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SOME RESULTS ON THE FLOQUET THEORY FOR
DISCONJUGATE DEFINITE HAMILTONIAN
SYSTEMS

WiLLiaM T. REID

For a linear periodic Hamiltonian system that is definite,
identically normal, and disconjugate on (—co, o) there is
established a basic relation between the Floquet representa-
tion of a fundamental matrix for this system and the dis-
tinguished solutions at + oo of the associated Riccati matrix
differential equation.

1. Introduction. The present paper is a consequence of hearing
R. S. Bucy present [4] of the References at the recent International
Conference on Differential Equations at the University of California
at Los Angeles, September 3-7, 1974, and the subsequent privilege of
reading a preprint of the paper. The goal of the present paper is
quite distinct from that of [4], however, as herein no attention is
devoted to numerical processes, whereas Bucy is concerned with the
development of a method which not only gives the characteristic
exponents, but also allows for the numerical determination of the
associated constant Hamiltonian system given by the Floquet theory.
Further comparative comments on the hypotheses of the two papers
are presented in §5.

Matrix notation is used throughout; in particular, one column
matrices are called vectors. The n X n identity matrix is denoted
by E,, or merely by E when there is no ambiguity, and 0 is used
indiseriminately for the zero matrix of any dimensions. For a matrix
M the conjugate transpose is denoted by M*. The notation M = N,
{M > N}, is used to signify that M and N are hermitian matrices
of the same dimensions, and M — N is a nonnegative, {positive},
definite hermitian matrix. If M = [M,;], N=[Nyl,(@=1, -+, n; 5 =
1, ---, k); are n X k matrices, for typographical simplicity the symbol
(M; N) is used to denote the 2n x k& matrix whose jth column has
elements M,;, ---M,;, Ny;, -+, N,;. If a matrix function M(¢) is a.c.
(absolutely continuous) on an interval [a, b], then M’(¢) denotes the
matrix of derivatives at values where these derivatives exist, and
zero elsewhere. If M(t) is (Lebesgue) integrable on [a, b], then

b
SM(t)dt signifies the matrix of integrals of respective elements of

a

M(t). For a given compact interval [a, b] on the real line the symbols
L..la, bl, &x.[a, b], and ¥,,.[a, b] denote respectively the class of m X n
matrix functions M(¢) = [M,4(t)] which on [a, b] are (Lebesgue) inte-
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grable, (Lebesgue) measurable and essentially bounded, and measurable
with |M,.(t)* integrable. For n =1 the double subscript mn is
reduced to merely m. If matrix functions M(¢) and N({) are equal
a.e. (almost everywhere) on a common interval of definition, we write
simply M(t) = N(¢f). An m X » matrix function M(¢) is said to be
locally a.c. if M is a.c. for arbitary compact subintervals [a, b].

2. Basic properties of differential systems. In the following,
we shall consider a vector differential equation

2.1 Jy'(t) + A)y() = 0,

where & and U are 2n X 2n matrix functions on the real line R =
(— o=, ) of the form

o g e —De)
& =1z o) *0=[Tho Zae)

and the n x n matrix functions A, B, C, D satisfy the following
condition.

(%) A(), B@t), C(t), D(t) are of class ¥,.[a, b] for arbitrary compact
subintervals [a, b] on R.

For u, v n-dimensional vector functions and y = (u; v), equation
(2.1) may be written as the vector system

—'(t) + Ct)ult) — DE)w(t) = 0 ,

@2.1')
W(t) — Atyult) — Btyw(t) =0 .

