A COMMUTATIVITY THEOREM FOR NON-ASSOCIATIVE ALGEBRAS OVER A PRINCIPAL IDEAL DOMAIN

Jiang Luh and Mohan S. Putcha

Let A be an algebra (not necessarily associative) over a principal ideal domain R such that for all $a, b \in A$, there exist $\alpha, \beta \in R$ such that $(\alpha, \beta)=1$ and $\alpha a b=\beta b a$. It is shown that A is commutative.

Throughout this paper N will denote the set of natural numbers and Z^{+}the set of positive integers. A will denote an algebra with identity 1 over a Principal Ideal Domain R. If $a, b \in A$ then $[a, b]=a b-b a$. If $\alpha, \beta \in R$, then (α, β) denotes the greatest common divisor of α and β. If $a \in A$, then the order of $a, o(a)$ is the generator of the ideal $I=\{\alpha \mid a \in R, \alpha a=0\}$ of $R . \quad o(a)$ is unique up to associates. As a generalization of concepts in [1], [2], [3], [4], [5] we consider the following:
(*) For all $a, b \in A$, there exist $\alpha, \beta \in R$ such that $(\alpha, \beta)=1$ and $\alpha a b=\beta b a$.
We will show that if A satisfies ($*$), then A is commutative. This generalizes [3; Theorem 3.5].

Lemma 1. Let p be a prime in $R, m \in Z^{+}$such that $p^{m} A=(0)$. If A satisfies (*), then A is commutative.

Proof. Let C denote the center of A. Let $x \in A, o(x)=p^{k}$, $k \in N$. We prove by induction on k that $x \in C$. If $k=0$, then $x=0$. So let $k>0$. Let $y \in A$. First we show

$$
\begin{equation*}
[x, y] \neq 0 \quad \text { implies } \quad[y x, y]=0 \tag{1}
\end{equation*}
$$

If $y x=0$, this is trivial. So let $y x \neq 0$. Now for some $\alpha_{1}, \alpha_{2} \in R$,

$$
\begin{align*}
& \alpha_{1} x y=\alpha_{2} y x,\left(\alpha_{1}, \alpha_{2}\right)=1 \\
& \beta_{1}(x+1) y=\beta_{2} y(x+1),\left(\beta_{1} \beta_{2}\right)=1 \tag{2}
\end{align*}
$$

So $\alpha_{1} \beta_{1}(x+1) y=\alpha_{1} \beta_{2} y(x+1)$. Thus substituting the above, we get

$$
\begin{equation*}
\left(\alpha_{2} \beta_{1}-\alpha_{1} \beta_{2}\right) y x=\left(\alpha_{1} \beta_{2}-\alpha_{1} \beta_{1}\right) y . \tag{3}
\end{equation*}
$$

We claim that $\left(\alpha_{2} \beta_{1}-\alpha_{1} \beta_{2}\right) y x \neq 0$. For otherwise $\left(\alpha_{1} \beta_{2}-\alpha_{1} \beta_{1}\right) y=$ 0 . Since $y \neq 0$, we get $p \mid \alpha_{1} \beta_{2}-\alpha_{1} \beta_{1}$.

Also $\left(\alpha_{1} \beta_{2}-\alpha_{1} \beta_{1}\right) y x=0$. Since $\left(\alpha_{2} \beta_{1}-\alpha_{1} \beta_{2}\right) y x=0$, we get $\left(\alpha_{2}-\alpha_{1}\right) \beta_{1} y x=0$. Since $y x \neq 0, p \mid \beta_{1}\left(\alpha_{2}-\alpha_{1}\right)$. So

$$
p\left|\alpha_{1}\left(\beta_{2}-\beta_{1}\right), p\right| \beta_{1}\left(\alpha_{2}-\alpha_{1}\right) .
$$

Case 1. $p \nmid \alpha_{1}$. Then since $\alpha_{1}\left(\beta_{2}-\beta_{1}\right) y=0$, we get $\left(\beta_{2}-\beta_{1}\right) y=$ 0 . So by (2), $\beta_{1}[x, y]=0=\beta_{2}[x, y]$. Since $[x, y] \neq 0$, we get $p \mid \beta_{1}$, $p \mid \beta_{2}$, contradicting (2).

