A COMMUTATIVITY THEOREM FOR NON-ASSOCIATIVE ALGEBRAS OVER A PRINCIPAL IDEAL DOMAIN

JIANG LUH AND MOHAN S. PUTCHA

Let A be an algebra (not necessarily associative) over a principal ideal domain R such that for all $a, b \in A$, there exist $\alpha, \beta \in R$ such that $(\alpha, \beta) = 1$ and $\alpha ab = \beta ba$. It is shown that A is commutative.

Throughout this paper N will denote the set of natural numbers and Z^+ the set of positive integers. A will denote an algebra with identity 1 over a Principal Ideal Domain R. If $a, b \in A$ then [a, b] = ab - ba. If $\alpha, \beta \in R$, then (α, β) denotes the greatest common divisor of α and β . If $a \in A$, then the order of a, o(a) is the generator of the ideal $I = \{\alpha \mid a \in R, \alpha a = 0\}$ of R. o(a) is unique up to associates. As a generalization of concepts in [1], [2], [3], [4], [5] we consider the following:

(*) For all $a, b \in A$, there exist $\alpha, \beta \in R$ such that $(\alpha, \beta) = 1$ and $\alpha ab = \beta ba$.

We will show that if A satisfies (*), then A is commutative. This generalizes [3; Theorem 3.5].

LEMMA 1. Let p be a prime in R, $m \in Z^+$ such that $p^m A = (0)$. If A satisfies (*), then A is commutative.

Proof. Let C denote the center of A. Let $x \in A$, $o(x) = p^k$, $k \in N$. We prove by induction on k that $x \in C$. If k = 0, then x = 0. So let k > 0. Let $y \in A$. First we show

(1)
$$[x, y] \neq 0$$
 implies $[yx, y] = 0$.

If yx = 0, this is trivial. So let $yx \neq 0$. Now for some $\alpha_1, \alpha_2 \in R$,

(2)
$$\alpha_1 x y = \alpha_2 y x, (\alpha_1, \alpha_2) = 1$$
$$\beta_1 (x+1) y = \beta_2 y (x+1), (\beta_1 \beta_2) = 1$$

So $\alpha_1\beta_1(x+1)y = \alpha_1\beta_2y(x+1)$. Thus substituting the above, we get

(3)
$$(\alpha_2\beta_1-\alpha_1\beta_2)yx=(\alpha_1\beta_2-\alpha_1\beta_1)y.$$

We claim that $(\alpha_2\beta_1 - \alpha_1\beta_2)yx \neq 0$. For otherwise $(\alpha_1\beta_2 - \alpha_1\beta_1)y = 0$. Since $y \neq 0$, we get $p \mid \alpha_1\beta_2 - \alpha_1\beta_1$.

Also $(\alpha_1\beta_2 - \alpha_1\beta_1)yx = 0$. Since $(\alpha_2\beta_1 - \alpha_1\beta_2)yx = 0$, we get $(\alpha_2 - \alpha_1)\beta_1yx = 0$. Since $yx \neq 0$, $p \mid \beta_1(\alpha_2 - \alpha_1)$. So

$$p \mid \alpha_1(\beta_2 - \beta_1), p \mid \beta_1(\alpha_2 - \alpha_1)$$

Case 1. $p \not\prec \alpha_1$. Then since $\alpha_1(\beta_2 - \beta_1)y = 0$, we get $(\beta_2 - \beta_1)y = 0$. So by (2), $\beta_1[x, y] = 0 = \beta_2[x, y]$. Since $[x, y] \neq 0$, we get $p \mid \beta_1$, $p \mid \beta_2$, contradicting (2).

Case 2. $p \mid \alpha_1$. Then $p \not\prec \alpha_2$ and so $p \not\prec \alpha_2 - \alpha_1$. Thus $p \mid \beta_1$. So $p \not\prec \beta_2$, $p \not\prec \beta_2 - \beta_1$. Since $\alpha_1(\beta_2 - \beta_1)y = 0$ we get $\alpha_1 y = 0$. So $\alpha_1 x y = 0$. By (2), $\alpha_2 y x = 0$. Since $y x \neq 0$, we get $p \mid \alpha_2$, a contradiction.

Hence by (3)

$$(\alpha_2\beta_1-\alpha_1\beta_2)\mathbf{y}\mathbf{x}\neq \mathbf{0}.$$

In particular

$$\alpha_2\beta_1-\alpha_1\beta_2\neq 0.$$

So

$$\alpha_2\beta_1 - \alpha_1\beta_2 = p'\delta, t \in N, \delta \in R, (\delta, p) = 1.$$

If $t \ge k$, then $(\alpha_2\beta_1 - \alpha_1\beta_2)yx = 0$, a contradiction. So t < k. Hence

$$p^{k-\iota}(\alpha_1\beta_2-\alpha_1\beta_1)y=p^{k-\iota}p^{\iota}\delta yx=0.$$

Let $o(y) = p^i$, $i \in N$. If i < k, then $y \in C$, a contradiction. So $i \ge k$. Hence

$$p^{k}|p^{\prime}|p^{\prime}|a^{k-\prime}(\alpha_{1}\beta_{2}-\alpha_{1}\beta_{1}).$$

So $p' | \alpha_2 \beta_2 - \alpha_1 \beta_1$ and $\alpha_1 \beta_2 - \alpha_1 \beta_1 = p' \gamma$, $\gamma \in R$. Then $p' \delta y x = p' \gamma y$. Hence $p' (\delta y x - \gamma y) = 0$. By induction hypothesis, $\delta y x - \gamma y \in C$. So $[\delta y x - \gamma y, y] = 0$. Thus $\delta [yx, y] = 0$. Since $(\delta, p) = 1$, [yx, y] = 0. This establishes (1).