Throughout the paper it will be understood that “solution” is in the
Carathéodory sense; that is, locally a.c. vector functions which satisfy
a.e. the given equations. Corresponding to (2.1') we have the matrix
differential system

-V't) + CH)UE) — DH)V(E) =10,

(2.1y)
uw) — A@)Ut) — B)V(E) =0,

where U and V are n x n matrix functions on R.
Associated with this linear equation is the Ricecati matrix differ-
ential equation

2.3) W) +W@HAE) + DERYW(E) + WE)B(E)W() — Ct) =0,

for which we have the well-known result (see, for example, [7, p.
101, or 8, p. 11]), that W(¢) is a solution of (2.3) on a nondegenerate
subinterval I of R if and only if there exists a solution Y(¢) =
(U); V(t)) of (2.1y) such that on this subinterval U(t) is nonsingular
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and W(t) =V(#)U'(t). Moreover, for Y(¢) and W(¢) thus related we
have that U(t) is a solution of the linear matrix differential equation

(2.4) U'(t) = [A®) + BOW®]U@)

which is nonsingular for each tel.
We shall be concerned with differential equations (2.1) and (2.3)
for which the following hypothesis is satisfied.

(9,) The matrixz functions A(t), B(t), C(t), D(t) are periodic of period
o, (w > 0), on R.

Now if hypotheses (£, and (9,) are satisfied, and there exists
on R a solution W(t) of (2.3) which is periodic of period w, then the
coefficient matrix A(t) + BE)W(t) of (2.4) is periodic of period w.
Consequently, if Y(¢) = (U(t); V(¢)) is a solution of (2.1y) with U(%)
nonsingular and W(t) = V() U *(¢), then by the Floquet theory (see,
for example [7, Sec. VIL. 6]), there exists a nonsingular matrix
function P(t) of period @ and a constant matrix S such that

(2.5) U(t) = P(t) exp {tS} .
That is, Y(¢) = (U(t); V(t)) = (UE); W(t)U(t)) is such that
(2.6) Y + ) =YOK,

where K is the nonsingular matrix
(2.7 K = exp {0S} .

Conversely, if Y(t) = (U(¢); V(t)) is a solution of (2.1y) with U(t) non-
singular, and (2.6) holds with K a nonsingular matrix, then W(¢) =
V(t)U(t) is periodic of period w. That is, we have the following
result.

THEOREM 2.1. If hypotheses (9.), (9.) are satisfied, then the
Riccatt matriz differential equation (2.3) has a solution W(t) which
is periodic with period @ if and only if there exists a solution
Y(t) = (U®); V() of (2.1y) with U(t) nonsingular and which satisfies
(2.6) with a nonsingular matriz K.

If the roles of u and v are interchanged in (2.1), then ¥ = (%; ¥) =
(v; u) is a solution of the differential system

(2.8) J7 + A@)FE) =0,

where
= [ Ct) —D@
@9 0= 30 _so)
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with A= —-D,B=C, C =B D= —A. In the self-adjoint case,
wherein D = A*, the equation (2.8) has been called the obverse to
(2.1), (see [6, Sec. 2]). Clearly, if W(t) is a solution of (2.3) that is
nonsingular on a subinterval I, then W(t) = W~'(t) is a solution on
I, of the Riccati matrix differential equation

(2.10)  W'@) + WR)A®) + D)W@) + W)Be)W@E) — Ct) =0,

associated with (2.8) as (2.8) is associated with (2.1).
Correspondingly, if § = (4; 9) = (v; —u), the equation (2.1) becomes

(2.11) J7'@) + A@)9() = 0

where

(2.12) () =[ € —D(t)},

—A@) —B@®)

withA = —D, B = -G, C=—-B,D=—A. Again, in the self-adjoint
case, equation (2.11) has been termed reciprocal to (2.1), (see [2,
Sec. 2]). Also, corresponding to the above comment, if W(¢) is a

solution of (2.3) which is nonsingular on a subinterval I,, then W(¢) =
—W-Y(t) is a solution on I, of the Riccati matrix integral equation

(2.13) W'(t) + W)A®t) + D)W@) + W(e)Be)WE) — C¢t) =0 .

3. Hamiltonian differential systems. Attention will now be
directed to equations (2.1) whose coefficients satisfy the following
hypothesis.

(9s) B(t) = B*(t), C(t) = C*(t), D(t) = A*(t), and the matrix functions
A, B, C are of class &,,[a, b] on arbitrary compact subintervals
[a, b] of R.

