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FINITE DIRECT SUMS OF CYCLIC
VALUATED p-GROUPS

RoGER HUNTER, FRED RICHMAN AND ELBERT WALKER

The purpose of this paper is to characterize finite direct
sums of cyclic valuated p-groups in terms of numerical
invariants.

Our starting point is the subgroup problem for finite abelian
p-groups. It follows from the proof of Ulm’s theorem that an
isomorphism f between two subgroups of a finite abelian p-group
A is induced by an automorphism of A exactly when f preserves
heights in A. This suggests a device for dealing with such sub-
groups—we give each element of a subgroup a value, namely, its
height in the containing group. Now the containing group is dispensed
with and we work only with the subgroup and its valuation, which
we call a valuated p-group. Theorem 32 of [2] shows that all of
the information pertaining to the original embedding is essentially
captured by this process. There is a natural definition of a morphism
of valuated p-groups, yielding the category .&, of finite valuated
p-groups. We then observe that .#, has direct sums and set about
characterizing the simplest objects in .&,, the cyclics and their direct
sums. The invariants for finite abelian p-groups are provided by
functors from the category of abelian groups to the category of
vector spaces, each functor picking out the number of cyclic sum-
mands of a given order in any decomposition of the group into
cyclics. We carry out a parallel program for direct sums of cyclics
in #,, obtaining in Theorem 2 a complete set of invariants. An
example is then given to show that the objects of &, are not all
direct sums of cyclics. Thus arises the question of finding some
criterion for a valuated p-group to be a direct sum of cyclics. We
provide such a criterion in Theorem 3, making use of the functional
invariants used for direct sums of cyclics. The paper concludes with
a proof that p*~bounded valuated groups in &, are direct sums of
cyclics. This bound is the best possible, as the example referred to
above is bounded by 2°

Valuations. Once and for all, fix a prime p. All groups con-
sidered will be finite abelian p-groups. Let A be such a group.
Define p°A = A and pA = {pa:ac A}. Clearly pA is a subgroup of
A. The subgroups p"A are defined inductively in the obvious way.
The height h(a) of a nonzero element a of A is defined by h(a) = n
where aep"A\p""A. Set h(0) = . We agree that « < « and
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n < o for all w=20,1, ---. Thus ~ defines a function—the height
Sunction—from A to the set {0,1, ---} U {>}. Note that hpa > ha,
k(e + b) = min {ha, hb}, and hna = ha if (p, ») = 1. Given a subgroup
A C B, we value each element of A with its height in B. Formally,
a valuation of A is a function v: A—{0,1, ---} U{} such that

(1) wvpa > va

(ii) wvna =wa if (p, n) =1

(iii) w(a + b) = min {va, vbd}

(iv) wa = o if and only if a = 0.

We call A together with a valuation a valuated group. A
morphism f: A— B of valuated groups is a group homomorphism
such that va < vfa for each a in A. We write &, for the category
of (finite) valuated p-groups so obtained. The direct sum of valuated
groups A and B is the group direct sum A @ B with valuation
v(a, b) = min {va, vb}.

Condition (i) ensures h(a) < v(a) for all elements a of A. If
A e &, and has valuation v such that » = h, we say A is a group.
A map f:A— B of &, is an embedding if f is one-to-one and
va = vfa for all @ in A. If A is a subgroup of a valuated group B
and the inclusion A & B is a embedding, then the quotient B/A is
valuated by v(b + A) = max {v(b + a): a € A}.

The following theorem is a special case of Theorem 12, [1].

THEOREM 1. FEach A in &, has an embedding in a group A
of F,.

Thus, each valuation on A arises by restricting the height
function on some containing group.

Direct Sums of Cyclics. FEach element o of a valuated group A
determines the sequence

v(a) = (va, vpa, vda, - --)

called the value sequence of a. A valuated group is cyclic if it is
cyclic as an abelian group. Clearly two cyclic valuated groups are
isomorphic in &, if and only if their generators have the same value
sequence. We can express this fact without reference to generators
in terms of functorial invariants which are defined for all valuated
groups. A wvalue sequence is an increasing sequence (&, &, +--),
;€{0,1, ---}U{o}. Let p=(a,, ) and v=(8,8, ---) be
value sequences. Define p>vp if o, =B, for ¢t =1,2, ---,and ¢t > v
if #=v and a, # B, for some 7. Define
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A) = {ae A2 ¥(a) = 14}

and A(¢)* to be the subgroup generated by the set {a € A: v(a) > p}.
Notice that A(x) and A(p)* are subgroups of A as an abelian group.
Define f(y, A) to be the rank of the vector space

(A() + pA)(A()* + pA) .

Obviously f(y, A) is an invariant of A. If A B is a direct sum in
“,, then it is easy to show that

fle, A® B) = flp, A) + A1, B) .

