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TOPOLOGICAL GROUPS WHICH SATISFY
AN OPEN MAPPING THEOREM

DOUGLASS L. GRANT

Let € be a category of Hausdorff topological groups. A
Hausdorff topological group G is called a B ( ^ ) group if every
continuous and almost open homomorphism from G onto a
group in C4 is open. An internal characterization of such
groups is obtained. For certain % the permanence properties
of B(^) groups and related categories are investigated, with
some positive results pertaining to products and subobjects, and
several counterexamples. Forms of the closed graph theorem
for topological groups are then obtained which generalize results
of T. Husain.

1. Definitions and permanence properties. Given a
topological group G with topology u, we shall denote the filter of
neighbourhoods of the identity by V(G) or V(u), and closures by C1G or
Clu, depending on the emphasis desired. If u and v are two group
topologies on a group G, then υ(u) will denote that group topology on G
having as a fundamental system of unit neighbourhoods the collection
{C\v U. U EL T(U)}. The set of closed normal subgroups of a topological
group G will be denoted by Jί(G). A homomorphism /: G-»H of
topological groups is said to be almost open (resp., almost continuous) if
the image (resp., inverse image) of a unit neighbourhood is dense in a
unit neighbourhood. An isomorphism of topological groups is a group
isomorphism which is both continuous and open.

Let ^ be a category of Hausdorff topological groups. After [8], we
say that a Hausdorff group G is a B(%!) group if every continuous and
almost open homomorphism from G onto a group in % is open, and that
G is a Bri^) group if every homomorphism with these properties which
is also one-to-one is open. We reserve the symbol sέ for the category of
all Hausdorff topological groups.

Husain [8] showed that locally compact groups and complete
metrizable groups are B(s£) groups, while Brown [2, Theorem 4] showed
that any topological group complete in the sense of Cech has the B(sί)
property. A minimal topological group (i.e., one with its coarsest
compatible Hausdorff topology) is easily seen to be a Br($t)
group. Other examples will be mentioned later.

Husain also observed [8, Theorem 31.4] that a topological group
(G, u) is a Br(sd) group iff, for every Hausdorff group topology D O Π G

such that D C M and v(u) - v, it follows that w = v. We give analogous
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statements for Br(^) and B(%!) groups, where <# satisfies a very mild
condition. For a topological group (G,u) and HEJf(G), let uH
denote the group topology on G having the collection {UH: U E Ύ(G)}
as a subbasis of unit neighbourhoods, and u/H the quotient topology on
G/H. We require a lemma which follows directly from Proposition 30.3
of [8].

LEMMA 1.1. A topological group G is a B^) group iff G/H is a
group for every H E

The following definition is adapted from Isbell [10, p. 119]. Let 2β
be a category, /2/ a subcategory of 9£, 3F a class of morphisms in #?. Then
<& is said to be right fitting with respect to & if X E #f, Y E <3f, /: Y-» X
a morphism in & together imply X E ® . Let 3ίf denote the class of
isomorphisms of Hausdorff topological groups. (More extensive use of
this notion, involving other classes of maps, will be made in §2.)

THEOREM 1.2. Let % be a subcategory of sέ which is right fitting with
respect to ffl.

(a) A topological group (G,u) is a Br(^) group iff, for every group
topology v on G such that (G, v) E <#, v C u, and v(u) = υ, it follows that
v = u.

(b) A topological group (G,u) is a B(^) group iff, for every
H E N(G) and every group topology v on G such that (G/H, v/H) E %
v C uH, and v(uH) = v, it follows that v = w//.

Proof. Part (a) follows in a manner similar to Theorem 31.4 of
[8]. One then obtains (b) by invoking Lemma 1.1, applying (a) to the
quotient groups, and observing that every group topology on a group
G/H coarser than the quotient topology arises from a group topology on
G coarser than uH.

Investigation* of some permanence properties of B(sd) and Br(sέ)
groups was carried out by L. J. Sulley [15], who gave criteria for the
inheritance of these properties by dense subgroups and by completions,
in the Abelian case. His assumption of commutativity can be removed
quite painlessly, however. The proof of the next lemma proceeds in a
fashion nearly identical to that of the corresponding result in [15].