Under hypothesis (9;) the matrix function %A(¢t) of (2.2) is hermitian,
and such equations are termed Hamiltonian vector differential equa-
tions. In particular, if the coefficients of (2.1) satisfy (9.) then this
hypothesis is also satisfied by the coefficients of the obverse equation
(2.8) and the reciprocal equation (2.11).

In particular, when (9.) is satisfied the vector system (2.1")
becomes

—v'(t) + C(t)u(t) — A*(@)v(@) = 0,

3.1) w'(t) — A(t)u(t) — BE)v(t) =0.

Similarly, the system (2.1;) becomes

—V'(t) + Ct)U®) — A*®) V() =0,
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and the associated Riccati matrix equation (2.3) is
(3.2) W'(t) + W)A®) + A*t)W(t) + W(E)B@E)W(E) — Ct) =0.

If y, = (us v,) are solutions of (3.1"), then ¥;()Iv.(t) = vi()u,(t) —
uy(t)v,(t) is a constant on R; if the value of this constant is zero,
the solutions are said to be (mutually) conjoined or conjugate. Cor-
respondingly, if Y, (t) = (Unt); V.(t)), (@ =1, 2), are solutions of (3.1y),
then the n X »n matrix Y} ()IJI Y,(t) = V@) U,(t) — U¥(t)V.(t) is constant.
If the column vectors of Y(¢) = (U(t); V(t)) are linearly independent
solutions of (3.1') and Y*(¢)JY(¢) = 0, then Y(¢) is called a conjoined
basis for (3.1') or (3.1y). From the form of (3.2) it is immediate
that a solution W(¢) is hermitian throughout its interval of existence
if and only if there exists a value z on this interval such that W(z)
is hermitian. Moreover, for (U; V) a solution of (3.1y) such that
W=VU"* we have W* —W =U*"'[V*U — U*V]U™", and consequently
W is an hermitian solution of (8.2) if and only if an associated
solution Y(t) = (U(t); V(t)) of (3.1x) satisfying W=V U™ is a conjoined
basis for (2.1°).

In the following discussion we shall also assume the following
hypotheses.

($) B() =0 for ta.e. on R.

(9:) (8.1) is disconjugate on R; that 18, if —oo < a <b< o and
(u; v) s a solution of (3.1) satisfying wu(a) = 0 = w(d), then
u(t) = 0 for tela, b].

() (3.1") is identically normal on R; that is, f (u(t) =0, v(t)) is a
solution of (3.1') on a mondegenerate subinterval [a,b] of R,
then also v(t) =0 on [a,b] and u=0,v =0 on R.

The following theorem presents known results on the existence
of principal solutions of (8.1') at =+ o, and corresponding distinguished
solutions of (8.2), (see, for example, [7, Secs. VII: 3, VII: 5; in particu-
lar, Theorem VII: 3.4, VII: 5.4, and Problem VII:5.8] or [8, Sec. IV. 8]).

THEOREM 3.1. Suppose that hypotheses (9s), (D.), (D:) and (De)
hold. If ceR and d <c¢ < b, then there exist unique solutions
Y(le¢, b) = (U( ¢, b); V(|c, b)), Y(|d, c) = (U(|Q, ¢); V(|d, ¢)) of (3.1x)
satisfying the boundary conditions

3.3) Ulcle,b)=E, Ulble,b)=0; Uleld,c)=E, Ud|d,c)=0;

. particular, Y(|e, ) and Y(|d, ¢) are conjoined bases for (3.ly).
The matriz functions U(t|c, b) and U(t|d, ¢) are nonsingular on the
respective subintervals [c, b) and (d, c¢], so that

W(tle, b) =V(tlc, )U(t]c, b)
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and W(t|d, ¢) =V(tld, e)UNt|d, ¢) are hermitiap solutions of (3.2)
on these respective subintervals. Also, if d <d<e¢<b <b, then

