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A COMMUTATIVITY THEOREM FOR
NON-ASSOCIATIVE ALGEBRAS OVER A

PRINCIPAL IDEAL DOMAIN

JIANG LUH AND MOHAN S. PUTCHA

Let A be an algebra (not necessarily associative) over a
principal ideal domain R such that for all a, b E A, there exist
α, β E R such that (α, β) = 1 and αα/> = βfcα. It is shown that
A is commutative.

Throughout this paper N will denote the set of natural numbers and
Z+ the set of positive integers. A will denote an algebra with identity 1
over a Principal Ideal Domain R. If a, b E A then [α, b] = ab - ba. If
α, jβ E i?, then (α, β) denotes the greatest common divisor of a and
β. If a E A, then the order of α, o(α) is the generator of the ideal
/ = {a I a E R, aa = 0} of R. o(a) is unique up to associates. As a
generalization of concepts in [1], [2], [3], [4], [5] we consider the
following:

(*) For all α, b E A, there exist α, β E JR such that (a, β) = 1 and
ααft = βbα.

We will show that if A satisfies (*), then A is commutative. This
generalizes [3; Theorem 3.5].

LEMMA 1. Let p be a prime in R, m E Z + such that pmA = (0). //
A satisfies (*), ί/ien A /s commutative.

Proof. Let C denote the center of A. Let x G A , O(JC) = /?\
k E N. We prove by induction on fc that x E C. If fc = 0, then
JC = 0. So let k > 0 . Let y E A. First we show

(1) [*,y]^0 implies [yx,y] = 0.

If yx = 0, this is trivial. So let yx/ 0. Now for some α,, α 2 E i?,

So αiβi(jc + l)y = axβ2y{x + 1). Thus substituting the above, we get

(3) (α2j3, - α,j32)yx = (α,j82 - α,/3,)y.
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We claim that {a2βx- aφ2)yx^ 0. For otherwise {aφ2-axβx)y-
0. Since y ψ 0, we get p | aφ2 - aφλ.

Also (aφ2 - aφjyx = 0. Since (a2β{ - aφ2)yx = 0, we get
(a2 - a^β^x = 0. Since yx / 0, p\ βλ(a2 - αi). So

p\aι(β2-βι),p\βι(a2-a1).

Case \. p )( ax. Then since ax{β2 - βλ)y = 0, we get (β2 - β,)y =
0. So by (2), βι[x,y] = 0=β2[x,y]. Since [x,y]^0, we get pl/3,,
p I β2, contradicting (2).

Case 2. p\aλ. Then p /̂  α2 and so p Jί a2- ax. Th\isp\βx. So
p X βi, p X βi ~ βi. Since ctι(β2 - βx)y = 0 we get axy = 0. So axxy =
0. By (2), a2yx =0. Since yx^O, we get p\a2, a contradiction.

Hence by (3)

(α2j81-α1)82)yjc/0.

In particular

So

a2βι-a1β2 = p'δ, t<ΞN, δ E R, (δ,p)=l .

If ί ^ fc, then (a2βι - aφ2)yx = 0, a contradiction. So t < k. Hence

pk"(aιβ2 - aφι)y = p'-p'δyx = 0.

Let o(y) = p\ i E N. If i < fe, then y G C, a contradiction. So i ^
k. Hence

pk\pt\pk-(a1β2-aιβι).

So p'\a2β2- aφλ and aφ2-aφx = p*y, y E R, Then p'δyx =
p'γy. Hence p'(δyx - γy) = 0. By induction hypothesis, δyx - γy E
C So[δyjc-γy,y] = 0. Thus δ[yx, y] = 0. Since (δ,p) = 1, [yx, y] =
0. This establishes (1).

Now let uEA and suppose [JC, U]^0. Then also
[x,M + l ] ^ 0 . By (1), [WX,W] = 0 = [(M + 1)JC,M]. SO [JC,W] = 0, a

contradiction. So x E C and the lemma is proved.

LEMMA 2. Suppose A satisfies (*). Let α,tEA,o(/)) = 0. //
ba = 0, then ab = 0.
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Proof. Suppose ab^O. Then there exist βu β2, yu γ 2E R such
that

β2b(a + l), (βuβ2)=l,

So

(5) βλab = (β2-β0b and ( γ 2 - Ύί)a = yλab.

If β2 = βu then βu β2 are units and by (5) ab = ba = 0, a
contradiction. So β2-βι/0. Similarly γ 2 - γ i τ ^ 0 . Since 0(6) = 0,
we get by (5) that o(ab) = 0. So o(α) = 0. Hence by (5), j8, ̂  0,
γ ^ O . Also by (5) [jS1α6,6] = 0.

So

b = yφx{ab)b

= yφλb{ab)

= 0.

So o(αb)τ^0, a contradiction. This proves the lemma.

LEMMA 3. Suppose A satisfies (*). Ler ftGΛ, 0(6) = 0.
b E: C, the center of A.

Proof Let α E A . There exist α b α2, jS^ β2 E i? such that

, (au a2) = 1,

Multiplying the second equation by aλ and substituting the first we obtain

b [(a2βγ - aφ2)a - (aφ2 - aφx) 1] = 0.

By Lemma 2,

! - ttlj82)α - (α tβ 2 - aφx) 1]6 = 0.

Let μ = a2j8j - aφ2. Then αi(j82 ~ βι)b = μab = μba. By (6) axμab =
a2μba — a2μab. So
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(a2-ai)aι(β2-βι)b = 0.

Since o{b) = 0, we obtain by (6) that either a{ = a2 is a unit, βι = β2

is a unit or else a{ = 0. The first two cases imply by (6) that ab =
ba. So let aλ = 0. Then a2ba = 0 and a2 is a unit by (6). So ba =
0. By Lemma 2, α/> = 0. Thus in any case ab = 6α and we are done.

THEOREM 4. Suppose A satisfies (*). Then Λ is commutative.

Proof. Suppose Λ is not commutative. We will obtain a
contradiction. There exists x E A such that JtjZ- C, the center of A. So
jt + l g C . By Lemma 3 O ( J C ) ^ 0 and O(JC + 1 ) ^ 0 . Hence
o(l)τ^0. Let o(l)=d^0. Then d is not a unit and hence d =
pΐ1 — p? for some primes pu* -,ptE A and some positive integers
au - - -, at. Let At = {a\a E A,p?a = 0}. Then each A, is a nonzero
subalgebra of A and A = A j 0 0 A,. Being subalgebras of A, the
A,'s also satisfy (*). Being homomorphic images of A, all the A.'s have
identity elements. By Lemma 1 each A, and hence A is commutative, a
contradiction. This proves the theorem.
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