LEMMA 1.3. Let E be a Hausdorff group, G a dense subgroup of E,
HE. N(E), q: E-^E/H the natural map. Then the map r: G-*q(G)
obtained by restricting q is continuous and almost open. Furthermore, r is
open iff H Π G is dense in H.

THEOREM 1.4. Let G be a Hausdorff group, E its completion with
respect to its two-sided uniformity.
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(a) G is a B(sέ) group iff E is a B{sέ) group and G Π H is dense in
H for every H<ΞJf(E).

(b) G is a Br{s£) group iff E is a Br(sέ) group and G (Ί H is
nontrivial for every nontrivial H

Proof. The "only if" parts of (a) and (b) follow as in [15], using
Lemma 1.3. For the "if" part of (a), let F be any Hausdorff group, F' its
completion with respect to its two-sided uniformity, / a continuous,
almost open homomorphism of G onto F. By Proposition 5, p. 246 of
[1], / has a unique extension /': E —> F\ which can be shown to be almost
open onto its range. The balance follows as in [15], using Lemma
1.3. The proof of the "if" part of (b) is similar, with the additional
observation that the extension /' of the one-to-one homomorphism / is
also one-to-one.

It follows from this criterion [15, 16] that the group U of complex
roots of unity is a B{sέ) group, while, for instance, neither the group Q
of rationals nor the group Up of p-power roots of unity is a Br(s£) group.

Clearly, if a product of groups has the B{sέ) property, then each
factor has this property. Using Theorem 1.4, however, we can show that
neither the class of B{sέ) groups nor that of Br{sέ) groups is closed even
under finite Cartesian products.

EXAMPLE 1. Let R denote the reals with usual topology and T the
circle group, and let U be as above. All of these groups are B(sί)
groups, but R x U is not even a Br{sέ) group. The Hausdorff comple-
tion of this group is JR x Γ, which is locally compact and so a B{sέ)
group. Let β represent any irrational number. Then JR x Γ has a
non-trivial subgroup

H = {(n, exp2nπβi): n E Z},

which is discrete and therefore closed, and whose intersection with
R[x U is trivial. It follows from Theorem 1.4(b) that R x U is not a
Br{sέ) group, and perforce not a B{si) group. The same argument,
applied to the product of U with the discrete group of integers, shows
that this product also fails to have the Br{s£) property.

The following example shows that certain special products retain the
property, however.

EXAMPLE 2. We show that any finite power of [/is a B(sέ)
group. Soundararajan [13] has called a subgroup H of a topological
group G totally dense if H Π L is dense in L for every closed subgroup L
of G. For Abelian groups G, this coincides with the property described
in Theorem 1.4(a). Letting (x) denote the subgroup generated by an
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element x E G, he asserts that H is totally dense in G iff H Π ClG (JC) is
dense in C1G(JC) for all x E G. Since the completion Tn of Un is
compact and so a B ( ^ ) group, it is therefore sufficient to show that

(Δ) Clr (Un Π C1Γ« (x» = C1Γ« (x)

for all x = (xi, JC2, * * , xn) £ Tn.
We may assume without loss of generality that for some nonnegative

integers r, 5, the entries xu , xr are elements of U9 that xr+u , xΓ+s are
images under the exponential map of irrational numbers au , as

which, together with 1, form a linearly independent set over Q, and that
the balance of the xt are images of linear combinations over Q of the α;

and 1. By the linear independence of {l,α l5 ,α,}, it follows from
Theorem 443 of [5] that H = C1Γ» (x) = F x Ts x C(M), where F is a
finite subgroup of ΓΓ (and hence of Ur), M is an (s + 1) x (n - r - 5)
matrix with rational entries, and

C(M) = {(expr-'-(k(al9 - , αβ 1)M): fc E Z}.

It can be seen that the intersection of H with Un is dense in H, whence
(Δ) is satisfied. Hence, Un is a B {sέ) group for any positive integer n.