Wiele, b) <Wic|e, b) <Wic|d, ¢) =W(cl|d, c),

so that I, . = lim,..W(c|e, b) and I, _.. = lim,._.W(c|d, ¢) exist and
satisfy [y = [y Moreover, if W, (t) and W, _.(t) are the solu-
ttons of (3.2) satisfying W,.(¢c) =1,.. and W,_.(¢c) =1, _., then
W, .(t) and W, _.(t) are hermitian solutions of (3.2) on R which are
independent of the value ¢, and consequently will be denoted by
W) and W_.(t) respectively. Finally, W.(t) S W_.(t) for teR,
and an hermitian solution W(t) of (3.2) has interval of existence
equal to R if and only if there exists a value T such that W (z) =

W(z) S W_.(7), in which case W_(t) < W(t) £ W_.(t) throughout R.

It is to be commented that in the cited references to Reid [7]
the hypothesis corresponding to (9.) required the coefficient matrices
to be of class ¥;,[a, b]. There the hypothesis was thus formulated
in order that the associated Dirichlet functional J[7] might be con-
sidered in the Hilbert space setting wherein the canonical variable
{ satisfying with 7 the differential equation 7" — A(t)y — B({), =0
is of class Li[a, b]. As far as solutions of the differential systems
(3.1, (8.1y) and (3.2) are concerned, however, like results under the
hypotheses of the present paper are derivable by identical proofs,
where now a canonical variable { associated with an a.c. 7 is assumed
to be of class ¥[a, b].

The matrix functions W, and W_.., are called the distinguished
solutions of (3.2) at « and — <o, respectively; corresponding solutions
Y.=(U.;V.) and Y_, = (U_.; V_.) of (8.1y) satisfying W, =V,Ux!
and W_.,=V_,Uz4 are called principal solutions of (8.1y) at the re-
spective values o and — <. For some historical comments on these
concepts the reader is referred to [7; p. 898]. In particular, since

W_w W, =U2[VE U, — UL V.U,

it follows that either W_.(t) —W.(¢t) > 0 for all te R or for each 7
the matrix V*.(7)U.(t) — U*.(7)V.(7) is singular. In this latter case
the conjoined bases determined by Y.(t) and Y_.(t) have at least one
vector function in common. That is, there exist nonzero n-dimensional
vectors &, and £_., such that Y. ()., =Y _..5_., in which case in geo-
metric terminology the values —co and o are mutually conjugate
with respect to (3.1).

In case W_..(t) —W.(t) < 0 for ¢t € R, upon possibly replacing Y..(¢)
by Y.(6)K., or Y_.(t) by Y_.(t)K_., K.. and K__ nonsingular n X n
matrices, one may normalize these principal solutions so that
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(3.4) V(UL —Us () V() = —E .
In this instance the 2n x 2n matrix function

U_.(?) Uw(t)]
V_o(t) V.u(t)

is such that 27 *()Fz(t) = J; that is, for each ¢ € R the matrix (8.5)
is symplectic. In particular, we have that following result.

(3.5) () = [

THEOREM 3.2. If hypotheses (9,), (9,), (D), (Ds) are satisfied, and
W_o(t) — W (t) > 0 for te R, then Y(t) defined by (3.5) is a funda-
mental matriz of solutions for (3.17).

Now suppose that (9,) is satisfied, with B(¢t) = 0 and C(t) = 0
for ¢ a.e. on R, while both (8.1") and its obverse are identically normal.
With the aid of an argument similar to that of §8 of [5], it may
be established that the nonnegative matrix function Vi(¢t)B(t) V.(¢) +
U(t)C(t)U.(t) is integrable on [¢, «=) for arbitrary ce R, and
3.6) —Ux(e)W.(e)U.fc)y = Sc {VER)B()V.(t) + Us@)C) U (t))dt .
Moreover, in view of the assumption that (3.1’) and its obverse are
both identically normal, the right-hand member of (3.6) is a positive
definite matrix for ¢ € R, and hence W.(t) <0 on R. By an analogous
argument it may be established that W_.(¢) > 0, and, in particular,
W_o(t) = W) >0 for te R. Also, for the distinguished solutions
W.(t) and W_.(t) of the Riccati matrix differential equation associated
with the obverse system we have W.(t) = [W.(t)]™* < 0 and W_.(t) =
[W_.(®)] > 0, so that also W_.(t) — W.(t) > 0.

