an isomorphism,
B: Z,— Z, be a bijection and y: H— H' be the bijection so that
(a, )y =(B'aa, B7'¢B). Define n:: S;— Ty by (x,i,j)m = (xa, iB, jB).
Then 7, is an isomorphism. As in the first part of the proof we get for
vES, that vn6;=(B 'a,a, B'¢,8). Hence there is a bijection
v': (S)0s — (T)6+ given by

(a“’ ¢u)y’ = (B—la“a’ B_I¢"B)‘
Define n: S— T by unf; = ufsy’. Then

(x, 5, j)ni(unbr) = (xa (jBB ' a.), iB, jBB'.B) = (x(ja.))e, iB, jb.B)
= (X, i, ] Jubsm;.

So unbr = n7'(ubs)n; and clearly n is an isomorphism.

TuEOREM 4.5. Each finite inverse A-semigroup S with principal
series {0} C S, C S has a structure data set {n,r,m, G, H}. A semigroup is
isomorphic to S if and only if its structure data sets are equivalent to
{n,r,m, G, H}. Conversely, each structure data set {n,r,m,G,H} is a
structure data set of some finite inverse A-semigroup T with principal series
{0}CT.CT.

Proof. The first two statements have been proved. Suppose
{n,r,m, G, H} is a structure data set. Let T,= (G X Z, X Z,) U{0} with
binary operation as defined after Example 2. Then T, = B(G, Z,). Let
T =T,U H\(0,0). For (a, ¢),(b,¥)€ H\(0,0) and (x,i,j),(y, h,k)E T,
define a binary operation on T so that:

(a*b, ¢p¥)EH if D(¢¢)=D(o)
(a,9)(b,¢)= (a(lpa),LIpy)E T, if D(¢p¢)={l}

0 it D(¢y)=0],
(x(a),i,j¢)E T, if jE€D(s)

(x5 j)(a, @)= [
0 if j&D(¢),

(ip~'ax,ip™",j))ET, if i€ R(d)
(@ ¢)(x,ij)= {
0 if iZR(s),
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(xy, LK)ET, if j=h

(x,5,7)(y, h, k)=
it j#h.

Since H = B(H, Z,) it can be routinely checked that T is an inverse
semigroup. It can also be checked, using Lemmas 3.3 and 3.4 or 3.5,
that S is a A-semigroup. Since (x,i,j)(a, ¢)=(x(ja),i,jp) for
(x,i,/))E T, (a,¢)E T/T, and j € D(¢$) we see that {n,r,m,G, H} is a
structure data set of T.

Let S be a finite inverse A-semigroup with principal series S, C S, C
-++CS§, =S where g >1. We can uniquely determine, up to equival-
ence, the structure data sets of the semigroups S;/S,, for i=
2,---,q. Conversely, let {{n,r,m,G,H}; i=2,---,q} be a family of
structure data sets so that n; =r,_; and G, = H,_, for j =3,-- -, q, where
H,_, is the basic group of H, ;. Then, by Theorem 3.6 and the proof of
Theorem 4.5, we can construct a finite inverse A-semigroup T with
principal series T,CT,C --- CT,=T so that {n,r, m;, G, H} is a struc-
ture data set of T,/T,,. Any finite inverse A-semigroup that is not a
group or a Brandt semigroup can be so constructed.

The authors are grateful for the referee’s kind suggestions on this

paper.
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