If Gi is totally dense in G and Gλ C G2 C G, then G2 is totally dense
in G. It then follows that Un x Γm is totally dense in Tn + m for any
positive integers n and m, and so is a B{sί) group. Since Stephenson
[14, Theorem 2] has shown that totally dense subgroups of compact
groups are minimal, it also follows that Un is a minimal topological
group. Since the product of a minimal group with a compact group is
minimal [14], if further follows that Un x K is a minimal topological
group, and so a Br(sd) group, for any compact group K.

As to subobjects, it does not appear to be true, in general, that our
two properties are inherited by closed or even closed normal
subgroups. However, some partial results of a positive nature have
been obtained. A subgroup H of a topological group G is said to be a
retract of G if there is a continuous homomorphism r: G-+H whose
restriction to H is the identity. By [6, p. 59] and [17, pp. 20 and 95], H is
normal and a retract of G iff there exists a subgroup H' of G such that
the multiplication map m : H x f f - ^ G is an isomorphism.

PROPOSITION 1.5. Let H be a normal subgroup of G and a retract
thereof. If G is a B(sέ) (resp., Br($ί)) group, then H is a B($t) (resp.,
Br{s£)) group.

Proof. The case for B(sέ) groups follows at once, since the
projection map H x ίΓ—> H is continuous and open. Now, let G be a
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Br{sέ) group, A any Hausdorff group, m as above, / the continuous
inverse of m, and f:H—>A a continuous, almost open, bijective
homomorphism. Then h = / ( / x idH) is also bijective, and, since / is
almost open and G is a Br(s£) group, it follows that h is open. Hence,
mh = / x idH> is open, whence / is open.

The following two lemmas are required to establish the next
permanence property, and will also be used extensively in §2.

DEFINITION. // /: G—»H is a homomorphism (not necessarily
continuous) of topological groups, let Vf = {V* =
Vf[ClaΓ\V)]: V

LEMMA 1.6. Let f: (G, w)—> (H, υ) be a homomorphism. If Ύf is a
subbasis for the unit neighbourhood filter of a group topology vf and the
graph offis closed in G x H, then (H, vf) is a Hausdorff topological group.

Husain defined a topology w related to vf in [9], and established a
similar result concerning it. The proof of Lemma 1.6 follows in a
manner parallel to his, with certain simplifications arising from the
elimination of one closure operator from the definition of the sets in the
unit neighbourhood basis.

DEFINITION. For a subgroup K of a group G, let CentGK denote the
centralizer of K in G, and SG(K) = K Cent G K

LEMMA 1.7. (a) If f(G) is dense in H, then Vf is a subbasis for the
unit neighbourhood filter of a group topology vf, and Wf =
{ClπfiClcf-'i V)] = V: V G V(H)} is also a subbasis of unit neighbour-
hoods for vf.

(b) If K is an open subgroup of a topological group (G, u) such that
SG(K) is dense in G and w is a group topology on K, then V(w) is also a
fundamental system of unit neighbourhoods for a group topology on G.

Proof (a) Clearly VCV*, for every V<ΞΨ(H). NOW
/ [ Γ W 1 = vnf(G)> w h i c h is dense in V, and so VCV. Now, if
V\ C V, then

V?= Vxf\C\Gf-\Vx)\Q VxVxQ(y$Q V.

Thus, Wf generates the same filter as Yf.
To show that υf is a group topology, we show that Wf satisfies

(GVΪ)-(GV'm) of [1, p. 222-3J. The first two follow immediately, since
(V)2C(V2)Λ and (V'Y^iV)-1. As for (GV'm), let V,V^r{H\
a EH, t<ΞG such that Vx = V\\ V\C V, and a E VJ(t). Then
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a[f{tVVJiOYa-1 £ Vyfit) f(tΓV1f(t) f(tΓV,

= v1v1vιc(vιγc(vιycv.
(b) It is necessary only to show V(w) satisfies (GV'IΠ). Let

17, Ux E Ύ{G\ xEG, k E K, c <Ξ CentGK such that Ux = t/Γ1, 1/|CI/
and JC E f/icfc. Then

x(kίU1k)χ-1CUιck(k-1Uίk)k1c-1Uι= Ui(cUlC
l)Ul= U\QU.

PROPOSITION 1.8. Let % be a category of Hausdorff groups such that
every Br(^) group is in <€. Then every closed central subgroup ofaB
(resp., B(<g)) group is a Br(<i) (resp., J5(^)) group.