In case hypothesis (9,) is satisfied, while B(¢t) =0 and C(¢) £ 0 for
t a.e. on R, and both (3.1’) and its reciprocal equation are identically
normal, then results of Ahlbrandt [1, 2] may be used to establish
relations between distinguished solutions of (3.1,) and the corres-
ponding Riceati matrix differential equation for the obverse system.

4., Hamiltonian systems with periodic coefficients. We shall
now consider Hamiltonian systems (3.1’) under the following additional
hypotheses.

(9:) The matriz functions A(t), B(t), C(t) are periodic of period
, (® > 0), on R.

The following theorem presents a basic result for such systems.

THEOREM 4.1. If hypotheses (9,), (9.), (D), (D) and (9.) are
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satisfied, then the distinguished solutions W (t) and W_.(t) of (3.2)
are periodic, of period .

This result is a ready consequence of the fact that the solutions
Y(|e, b) and Y( |d, ¢) of (3.1y) determined by the boundary conditions
(3.3) are such that

Yt + w|le + w, b + @) =Y(t|c, b),
Yt - w|d —w, ¢ — o) =Y(t|d,c)

so that from the results of Theorem 3.1 it follows that
Wit + wlc+ w,b + o) =W(t|e, b)

and Wt — w|d — o, ¢ — w) =W(t|d, ¢), together with the fact that
W, (t) and W, _.(t) are independent of the value ¢. In view of the
domination of any hermitian solution of (3.2) by the distinguished
solutions W.(t) and W_.(¢t), we have the following particular result.

COROLLARY. Under the hypotheses of Theorem 4.1, tf W(t) is
any hermitian solution of (8.2) which ts periodic, of any period,
then W (t) SW(t) S W_.(t) for teR.

Consequently, whenever the hypotheses of Theorem 4.1 are satisfied
it follows from the discussion of §2 preceding Theorem 2.1 that
there exist nonsingular matrices P..(t), P_.(¢) of period w, and constant
matrices S, and S_. such that

4.1) U.(t) = P.(t)exp[tS.}, U_.(t) = P_.(t)exp{tS_.}.

For any such representations an eigenvalue of S. or S_. is called a
characteristic exponent for the corresponding matrix equation U'(t) =
[A®) + Be)W.(t)]U®E) or U'(t) =[A(t) + B(E)W_.(t)]U(t). In par-
ticular, the characteristic exponents are not determined uniquely,
but are specified to within integral multiples of 27i/w.

THEOREM 4.2. Suppose that hypotheses (9s), (D4, (D), (9s) and
(9:) are satisfied and W_.(t) —W.(t) >0 for t€R. If the corre-
sponding principal solutions (U.; V.) and (U_.;V_.) of (8.1y) are
normalized to satisfy (3.4), and

U.(t) = P.(t) exp {tS..}, U_.(t) = P_.(t) exp {tS_..}

are representations (4.1) for U.(t) and U_.(t), respectively, then the
Jundamental matriz solution 2/(t) of (3.1y) given by (3.5) has Floquet
representation
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4.2) Z(t) = P (t) exp {t&},
where

[P_.®) P.(t) IS 0
s Fo= [W.m(t)P.wu) Wm(t)Pw(t):|’ 7= [0 Sj’

Moreover, exp{tS_..}exp{tSt} = E, so that iof p, -+, 1 and ur>, - -,
1" are characteristic exponents of U.(t) and U_.(t), respectively,
then they may be so ordered that p;~ + p is an tintegral multiple
of 2mijw for ¢ =1, «--, n.