Case 2. $p \mid \alpha_{1}$. Then $p \nmid \alpha_{2}$ and so $p \nmid \alpha_{2}-\alpha_{1}$. Thus $p \mid \beta_{1}$. So $p \nmid \beta_{2}, p \nmid \beta_{2}-\beta_{1}$. Since $\alpha_{1}\left(\beta_{2}-\beta_{1}\right) y=0$ we get $\alpha_{1} y=0$. So $\alpha_{1} x y=$ 0 . By (2), $\alpha_{2} y x=0$. Since $y x \neq 0$, we get $p \mid \alpha_{2}$, a contradiction.

Hence by (3)

$$
\left(\alpha_{2} \beta_{1}-\alpha_{1} \beta_{2}\right) y x \neq 0
$$

In particular

$$
\alpha_{2} \beta_{1}-\alpha_{1} \beta_{2} \neq 0 .
$$

So

$$
\alpha_{2} \beta_{1}-\alpha_{1} \beta_{2}=p^{\prime} \delta, t \in N, \delta \in R,(\delta, p)=1 .
$$

If $t \geqq k$, then $\left(\alpha_{2} \beta_{1}-\alpha_{1} \beta_{2}\right) y x=0$, a contradiction. So $t<k$. Hence

$$
p^{k-t}\left(\alpha_{1} \beta_{2}-\alpha_{1} \beta_{1}\right) y=p^{k-t} p^{\prime} \delta y x=0 .
$$

Let $o(y)=p^{i}, i \in N$. If $i<k$, then $y \in C$, a contradiction. So $i \geqq$ k. Hence

$$
p^{k}\left|p^{t}\right| p^{k-t}\left(\alpha_{1} \beta_{2}-\alpha_{1} \beta_{1}\right) .
$$

So $p^{\prime} \mid \alpha_{2} \beta_{2}-\alpha_{1} \beta_{1} \quad$ and $\alpha_{1} \beta_{2}-\alpha_{1} \beta_{1}=p^{\prime} \gamma, \quad \gamma \in R$. Then $p^{\prime} \delta y x=$ $p^{\prime} \gamma y$. Hence $p^{\prime}(\delta y x-\gamma y)=0$. By induction hypothesis, $\delta y x-\gamma y \in$ C. So $[\delta y x-\gamma y, y]=0$. Thus $\delta[y x, y]=0$. Since $(\delta, p)=1,[y x, y]=$ 0 . This establishes (1).

Now let $u \in A$ and suppose $[x, u] \neq 0$. Then also $[x, u+1] \neq 0$. By (1), $[u x, u]=0=[(u+1) x, u]$. So $[x, u]=0$, a contradiction. So $x \in C$ and the lemma is proved.

Lemma 2. Suppose A satisfies (*). Let $a, b \in A, o(b)=0$. If $b a=0$, then $a b=0$.

Proof. Suppose $a b \neq 0$. Then there exist $\beta_{1}, \beta_{2}, \gamma_{1}, \gamma_{2} \in R$ such that

$$
\begin{gather*}
\beta_{1}(a+1) b=\beta_{2} b(a+1),\left(\beta_{1}, \beta_{2}\right)=1 \\
\gamma_{1} a(b+1)=\gamma_{2} b(a+1),\left(\gamma_{1}, \gamma_{2}\right)=1 . \tag{4}
\end{gather*}
$$

So

$$
\begin{equation*}
\beta_{1} a b=\left(\beta_{2}-\beta_{1}\right) b \quad \text { and } \quad\left(\gamma_{2}-\gamma_{1}\right) a=\gamma_{1} a b . \tag{5}
\end{equation*}
$$

If $\beta_{2}=\beta_{1}$, then β_{1}, β_{2} are units and by (5) $a b=b a=0$, a contradiction. So $\beta_{2}-\beta_{1} \neq 0$. Similarly $\gamma_{2}-\gamma_{1} \neq 0$. Since $o(b)=0$, we get by (5) that $o(a b)=0$. So $o(a)=0$. Hence by (5), $\beta_{1} \neq 0$, $\gamma_{1} \neq 0$. Also by (5) $\left[\beta_{1} a b, b\right]=0$.