Proof Let (G, u) be a Br(^) group, K a closed central subgroup of
G, w any group topology on K such that (K, w)Eζ€, w Cu\K and
w(u\K)= w. Since K is central in G, it is routine to show that
T(v) = {UW: U<Ξ V(u),WeV(w)} is a subbasis for the unit neigh-
bourhood filter of a group topology v on G. The graph of the natural
injection K-> G is closed in (X, w) x (X, w), and so in (K, w) x (G, M),
since K is w -closed. From this and the fact that w(u\K)= w, it follows
from Lemma 1.6 that v is Hausdorff. By Proposition 31.8 of [8], one has
υ C v{u). However, if U, U, E Y{μ) such that U\Q 17, then C1B [7 C
( C l ^ O ' C ^ C U ί ^ ΠJK ) e r ( ϋ ) . Hence, υ(u)=υ, and the identity
map (G, w)-^(G, ϋ) is continuous and almost open. Then (G,v) is a
Br(^) group, and so is in %. Hence, v = u, whence u \ K — v | K =
w. Therefore, K is a Br(^) group.

The case for B(^) groups is proved in a similar fashion, letting
H E Jΐ(K)7 w a topology on K such that (K/H, w/H)<Ξ%wC(u\ K)H
and w[(u\K)H] = w. One can then define vH by V(vH) =
{UW: (7 E T(/f), W E T(w)} and show that vH = w//, whence uH\K =
vH\K = n>, and (K, w | X) is a β ( ^ ) group.

PROPOSITION 1.9. Let % be as in Proposition 1.8, (G, u) a
(resp., B(^) group) with equal left and right uniform

structures. Then any closed subgroup K of G such that SG(K) is dense in
G is a BX'β) (resp., B(«)) group.

Proof. Let the topologies u \ K, w and υ be as in Proposition
1.8. Without loss of generality, we may assume that an element of V(u)
is fixed under all inner automorphisms of G [7, p. 22]. For such a
neighbourhood U and any A C G, we then have AU = UA. It is then
easy to see that V(υ) satisfies (GV[) and (GV'n) of [1, p. 222-3]. To see
that (GV'm) is also satisfied, let x E G, and UW, U1WιET(v) such that
C7i, Wι are symmetric and ( f / i ^ C UW. Then there exist elements
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α, b of K and of its centralizer, respectively, such that x E
UλWxab. Then

C U1W1abUι(a1W1a)(b1a1U1Wι)

= UιWιU1bW1b~ιU1W1 = (U1W1)
3C UW.

As in Proposition 1.8, it follows that v is Hausdorff and that
v(u) = υ, whence (G, υ) is a £,(*#) group and so is in <€. Then υ = u,
and so u \ K = v \ K = w. Hence, (X, u\K) is a B r(^) group.

Now let (G, w) be a β( (iί) group, then choose H and w and construct
υH as in the analogous case of Proposition 1.8. Since (G, u) has equal
uniformities and H is normal in K, for LWeT(i; H ) , UxU~x

lQU,
WiW^C W, we have (lAWiXlAWi^C LW. The continuity of the
conjugation maps follows in a manner similar to the B^) case. It then
follows that υH = uH, as in Proposition 1.8.

REMARKS, (i) A closed subgroup K of G such that SG(K) is dense
in G is necessarily normal in G, since SG(X) is a subgroup of the
normalizer of K in G, and the normalizer is closed [4].

(ii) The condition that G have equal uniformities can be replaced
by the slightly weaker condition that G has a fundamental system of unit
neighbourhoods fixed under all conjugations by elements of K.

(iii) Clearly, sέ satisfies the condition imposed on ^ in Proposi-
tions 1.8 and 1.9. Indeed, this condition is satisfied by any category right
fitting with respect to isomorphisms, if one were to modify the definition
of B^) (resp., Br(^)) groups to require the existence of at least one
continuous, almost open (resp., and one-to-one) homomorphism onto a
group in % thus precluding a vacuous satisfaction of the definition from
[8].

Let % denote the class of morphisms in si which are almost open.