The representation (4.3) is an immediate consequence of the fact

that
[EE JU.® 0
v (t)‘[W_m(t) Ww(tJ[o Um(t)]’

and the representations (4.1) for U.(¢) and U_.(tf). Moreover, if
(U.; V.) and (U_.; V_.) are normalized to satisfy (3.4) then

UZ.(OIW_w(t) —W()U) = E,

so that also [W_..(t) — W.(t)]U..(t) U*..(t) = E. Consequently, if M., =
exp {wS.} and M_, = exp {wS_.}, then also

E=[W_.t+ o) =Wt + 0)]U.(t + @)U*(t + ®),
= [W_.(t) — W) UM M* U*..(¢) ,

and as W_.(t) — W.(t) is nonsingular it follows that U.(t)U*.(¢) =
U.(t)M.M*..U*.(t). Consequently, M.M*, = E, so that A is an eigen-
value of M, if and only if 1/\» is an eigenvalue of M*, and 1/X is
an eigenvalue of M_.,

5. Comments. As mentioned in the Introduction, the goal of
this paper is quite distinet from that of Bucy [4]. It is also to be
noted that the hypotheses of the two papers are quite distinct. For
the present discussion the assumptions of definiteness and some type
of normality are basic, whereas these aspects apparently do not enter
into Bucey’s treatment. On the other hand, Bucy requires that the
assumed periodic solutions P, and P_ of his Riccati matrix differential
equation are invertible, while the present discussion does not in-
volve any assumption of nonsingularity of the distinguished solutions
W, and W_.. Also, Bucy restricts attention to real Hamiltonian
systems, while in the present discussion one may treat equally well
the case of systems with complex coefficients. Finally, in [4] it is
assumed that the characteristic roots of the matrix of the associated
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constant Hamiltonian system are simple with real parts not equal to
zero, and no such condition is involved in the present discussion.

In regard to the hypotheses (9;) and (§;) of the present paper,
the following remarks are pertinent. In general for Hamiltonian
systems satisfying hypotheses (9,) and (D), a necessary and sufficient
condition for the existence of W., or W_.. is the disconjugacy of (3.1)
in a neighborhood of the respective value « or — o, (see, for example,
[7, Sec. VII: 3]), and for such systems which are periodic either of
these conditions is equivalent to disconjugacy on the entire interval
(—oo, ). This is, a necessary condition that either W. or W_.,
exists is that (3.1’) be disconjugate on (—co, ), and this condition
is sufficient for the existence of both of these distinguished solutions,
and for each of them its maximal interval of existence is (— oo, ).
As to condition (9;), it is stronger than the conditions of complete
observability and complete controllability of Bucy, (see, for example
[3, Chapter III]). In regard to these latter conditions, however, it
is to be noted that in general for Hamiltonian systems satisfying
hypothesis (9,) complete observability is the condition that for te
(—oo, =) there exists a value a(t) < ¢ such that the system is normal
on [a(t), t], while complete controllability is the condition that for
te(—oco, ) there exists a value b(t) >t such that the system is
normal on [¢, b(t)], (see, [6; Sec. 7], and [8; Sec. V. 5]). Moreover,
in the case of periodic Hamiltonian systems these conditions are
readily seen to be equivalent to the existence of a single ¢, for which
there exists a corresponding a(t,) < ¢, or b(t,) > t, such that the system
is normal on the respective interval [a(t), %] or [t, b(t)], and conse-
quently for such periodic systems there is automatically a condition
of uniformity for these concepts.

It is to be noted also that in the above discussion the condition
(9s) may be weakened to require merely that there exists a nonnega-
tive integer d such that on arbitrary non-degenerate subintervals I
of R the order of abnormality of (3.1') on I is equal to d, and that
the associated “truncated preferred reduced system of (3.1')” is
periodic. In this connection, the reader is referred to [6; Sec. 6,
Theorem 6.3 in particular], and [8; Sec. IV:8, Theorem IV:8.5 in
particular].
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