So

$$
\begin{aligned}
\left(\gamma_{2}-\gamma_{1}\right) \beta_{1} a b & =\gamma_{1} \beta_{1}(a b) b \\
& =\gamma_{1} \beta_{1} b(a b) \\
& =\beta_{1}\left(\gamma_{2}-\gamma_{1}\right) b a \\
& =0 .
\end{aligned}
$$

So $o(a b) \neq 0$, a contradiction. This proves the lemma.
Lemma 3. Suppose A satisfies (*). Let $b \in A, o(b)=0$. Then $b \in C$, the center of A.

Proof. Let $a \in A$. There exist $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2} \in R$ such that

$$
\begin{align*}
& \alpha_{1} a b=\alpha_{2} b a,\left(\alpha_{1}, \alpha_{2}\right)=1 \\
& \beta_{1}(a+1) b=\beta_{2} b(a+1),\left(\beta_{1}, \beta_{2}\right)=1 \tag{6}
\end{align*}
$$

Multiplying the second equation by α_{1} and substituting the first we obtain

$$
b\left[\left(\alpha_{2} \beta_{1}-\alpha_{1} \beta_{2}\right) a-\left(\alpha_{1} \beta_{2}-\alpha_{1} \beta_{1}\right) \cdot 1\right]=0 .
$$

By Lemma 2,

$$
\left[\left(\alpha_{2} \beta_{1}-\alpha_{1} \beta_{2}\right) a-\left(\alpha_{1} \beta_{2}-\alpha_{1} \beta_{1}\right) \cdot 1\right] b=0
$$

Let $\mu=\alpha_{2} \beta_{1}-\alpha_{1} \beta_{2}$. Then $\alpha_{1}\left(\beta_{2}-\beta_{1}\right) b=\mu a b=\mu b a$. By (6) $\alpha_{1} \mu a b=$ $\alpha_{2} \mu b a=\alpha_{2} \mu a b$. So

$$
\left(\alpha_{2}-\alpha_{1}\right) \alpha_{1}\left(\beta_{2}-\beta_{1}\right) b=0
$$

Since $o(b)=0$, we obtain by (6) that either $\alpha_{1}=\alpha_{2}$ is a unit, $\beta_{1}=\beta_{2}$ is a unit or else $\alpha_{1}=0$. The first two cases imply by (6) that $a b=$ $b a$. So let $\alpha_{1}=0$. Then $\alpha_{2} b a=0$ and α_{2} is a unit by (6). So $b a=$ 0 . By Lemma 2, $a b=0$. Thus in any case $a b=b a$ and we are done.

Theorem 4. Suppose A satisfies (*). Then A is commutative.
Proof. Suppose A is not commutative. We will obtain a contradiction. There exists $x \in A$ such that $x \notin C$, the center of A. So $x+1 \notin C$. By Lemma $3 \quad o(x) \neq 0$ and $o(x+1) \neq 0$. Hence $o(1) \neq 0$. Let $o(1)=d \neq 0$. Then d is not a unit and hence $d=$ $p_{1}^{\alpha_{1}} \cdots p_{t}^{\alpha_{t}}$ for some primes $p_{1}, \cdots, p_{t} \in A$ and some positive integers $\alpha_{1}, \cdots, \alpha_{t}$. Let $A_{i}=\left\{a \mid a \in A, p_{i}^{\alpha_{i}} a=0\right\}$. Then each A_{t} is a nonzero subalgebra of A and $A=A_{1} \oplus \cdots \oplus A_{t}$. Being subalgebras of A, the $A_{،}$'s also satisfy $(*)$. Being homomorphic images of A, all the $A_{\text {' }}$'s have identity elements. By Lemma 1 each A_{i} and hence A is commutative, a contradiction. This proves the theorem.

References

1. R. Coughlin and M. Rich, On scalar dependent algebras, Canad. J. Math., 24 (1972), 696-702.
2. R. Coughlin, E. Kleinfeld, and M. Rich, Scalar dependent algebras, Proc. Amer. Math. Soc., 39 (1973), 69-73.
3. K. Koh, J. Luh and M. S. Putcha, On the associativity and commutativity of algebras over commutative rings, Pacific J. Math., 63 (1976), 423-430.
4. M. Rich, A commutativity theorem for algebras, Amer. Math. Monthly, 82 (1975), 377-379.
5. J. C. K. Wang and J. Luh, The structure of a certain class of rings, Math. Japon., 20 (1975), 149-157.

Received October 5, 1976. The second author was partially supported by NSF Grant MCS 76-05784.