PROPOSITION 1.10. Let <€ be such that either (i) every Br(^) group is
in <S9 or (ii) ^ is right fitting with respect to %. Then any open subgroup K
of a Br(^) (resp., £(<£)) group G such that SG(K) is dense in G is a
(resp., BW)) group.

Proof. Under either condition, let w be a group topology on K
such that (K, w)^^, w C u \ K and w(u | K) = w. Let v be the topol-
ogy on G having as its unit neighbourhood filter V(v) =
{UW: UeV(u\ WEV(w)}. Let / : (K, w)^(G,w) be the natural
injection. By our assumptions on w, it follows that v induces the υs

topology on K, and, by Lemma 1.7 (a) and (b), V(v) generates a group
topology on G. As in Proposition 1.8, we have υ C u and υ(u)- υ.

Now, if ^ satisfies (i), we observe that the identity map



418 DOUGLASS L. GRANT

(G, w)-» (G, υ) is continuous and almost open, whence (G, υ) is a
group and so in ^. If # satisfies (ii), we observe that the natural
injection (K, w)->(G, υ) is continuous and almost open, so (G, υ) E ^.

It then follows that υ = w, since (G, u) is a JB,^) group, and so
w IK = v I X = w. Therefore, (K, w | K) is a £,(<£) group.

The analogous statement for the B(^) case is proved by first letting
HEJί(K) and w be a group topology such that (K/H,w/H)G%
w C (w I K)// and w[(w | X)iτΓ] = w, and proceeding as above.

To demonstrate some more perverse properties of these categories,
we now display counterexamples, concerned with join topologies, direct
limits and quotients.

EXAMPLE 3. Let (R, u) denote the reals with the usual topology, g
a discontinuous automorphism of the reals, and (R,g(u)) the reals
endowed with the topology consisting of images under g of w-open
sets. Then g is a homeomorphism from (R, u) to (i?, g(w)), whence
(/?, g(w)) i s locally compact and so a B{sέ) group.

The identity map /: (i?, u v g(w))—» (i?, u) is clearly continuous, and
is also almost open, since the image under g of any w-open set is u-dense
in R [7, p. 49]. However, / is plainly not open. Hence, (R, u v g(u)) is
not even a Br{sέ) group. This example also shows, of course, that the
join of two locally compact group topologies is not necessarily locally
compact. Thanks are due to E. Dubinsky for suggesting the above
example in the latter context.

EXAMPLE 4. Let (JR, d) denote the reals with discrete topology,
(R, u) as in Example 3. Let Gλ = (JR, U) X (R, d\ G2 = (R, d) x (R, «),
and let /: Gλ->G2 be defined by (JC, y)*+ (y, JC), and let this system be
ordered by 1 < 2. Its inductive limit in the category of topological
spaces is then R2 endowed with the topology (u x d) Λ (d x u). It is
proved in [12], however, that this is not even a group topology, although
the groups involved are locally compact and hence B(sί) groups.

EXAMPLE 5. Let T be as in Example 1, G the subgroup of T
consisting of those elements of squarefree order. It is shown in [15] that
G is a Br(s£) group which is not a J B ( ^ ) group. It then follows from
Lemma 1.1 that not all quotients of G can be Br(M) groups. This
counterexample shows that the Bτ(sέ) property is not divisible, and thus
that the portion of Proposition 31.7 of [8] which refers to B^) groups is
false. Gaps are thereby created in the proofs of Theorems 32.8 and 32.9
of [8]. A corrected version of the former appears in §2.

A sixth example, which follows, shows that, for the class (Sι of first
countable Hausdorff groups, the B{s£) groups form a proper subclass of
the B(^i) groups. We first observe that, since a countably compact
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subspace of a first countable space is closed [3, p. 230], it follows that a
continuous, almost open homomorphism of a locally countably compact
group into a first countable group is open. Therefore, every locally
countably compact group, and hence every countably compact Hausdorff
group, is a 5 ( ^ 0 group.

EXAMPLE 6. Let 5 be any uncountable set, and let G be any
compact Hausdorff group with nontrivial centre. Let B = G5, and
define

P = {(χa)- xa7^ e for at most countably many a E 5}.

