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SYMMETRIZABLE-CLOSED SPACES
R. M. STEPHENSON, JR.

Symmetrizable-closed, semimetrizable-closed, minimal
symmetrizable, and minimal semimetrizable spaces are charac-
terized. G. M. Reed’s theorem that every Moore-closed space is
separable is extended to: Every Baire, semimetrizable-closed
space is separable. Several examples are given.

If P is a topological property, a Hausdorff P-space will be called
P-closed provided that it is a closed subset of every Hausdorff P-space in
which it can be embedded. A Hausdorff P-space (X, ') will be called
minimal P if there exists no Hausdorff P-topology on X strictly weaker
than 7.

In [3] J. W. Green characterized and studied Moore-closed and
minimal Moore spaces. In this paper we obtain some analogous results
for semimetrizable spaces and symmetrizable spaces.

A symmetric for a topological space X is a mapping d: X X
X —[0,%) such that

(1) Forallx,y € X,d(x,y)=d(y,x), and d(x,y) =0 if and only if
X =y.

(2) A set VCX isopen if and only if for each x € V there exists
n € N such that V contains the set B(n, x)={y € X|d(x,y)<1/n}.

A space X which admits a symmetric is said to be symmetrizable,
and if, in addition, each B(n, x) is a neighborhood of x, then X is said to
be semimetrizable and d is called a semimetric for X. Equivalently, X is
semimetrizable via d provided that for x € X, A CX, and d(x,A)=
inf{d(x,a)|a € A}, the condition x € A if and only if d(x,A)=0 is
satisfied.

A number of the techniques used here are not new; for example, see
[2]. The terminology used is standard. One perhaps not too familiar
concept is that of #-adherence. A point p of a topological space is said
to be a 8-adherent point (or be in the 6-adherence) of a filter base F
provided that for every set F € ¥ and neighborhood V of p, one has
FNV#.

Our first two theorems are characterization theorems.

THEOREM 1. Let (X, I) be a symmetrizable Hausdorff space. The
following are equivalent.

(i) The space (X, T) is minimal symmetrizable.

(ii) Every countable filter base on (X,J) which has a unique
6-adherent point is convergent.
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Proof. (ii) implies (i). Suppose that (X, &) is symmetrizable and
Hausdorff and ¥ CJ. Let d be a symmetric for (X, ¥). For each point
p € X the filter base

B, ={{x:d(x,p)<1/n}: n € N}

has a unique #-adherent point in (X, &), namely p, and so %, also has at
most one #-adherent point in (X, ). By (ii) and the relation p € N A,
it follows that each %, must converge to p in (X, 7). Thus for every
TE T and p € T there exists n € N such that T D {x: d(x,p) <1/n},
thatis, T € . Therefore, 7 C¥ and (X, ) is minimal symmetrizable.

(i) implies (ii). Assume that there exist a point ¢ € X and filter
base ¥ ={F,: n € N} on X such that:

(a) for each n€N, F,D F,,;;

(b) gq is the unique @-adherent point of ¥ in (X, J);

(c) & fails to be convergent; and :

d F.=X

We will prove that (X, ) cannot be minimal symmetrizable.

Let ¥={V€&€J:if g € V then V contains some member of %}.
Then 7" is a topology on X with ¥ CJ, and because & has no
0-adherent point other than g, the space (X, 7") is Hausdorff. By (c),
V#JI.

Now consider any symmetric d for (X,J). Define d*: X X
X —[0,) by the rule

d(x,y) ifx#q#y
d*(y,x)=d*(x,y)=14 0 ifx=q=y
min{d(x,y),1/n} if y =q and x € F,\F,,,.

Clearly, d* is a symmetric for the space (X, 7°), and so (X, J') cannot be
minimal symmetrizable.

THEOREM 2. Let X be a symmetrizable Hausdorff space. The
following are equivalent.

(i) X is symmetrizable-closed.

(ii) Every countable filter base on X has a 6-adherent point.

Proof.  (ii) implies (i). Suppose that there exists a symmetrizable
Hausdorft space Y such that X is a subspace of Y but X# X. Because
X is a closed subset of Y, X is symmetrizable (e.g., see [5, p. 93]). Letd
be a symmetric for X. Since X fails to be a closed subset of X, there
must exist a point p € X\X with 0 = inf{d(p, x): x € X}. Thus for each

n €N,
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F,={x € X:d(p,x)<1/n}

is nonempty, and so ¥ ={F,:n € N} is a countable filter base on
X. Obviously & has no #-adherent point in X.