As defined, value sequences are infinite. However, from this
point on we adopt the convention of writing only those terms which
are not co. Thus (1, 2, 4, o, o, ---) is written (1, 2, 4).

LEMMA 1. Let A be a cyclic valuated growup. Then

1 of p ts the value sequence of a generator of A, and
Ay, A) = .
0 otherwise.

Proof. Let v be the value sequence of a generator z of A. If
2> v then z¢ A(¢) so A(p) < pA. When f 2 v there is some entry
of ¢ which is strictly smaller than the corresponding entry of ».
Since 7(x) = v for all 2 in A4, x € A(¢) implies ¥(x) > ¢ so A(y) = A(p)*.
Thus, for ¢+ v we have f(¢, A) = 0. On the other hand, if g =v
then A(p) = A and A(p)* < pA so f(u, A) = rank (4/p4) = 1.

Since the invariants f(y, A) are additive, they form a complete
set of invariants for direct sums of cyclics in .&,.

THEOREM 2. Two direct sums of cyclics A and B are isomorphic
i F, if and only if f(y, A) = f(¢, B) for all value sequences ft.

By the rank r(4) of a valuated group A we mean the rank of
A as an abelian group. If A is a direct sum of cyclics in 7, it is
an immediate consequence of Lemma 1 that

3, A) = r(4) -
The converse is also true.

THEOREM 3. Let Ae . #,. Then A is a direct sum of cyclics if
and only if .. f(¢, A) = r(A).

The proof of this theorem must wait until some theory of the
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invariants f(yg, A) has been developed. The first step is a useful
lemma whose proof is trivial.

LEMMA 2. If a € A\pA and ¥(a) = ¢t is maximal in {(x): © € A\pA)
then a ¢ A(p)* + pA. In particular, f(y, A) # 0.

Theorem 3 would be redundant if every object of &, were a

direct sum of cyclics. An example to the contrary is therefore in
order.

ExamMPLE. A valuated group which is not a direct sum of cyclics.
Let B = (a) @D <(b) D {¢) where 0(a) = p°, 0(b) = p*, 0(c) = p. Set
x = pa + ¢, Yy = p’a + pb and let A be the subgroup of B generated
by = and y with the induced valuation. It is easy to see that
v(x) = (0, 3, 4), ¥(y) = (1, 2, 4), and v(x — y) = (0, 2) are all maximal
among {v(a): a € A\pA}. By Lemma 2, >, f(¢, A) =3. However,
7r(A) = 2 so A cannot be a direct sum of cyclics in #,.

In view of the above example, we define
a4) = 3 fn A)
By the modular law,

(A()* + pA) N A(p) = A(p)* + pA N Ap)
so that

A(f) + pA A(p) _ A() )
A()* + pA AN (A" + pA)  A()* + pAN A(p)

This isomorphism is natural, so it follows that each nonzero coset
of (A(y) + pA)/(A()* + pA) has a representative with value sequence
p. For each value sequence #, choose one representative in A(y) for
each element of a basis for (A(x) + pA)/(A()* + pA). We call the
union of such sets, one for each g, a v-basis for A. If X is a v-basis
for A, each element a of A(x¢) can be written

a = >, ux; + a* + pb

where z, € X, 9(z;) = ¢, (p, ;) =1 and a* € A(¢)*. We call this sum
an X-representation of a.

LEmMMA 3. d(A) = r(4).

Proof. Let H be the subgroup generated by a v-basis for A.
As r(A/pA) = r(A) it suffices to prove that H + pA = A. Since
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A(p) € H + pA + A(p)* we have A(p) = H + pA by induction on pe.
Hence A < H + pA.

Let @ be the maximum value of the nonzero elements of a
(nontrivial) valuated group A. We write A(a) for the subgroup
generated by the elements of value «. Then & # « and
0 # A(a) < A[p]. It turns out that we can find a set of generators
for A(a) by taking multiples of elements in a v-basis X for A. The
least natural number % such that p"a = 0 is called the exponent of
o and is written e(a). Let

X, ={p 'x:xe X and acv(x)}.

Thus X, is obtained by taking those representatives z whose
value sequence ends in «, and multiplying by powers of p so that
the resulting elements have order ». As yet, there is no guarantee
that X, is not empty. We remedy this in:

LEMMA 4. A(@) is generated by X,.

Proof. Let K be the subgroup generated by X,. Certainly
K € A(). Suppose that K =+ A(«), and choose, among those elements
a of A which satisfy p°“ 'a € A(a) — K, one of maximum order, and
then of maximal value sequence. Let ¥(a) = ¢ and

v(a¥) > p¢, be an X-representation for a. Set k= e(a) —1. Now
p‘ac A(e) so p*A(y) C A(e) whence p‘x,c A(e) and pla’ e A(a).
Therefore p**'c € A(a), and to avoid contradicting the choice of a we
must have p**'¢ce€ K. For the same reason, each a} has order less
than p*. But then p‘a € K, a contradiction.