By [11, p. 127], P is countably compact and a proper dense subgroup of
the group B, which is compact and so a Br(s£) group. For each g E G,
let (g) denote the element (xα) of B such that xa = g for all a E S. It is
easy to see that H = {(g): g E Cent G} is a nontrivial closed normal
subgroup of B, and that H DP = {(e)}. By Theorem 1.4(b) , it follows
that P is not a Br{sέ), and perforce not a B{sέ), group.

2. Closed graph t h e o r e m s . In [8], Husain announced a
quite general form of the closed graph theorem for topological groups
(Theorem 32.5), and drew an extensive list of corollaries
therefrom. However, the proof of this theorem contained a serious
flaw, acknowledged by Husain in [9], where he salvaged some of the
results from [8]. In this section, we salvage more results from [8] by
weakening the assumption of commutativity of the codomain imposed by
Husain in [9].

Let us recall the definition of "right fitting" from §1, and agree to
denote the graph of a mapping / by R(f) throughout the balance of the
paper.

THEOREM 2.1. Let % be a category of Hausdorff groups which is
right fitting with respect to %. Let (G,w) E <g, (H, v) be a BT{$) group,
f: G->H an almost continuous, almost open homomorphism with closed
graph such that f(G) is dense in H. Then f is continuous.

Proof. By Lemmas 1.7(a) and 1.6, υf is a Hausdorff group
topology. Since vfCυ, the identity map /: (AT, t>)—>(ίf, vf) is
continuous. By Proposition 31.8 of [81, we have that vfCvf(v)C
v. Letting ί/,V£ V(H) such that V2C £/, we proceed as in Theorem
32.5 of [8] to show that V* C ClVfU, and conclude that υf(υ) = υf, whence /
is almost open. Then g = // is almost open, and also continuous, since
g-\U)D g-ι(jf[C\GΓ(U)])Ώ C\GΓ(U), which is in Y(G). Thus, g E
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(H,υf)E % and / is open, since (H,v) is a B^) group. Hence,
f = υi g = f a n d / is continuous.

COROLLARY 2.2. Let % be as in Theorem 2.1. Let (G,u)G%
(H,v) be a Br^) group, f: G->H an almost continuous, almost open
homomorphism with closed graph such that SH[C\Hf(G)] is dense in
H. Then f is continuous.

Proof. By Proposition 1.10, K = C\Hf{G) is a Br{$) group, and it
follows that the corestriction of / to K is continuous, by Theorem
2.1. Hence, / is continuous.

THEOREM 2.3. Let <β be any category of Hausdorff groups such that
every Br(<€) group is in <€. Let (G, u) G % (H, υ) be a Br(%) group and
f: G-> H an almost continuous, almost open homomorphism with closed
graph such that f(G) is dense in H. Then f is continuous.

Proof. This proof parallels that of Theorem 2.1, except that the fact
that (H,vf) is in <£ is deduced by observing that j : (H,υ)-*(H9υf)
continuous and almost open implies (H,vf) is a Br(%l) group.

The next corollary follows in a manner similar to Corollary 2.2.

COROLLARY 2.4. Let <β be as in Theorem 2.3. Let (G,u)G%
(H, υ) be a Br(^) group, f: G-^H an almost continuous, almost open
homomorphism with closed graph such that 5H[C1H/(G)] is dense in
H. Then f is continuous.

For categories % of groups which satisfy the condition of Theorem
2.3, we can remove the "almost open" hypothesis on the map at the cost
of adding certain Qther hypotheses. A preliminary lemma is required.

LEMMA 2.5. If either (i) f(G) C Cent H, or (ii) H has equal unifor-
mities and SH[f(G)] is dense in H, then vf is a group topology.

Proof. The proof in case (i) is obvious. For (ii), we once again use
(GVi)-(GVni) of [1, p. 222-3], obtaining the first two in a manner
parallel to that of Proposition 1.8. To obtain (GV'uι), let V* ε Tf, and
select W* E Yf such that W is symmetric and invariant under conjuga-
tions, and (W*)3C V*. Let x E H, t G G and b G CentH[/(G)] such
that xEf(t)bW*. Then
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But f(t)f[CloΓ(W)]f(tr = f(C\c[Γ(f(tWf(tΓ)]) = f[ClGΓ(W)]. By
virtue of this and the invariance of W under conjugations, it follows that

xw*xι c [f(t) W7(0~T = (w*)3 Q v*'

THEOREM 2.6. Let % be as in Theorem 2.3. Let (G, u)E % (ϋ, υ)
be a Br{%) group f: G-^H an almost continuous homomorphism with
closed graph such that either (i) /(G) C Cent ii, or (ii) H has equal
uniformities and SH[f(G)] is dense in H. Then f is continuous.