(i) implies (ii). Assume that there exists a filter base ¥ =
{G,: n € N} on X such that G,= X, each G, D G,,;, and ¢ has no
6-adherent pointin X. Choose a new point & X, let E = X U{q}, and
call a subset V of E open if and only if (a) V N X is open in X and (b) if
q € V then for some n €N, VD G,. Then E is a Hausdorff space in
which X is embedded as a proper dense subspace. E is also symmetriz-
able, for if d is any symmetric for X, then the function d*: E X
E — [0,%) determined by the rule

d(x,y) ifx,y€X
d*(x,y)=d*(y,x)= 40 fx=q=y
1/n if x € G,\G,,;and y =g,

is easily seen to be a symmetric for E.
For many properties P, P-minimality is a sufficient condition for
P-closedness. For P =symmetrizable, the same is true.

CoROLLARY 3. Every minimal symmetrizable Hausdorff space
(X, T) is symmetrizable-closed.

Proof. 1If d is a symmetric for (X,J) and & is a descending
sequence of nonempty sets having no 6-adherent point in (X, ), with
X € %, then for any point q € X, the function d* defined in the proof of
Theorem 1 is a symmetric for a strictly weaker symmetrizable Hausdorft
space (X, V).

COROLLARY 4. Every regular, symmetrizable-closed space is com -
pact.

Proof. In a regular space #-adherence and adherence are equiva-
lent concepts, so by Theorem 2, every regular symmetrizable-closed space
is countably compact. By a result of Nedev [7] every countably compact
symmetrizable Hausdorff space is compact.

For various properties P, topologists have often been interested in
the question as to whether or not there exists a non-compact P-space in
which every closed subset is P-closed. If P = Hausdorff or completely
Hausdorfl, the answer is known to be no, but if P = regular, the question
is open. For P = symmetrizable, the following result holds.
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COROLLARY 5. Let X be a symmetrizable Hausdorff space in which
every closed subset is symmetrizable-closed. Then X is compact.

Proof. Obviously no infinite discrete space can be symmetrizable-
closed, so every infinite closed subset of X must have a limit point, that
is, X must be countably compact.

Let us now give some examples of these concepts.

ExamMpLE 6. In [1] N. Bourbaki pointed out that a certain space X
due to Urysohn is a minimal Hausdorff space that fails to be
compact. We will describe this space and show that it is also semimet-
rizable, in order to show that there exist noncompact, Hausdorff minimal
symmetrizable spaces.

Let

X=NU{nxl/m:nm€&N,m>2}U{xx}
Define d: X X X — [0, ) by the rule

K ifx=y;

lx—y| ifx,yg{xa}

1 if xENand y €{£7}, or
ifx=n+1/mandy=—m, or

d(x,y)=d(y,x)= 1 ifx=n—-1/m andy =, or

if x =7 and y = — o, where
m,n € N and m >2;

1/n ifx=n+1/m andy =7, or
fx=n—-1mandy=—m,

where m,n € N and m >2.

Call a subset V of X open if and only if for each point v € V there exists
e >0 with {x: d(x,v)<e}CV. Then d is a semimetric for the space X,
and X is homeomorphic with the space in [1] (X is also described in [2, p.
101}).

ExampLE 7. If X is as in Example 6, then its subspace
Y=NU{n+1/m:nmé&N,m>2}U{n}

is well known to be Hausdorff-closed but not minimal Hausdorff. Since
Y is a subspace of X it is also semimetrizable. If Y’ denotes the space
which has the same points as those of Y but which is topologized so that
it is the one-point compactification of the space Y\{w}, then Y’ is
metrizable, and so one sees that Y is not minimal semimetrizable. Thus
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Y is an example of a Hausdorff semimetrizable, symmetrizable-closed
space that is not minimal semimetrizable.

For P = semimetrizable, the results one can obtain concerning the
concepts P-closed and P-minimal are much more similar to those in
[3]. Since the proofs are not too different from some of the ones above
and in [3] and [9], the details are omitted. First two definitions are
needed.

A topological space is called feebly compact if every countable open
filter base has an adherent point. A space is called semiregular if it has a
base consisting of regular open sets, i.e., sets having the form V = (V)°.

THEOREM 8. Let X be a semimetrizable Hausdorff space. The
following are equivalent.

(i) X is semimetrizable -closed.

(i) X is feebly compact.

THEOREM 9. Let X be a semimetrizable Hausdorff space. The
following are equivalent.

(i) X is minimal semimetrizable.

(i) Every countable open filter base on X with a unique adherent
point is convergent.

(iii)) X is semiregular and semimetrizable -closed.