Throughout, a will denc_>te the maximum value of elements in
A\{0}. Denote A/A(x) by A and the _image of an element o of 4
under the natural homomorphism A — A by @. It is readily seen that

¥(@) = (a,, + -+, @,) where each a, < @ and that ¥(a) = (a,, ---, @,) or
¥a) = (a, +++, @, ). With this in mind, given g = (a, ---, a,)
with @, < «, define pa = (a, ---, a,, @).

LEMMA 5. Let X be a v-basis for A. Then a v-basis for A can
be chosen from the set X = {%: x ¢ X).

Proof. Let p=(a,---,,) where each a, <a. Suppose
v(y) = p. It is enough to show that
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J=22uk, +a

where #, ¢ X, %(Z;) = ¢t and @ € A(p)* + pA. Now yec A(ra) and we
can write

y:Zuixi+Zaf+pa

where #(x,) = pa and ¥(a¥) > pa. If B(al) # £t then @fe A(p)* as
desired. Replace each a} such that v(a})=p with its X-representation.
The result is a sum

Y=, Ux, + D, 0% + w

with %(x,) = £ and @ e A(p)* + pA. Observing that %(#,) = ¥(%,) = ¢
completes the proof.

COROLLARY 1. The set of finite values vA occurring in A is
V(4) = {Bep: fl1, A) + 0}.

Proof. We use induction on @« = max vA. Certainly V(4) < vA.
By Lemma 4, ac V(A) and if a@ # BevA then BewvA = V(A) by
induction. But, by Lemma 5, V(4) < V(4).

LEMMA 6. Suppose r(A) = d(A). Then each v-basis for A 1is
linearly independent in A.

Proof. Let X = {z,} be a v-basis for A. If H is the subgroup
generated by X then H + pA = A and r(4) = r(4/pA) = card X so
X is independent modulo pA. Suppose to the contrary that X is
linearly dependent in A and let

) S viexw, =0, (p,a)=1

be a linear combination with no term zero. Suppose » = 7, = min 7,
and set

Yy = gp””ai% .

Now e(y) < » and e("""a;x;) > r for each 7. Suppose now that our
9 is chosen from among all relations like (*) so that y has maximal
value sequence p. Let

y=2lu; + 3iaf + po
be an X-representation for y. Now ¥(z;) = ¢ = v(y) implies e(x;) < r
so INJ is empty. Thus independence of X modulo pA implies there
is a k£ with
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arf = ) 8

where (p,s) =1. Now 7v(ai)> ¥(y) implies e(ai)=ey)<r so
prai = >, sk, = 0. But p'sz, #+ 0, contradicting the choice of ¥.

Proof of Theorem 3. In fact, we prove the stronger assertion
that if X is a wv-basis for A, then A =@..xr<{x>. Recall that
>SSy, A) = d(A). We use induction on card A. Assume the asser-
tion is true for all groups smaller than A. Since each subgroup B
of A(a) satisfying BN pA = 0 is a summand of A, we may assume
A(@) < pA. Thus 7(A) = r(A). As d(A) = r(4), Lemma 3 and
Corollary 1 imply that d(A) = »(4). If X is a v-basis for A, it
follows that X is a v-basis for A and our induction assumption yields

A = exeX <:E> .

By Lemma 6, A = @..x (%) as an abelian group. Let a = >, n,x be
a linear combination of elements of X. It is enough to show that
ve = min {vn,2}. If minvn,x < «, then

v@ = min {vn,x} = min {vr,z} < @

implies va = va = min {vn,x}. The case min vn,x = « is trivial.

We conclude with a theorem which shows there are no non-
cyclic indecomposables bounded by »* in .&,.

THEOREM 4. Let Ae . #,. If pPA =0 then A is a direct sum
of cyclics.

Proof. The proof is by induction on |A| so we assume all p*
bounded valuated groups smaller than A are direct sums of cyclics.
As in the proof of Theorem 3, A(a) £ pA may be assumed. Choose
y of maximum value so that 0 == py € A(«) and set 2 = py. We first
show that each element of order p in A/{y) lifts to an element of
A having the same order and value. Denote the coset a + {(y) by
a. Suppose pa = 0. Then pa = ux where w is a unit. Observe that
va <vy. Let b=a—wuy. Then b=a&, pb=0 and vb= v@ as
required.

Our induction assumption implies A is a direct sum of cyclics
{@y P - -- b<a,)—we also arrange that va, = va, for each 1. If
p@; # 0 then the preceding argument yields a z in A[p] with z = pa,.
Thus pa, = z + rx so that vpa, = vz and we conclude that vpa = vpa,.
The map induced by sending @, — a, is therefore a map A— A of
7, and we have A = A @ (y), a direct sum of cyclics.
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