Proof By Lemma 2.5, vf is a group topology in either case. As in
Theorem 2.1, it follows that vf(v) = υ, and as in Theorem 2.3, (H, υf) is a
B ( ^ ) group and so in c€. Thus, t?; = υ, and / is continuous.

As with previous results, we point out that Theorem 2.6 holds, in
particular, for % = sέ. The conditions on the homomorphism can be
further relaxed if additional topological conditions are imposed on the
groups involved.

DEFINITION. A group G is called weakly separable [2] if, for every
VG V(G), there exists a countable subset Xv of G such that VXV =
G. (This property clearly generalizes both separability and the Lindelόf
property.)

The proof of the next lemma parallels that of Proposition 32.11(b) of
[8], which this result generalizes.

LEMMA 2.7. Any homomorphism from a Hausdorff group with the
Baire property to a weakly separable group is almost continuous.

THEOREM 2.8. Let % be as in Theorem 2.3. Let G be a group in <€
with the Baire property, H a weakly separable Br(%!) group. Then a
homomorphism f: G —» H with closed graph is continuous if either (i)
f(G) C Cent H, or (ii) H has equal uniformities and 5H[C1H/(G)] is dense
inH.

Proof By Lemma 2.7, / is almost continuous. Then / is continu-
ous by Theorem 2.6.

These considerations also allow us to prove a form of the open
mapping theorem which corrects and extends Theorem 32.8 of [8].

THEOREM 2.9. Let <β be as in Theorem 2.3. Let G be aB(^) group
with equal uniformities, H any Hausdorff group. Then any almost open
homomorphism g of G onto H with closed graph is open.
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Proof. Let K be the kernel of g and n: G-^G/K the quotient
map. Let g = fn. Since R (g) is closed and contains K x {eH}, which is
normal i n G x / ί , it follows by Corollary 24.4 of [8] that R (/) is closed.

By Proposition 30.3 of [8], / is almost open, whence f~ι is almost
continuous, f~ι also has closed graph, clearly. Now G/K is a B(%!)
group, by Proposition 31.7 of [8], so f~λ is continuous, by Theorem
2.6. Hence, / is open and so is g, by Proposition 30.3 of [8].

Finally, let Q) denote the class of morphisms in si which have image
dense in the codomain.

THEOREM 2.10. Let Ή be a category of Hausdorff groups which is
right fitting with respect to % GE <£, (//, υ) a Br(^) group. Then an
almost continuous homomorphism f: G —> (H, υ) with closed graph is in 2)
if f(G) is dense in K

Proof As before, we form the vf topology and observe, by Lemmas
1.6 and 1.7(a) that vf is a Hausdorff group topology. Letting
/: (//, v)-+ (H9 υf) be the identity map, we further observe that g = // is
continuous, as in Theorem 2.1. Since vf C u, g(G) is dense in (//, vf)9 so
g G ®, and (H,vf)G^. Also as in Theorem 2.1, it follows that j is
continuous and almost open, whence / is open, since (fί, υ) is a B^)
group. Therefore, vf = υ, f is continuous, and / E 3).

In closing, we note that the "right fitting" properties mentioned
above are by no means exotic. Among the categories of Hausdorff
groups which are right fitting with respect to 3} are the compact,
precompact, Abelian, connected and separable groups, and among those
right fitting with respect to % are the locally compact, locally precompact,
metrizable and locally connected groups. Groups with equal unifor-
mities, second countable groups and Abelian profinite groups are right
fitting with respect to % Π 3).
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acknowledges the support of the government of the Province of Ontario
while he was a graduate student, and, subsequently, of the National
Research Council of Canada and of the Council for Research of St.
Francis Xavier University.
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