Now let $u \in A$ and suppose $[x, u] \neq 0$. Then also $[x, u+1] \neq 0$. By (1), [ux, u] = 0 = [(u+1)x, u]. So [x, u] = 0, a contradiction. So $x \in C$ and the lemma is proved.

LEMMA 2. Suppose A satisfies (*). Let $a, b \in A, o(b) = 0$. If ba = 0, then ab = 0.

Proof. Suppose $ab \neq 0$. Then there exist $\beta_1, \beta_2, \gamma_1, \gamma_2 \in \mathbb{R}$ such that

(4)
$$\beta_1(a+1)b = \beta_2 b(a+1), \ (\beta_1, \beta_2) = 1,$$

$$\gamma_1 a(b+1) = \gamma_2 b(a+1), (\gamma_1, \gamma_2) = 1.$$

So

(5)
$$\beta_1 ab = (\beta_2 - \beta_1)b$$
 and $(\gamma_2 - \gamma_1)a = \gamma_1 ab$.

If $\beta_2 = \beta_1$, then β_1, β_2 are units and by (5) ab = ba = 0, a contradiction. So $\beta_2 - \beta_1 \neq 0$. Similarly $\gamma_2 - \gamma_1 \neq 0$. Since o(b) = 0, we get by (5) that o(ab) = 0. So o(a) = 0. Hence by (5), $\beta_1 \neq 0$, $\gamma_1 \neq 0$. Also by (5) $[\beta_1 ab, b] = 0$.

$$(\gamma_2 - \gamma_1)\beta_1 ab = \gamma_1\beta_1(ab)b$$

= $\gamma_1\beta_1b(ab)$
= $\beta_1(\gamma_2 - \gamma_1)ba$
= 0.

So $o(ab) \neq 0$, a contradiction. This proves the lemma.

LEMMA 3. Suppose A satisfies (*). Let $b \in A$, o(b) = 0. Then $b \in C$, the center of A.

Proof. Let $a \in A$. There exist $\alpha_1, \alpha_2, \beta_1, \beta_2 \in R$ such that

(6)
$$\alpha_1 a b = \alpha_2 b a, \ (\alpha_1, \alpha_2) = 1, \\ \beta_1 (a+1) b = \beta_2 b (a+1), \ (\beta_1, \beta_2) = 1.$$

Multiplying the second equation by α_1 and substituting the first we obtain

$$b[(\alpha_2\beta_1-\alpha_1\beta_2)a-(\alpha_1\beta_2-\alpha_1\beta_1)\cdot 1]=0.$$

By Lemma 2,

$$[(\alpha_2\beta_1 - \alpha_1\beta_2)a - (\alpha_1\beta_2 - \alpha_1\beta_1) \cdot 1]b = 0.$$

Let $\mu = \alpha_2 \beta_1 - \alpha_1 \beta_2$. Then $\alpha_1 (\beta_2 - \beta_1) b = \mu a b = \mu b a$. By (6) $\alpha_1 \mu a b = \alpha_2 \mu b a = \alpha_2 \mu a b$. So

487

JIANG LUH AND MOHAN S. PUTCHA

$$(\alpha_2 - \alpha_1)\alpha_1(\beta_2 - \beta_1)b = 0.$$

Since o(b) = 0, we obtain by (6) that either $\alpha_1 = \alpha_2$ is a unit, $\beta_1 = \beta_2$ is a unit or else $\alpha_1 = 0$. The first two cases imply by (6) that ab = ba. So let $\alpha_1 = 0$. Then $\alpha_2 ba = 0$ and α_2 is a unit by (6). So ba = 0. By Lemma 2, ab = 0. Thus in any case ab = ba and we are done.

THEOREM 4. Suppose A satisfies (*). Then A is commutative.

Proof. Suppose A is not commutative. We will obtain a contradiction. There exists $x \in A$ such that $x \notin C$, the center of A. So $x + 1 \notin C$. By Lemma 3 $o(x) \neq 0$ and $o(x + 1) \neq 0$. Hence $o(1) \neq 0$. Let $o(1) = d \neq 0$. Then d is not a unit and hence $d = p_1^{\alpha_1} \cdots p_i^{\alpha_i}$ for some primes $p_1, \cdots, p_i \in A$ and some positive integers $\alpha_1, \cdots, \alpha_i$. Let $A_i = \{a \mid a \in A, p_i^{\alpha_i} a = 0\}$. Then each A_i is a nonzero subalgebra of A and $A = A_1 \bigoplus \cdots \bigoplus A_i$. Being subalgebras of A, the A_i 's also satisfy (*). Being homomorphic images of A, all the A_i 's have identity elements. By Lemma 1 each A_i and hence A is commutative, a contradiction. This proves the theorem.

REFERENCES

1. R. Coughlin and M. Rich, On scalar dependent algebras, Canad. J. Math., 24 (1972), 696-702.

2. R. Coughlin, E. Kleinfeld, and M. Rich, *Scalar dependent algebras*, Proc. Amer. Math. Soc., **39** (1973), 69–73.

3. K. Koh, J. Luh and M. S. Putcha, On the associativity and commutativity of algebras over commutative rings, Pacific J. Math., 63 (1976), 423-430.

4. M. Rich, A commutativity theorem for algebras, Amer. Math. Monthly, 82 (1975), 377-379.

5. J. C. K. Wang and J. Luh, The structure of a certain class of rings, Math. Japon., 20 (1975), 149-157.

Received October 5, 1976. The second author was partially supported by NSF Grant MCS 76-05784.

North Carolina State University Raleigh, NC 27607