For semimetrizable spaces, it is easy to show that the concepts
semimetrizable-closed and symmetrizable-closed are distinct. For ex-
ample, let X be any noncompact, regular, semimetrizable-closed space
(such as one of the spaces discussed in [3]). By Corollary 4, X cannot be
symmetrizable-closed.

Not too much is known concerning the density character and
cardinality of semimetrizable-closed and symmetrizable-closed
spaces. G. M. Reed [8] has proved that every Moore-closed space is
separable, but I do not know if an analogous result holds for all
semimetrizable or symmetrizable spaces. (A proof is given in [10] that a
feebly compact symmetrizable space is separable if it has a dense set of
isolated points.) In our final theorem it is shown that Reed’s condition
Moore-closed space, or, equivalently, feebly compact Moore space (see
[3]), can be weakened.

We recall that a topological space X is said to be a Baire space
provided that for every countable family € of dense open subsets of X,
the set N € is also dense. It is known [6] that every regular, feebly
compact space is a Baire space.

THEOREM 10. Every Baire, feebly compact, semimetrizable space X
is separable.
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Proof. The proof will consist of two parts. We will first prove that
(*) every family of pairwise disjoint nonempty open subsets of X is
countable. Next, using (*), we will construct a countable dense subset
for X.

Let d be a semimetric for X. For x€X and n€N, {y€
X: d(x,y)<1/n} will be denoted by B(n, x), and the interior of B(n, x)
will be denoted by I(n, x).

Proof of (*): Suppose that there exists an uncountable family ¥ of
pairwise disjoint nonempty open subsets of X. For each V€ ¥ and
m €N let

V,={x € V: B(m,x)C V},

and note that since V = U{V,,: m € N}, it follows from the Baireness of
X that one can select an integer m (V) for which V,, has nonempty
interior. Choose i € N such that W ={V € ¥: m(V)= i} is uncounta-
ble, and for each W € W let J, denote the interior of W,. By the feeble
compactness of X, there must exist a point p € X at which § =
{Jw: W € W} fails to be locally finite. But consider any set Jy, € # with
¢# K =1J, NI(i,p). Because K is a nonempty open subset of W,
there must exist a point ¢ € W with B(i,q) C W and with ¢ € K. Then
d(p,q)<1/i and so p € B(i,q)CW. This latter relation, however,
shows that # must be locally finite at p, for given any Jy, € § with V# W,
we have WNJ, =@. Thus we have obtained a contradiction, and the
proof of (*) is complete.
For the remainder of the proof, if n € N let

B, ={I(k,x): x € X,k €N, and k = n},

and let 9, be a maximal family of pairwise disjoint members of
B,.. Once the sequence {Z,: n € N} has been determined, choose, for
each n € N and D € @,, one point np,, such that D = I(k, npp) for some
k € N with kK = n, and let

C,={npo: D€ 2,}.

Then C = U{C,: n € N}is a countable subset of X, because by (*), each
9, is countable. We will conclude the proof by proving that C is also
dense in X.

Because each U %, is an open dense subset of X, the set E =
N{U%,: n € N} is also a dense subset of X.

Now consider an arbitrary point e € E. For each n € N there
exists a set I(k, npp) € 9, which contains e. Thus each d(e, npp) <1/n,
which shows that e € C.
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Therefore, ECC and so X =E = C.

While not every Baire semimetrizable-closed space is regular (e.g.,
Example 6), R. W. Heath has informed the author that he can prove
every regular, semimetrizable-closed space is a Moore space — to verify
Heath’s result, appeal to the characterizations A and B’ in [4] and the
well known fact that in a regular feebly compact space any countable
open filter base with a unique adherent point is convergent.

Since every separable first countable Hausdorff space has cardinality
= ¢, it follows from Theorem 10 that every Baire semimetrizable-closed
space has cardinality =c¢. We will conclude by showing that if the
conditions ‘“‘Hausdorff, semimetrizable, and Baire’’ are deleted, then the
bound ¢ may be exceeded.

ExampPLE 11. Let m be an arbitrary infinite cardinal number, let
M,, be a maximal family of countably infinite subsets of m such that the
intersection of any two members is finite. Denote by {py: M E M, } a
set of distinct point not in m, and let X,, =m U{py: M € M,}. For
each Me U, let gy: M— N be one-to-one. Define d: X, X
X,, —[0,>) by the rule

1 if x,yEm and x# y;
1 if x = py and y& {pu} UM;

d(x,y)=d(y,x)=
(x¥) v 1/gu(y) if x =puy and y € M; and

0 if x =y.

Topologize X,, by declaring a set V to be open if and only if for each
point v € V there exists e >0 with {x € X,,: d(x,v)<e}CV. Then the
space X,, is a feebly compact symmetrizable space of cardinality = m.
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