THE FINITE WEIL-PETERSSON DIAMETER OF RIEMANN SPACE

SCOTT WOLPERT

Let T_s be the Teichmüller space and R_s the Riemann space of compact Riemann surfaces of genus g with $g \ge 2$. The space R_{s} can be realized as the quotient of T_{s} by a properly discontinuous group M_s , the modular group. Various metrics have been defined for T_s which are compatible with the standard topology for T_s and induce quotient metrics for R_s . Several authors have considered the Weil–Petersson metric for T_{g} . A length estimate derived in a previous paper is summarized; combining this with the Ahlfors Schwarz lemma, an estimate of N. Halpern and L. Keen, an additional argument shows that the and Weil-Petersson quotient metric for R_s has finite diameter. A corollary is an estimate relating the Poincaré length of the shortest closed geodesic of a compact Riemann surface to the Poincaré diameter of the surface.

For background material the reader is referred to the articles of L. Ahlfors [1] and L. Bers [3] and to the article of L. Bers [5] for a survey of related topics. T. C. Chu [7,8] and H. Masur [12] have obtained results related to ours. The author would like to thank Professor G. Kiremidjian for his assistance.

1. The case of an annulus. Let $A = \{z \mid 1 < |z| < \rho\}$ be an annulus in the plane. Let M(A) be the space of Beltrami differentials of A endowed with the L^{∞} metric; let Q(A) be the space of integrable holomorphic quadratic differentials of A. An element of M(A) is a tensor of type (-1, 1) with measurable coefficient.

DEFINITION 1.1. For $\Phi \in Q(A)$ set

$$\|\Phi\|_{A} = \left(\int |\Phi|^{2} \lambda_{A}^{-2}\right)^{1/2}$$

where λ_A is the Poincaré metric of A. For $\mu \in M(A)$ set

$$\|\mu\|_{A} = \sup_{\Phi \in Q(A)} |[\mu, \Phi]| / \|\Phi\|_{A}$$

where $[\mu, \Phi] = \int_A \mu \Phi$.

SCOTT WOLPERT

The metric λ_A is known to be given by the following expression

$$(\pi/\log \rho) \csc(\pi \log |z|/\log \rho) |dz/z|.$$

We consider a particular deformation of the annulus A. For $t \ge 1$ let $A_t = \{z_t | 1 < |z_t| < \rho^t\}$ then the map

is quasiconformal with Beltrami differential

$$(t-1/t+1)(z/|z|)^2 \overline{dz}/dz.$$

By considering solutions $\omega(z)$ of the Beltrami differential equation $\omega_z = \mu \omega_z$ where μ is a Beltrami differential it is seen that the curve of Riemann surfaces A_i is represented by the curve

$$(t-1/t+1)(z/|z|)^2 \overline{dz}/dz \subset M(A), \qquad t \geq 1.$$

As described in our previous paper [16] $(1/2t)(z_t/|z_t|)^2 \overline{dz_t}/dz_t$ is the tangent to this curve at A_t expressed as an element of $M(A_t)$, $t \ge 1$. By Definition 1.1

(1.2)
$$\frac{\|(1/2t)(z_t/|z_t|)^2 \overline{dz_t}/dz_t\|_{A_t}}{= \sup_{\Phi \in Q(A_t)} \left| \int_{A_t} (1/2t)(z_t/|z_t|)^2 \overline{dz_t}/dz_t \Phi \right| / \left(\int_{A_t} |\Phi|^2 \lambda_{A_t}^{-2} \right)^{1/2}}.$$

It is clear that the extremal Φ is given by $(dz_t/z_t)^2$. The value of the quotient in (1.2) is now equal to

(1.3)
$$(2\pi^3/t^3\log\rho)^{1/2}$$
.

Thus the length of the curve A_{t} , $t \ge 1$ is given by the convergent integral

(1.4)
$$\int_{1}^{\infty} (2\pi^{3}/t^{3}\log\rho)^{1/2} dt.$$

For a compact Riemann surface R of genus $g, g \ge 2$ one can identify the cotangent space at the point R of Teichmüller space with the regular quadratic differentials Q(R) of R and the tangent space at R with the Beltrami differentials M(R) modulo those which are infinitesimally trivial, [1]. In this instance the Weil-Petersson metric and cometric are given by Definition 1.1 on replacing A by R, [15]. 2. Finite diameter of Riemann space. The Riemann space R_g of genus $g, g \ge 2$ is the space of conformal equivalence classes of similarly oriented compact Riemann surfaces of genus g, [14]. A natural projection π_g of T_g to R_g exists; this projection can be given by the action of a properly discontinuous group M_g , the modular group, [6]. S. Kravetz showed that every metric d(,) for T_g compatible with the topology of T_g induces a quotient metric $\tilde{d}(,)$ for R_g defined as

$$\tilde{d}(\tilde{x},\tilde{y}) = \inf_{\substack{\pi_{g}(x)=\tilde{x}\\\pi_{g}(y)=\tilde{y}}} d(x,y)$$

for $x, y \in T_g$ and $\tilde{x}, \tilde{y} \in R_g$, [11].

DEFINITION 2.1. For $\tilde{x}, \tilde{y} \in R_g$ let

$$\omega(\tilde{x}, \tilde{y}) = \inf_{\substack{\pi_{g}(x) = \tilde{x} \\ \pi_{g}(y) = \tilde{y}}} d_{w-p}(x, y)$$

where $d_{w-p}(,)$ is the Weil-Petersson metric for T_{g} .

Let $H = \{z \mid \text{Im } z > 0\}$ denote the upper half plane and $\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$ the Laplacian. The following definition and theorem are due to L. Ahlfors, [2].

DEFINITION 2.2. A metric $\rho | dz |, \rho \ge 0$ is said to be ultrahyperbolic in H if it has the following properties:

(i) ρ is upper semicontinuous;

(ii) at every $z_0 \in H$ with $\rho(z_0) > 0$ there exists a ρ_0 defined and of class C^2 in a neighborhood V of z_0 such that $\Delta \log \rho_0 \ge \rho_0^2$ and $\rho \ge \rho_0$ in V while $\rho(z_0) = \rho_0(z_0)$.

The Poincaré metric of H is |dz|/y.

THEOREM 2.3. Let $\rho | dz |$ be an ultrahyperbolic metric for H. Then $\rho | dz | \leq | dz | / y$.

The following theorem is due to L. Bers, [4] and D. Mumford, [13].

THEOREM 2.4. For c > 0, let $K_c \subset R_g$, $g \ge 2$ consist of those Riemann surfaces R for which each closed Poincaré geodesic has length at least c. Then K_c is a compact set.

THEOREM 2.5. R_s has finite diameter for the $\omega(,)$ metric.

Proof. Consider the following regions in $H C(l, \theta_0) = \{z \mid \text{Im } z > z \}$

 $0, 1 < |z| < \exp l, \quad \theta_0 < \arg z < \pi - \theta_0$ and $\theta_1 < \theta_2 \quad C(l, \theta_1, \theta_2) =$ $C(l, \theta_1) - C(l, \theta_2)$. The Poincaré area of $C(l, \theta_0)$ (resp. $C(l, \theta_1, \theta_2)$) is $2l\cot \theta_0$ (resp. $2l(\cot \theta_1 - \cot \theta_2)$). The self map of $H z \mapsto z \exp l$ identifies the boundaries of $C(l, \theta_0)$ such that the quotient $A(l, \theta_0) =$ $C(l, \theta_0)/\{z \mapsto z \exp l\}$ is conformally an annulus. Let $\hat{C}(l, \theta_1, \theta_2)$ denote $C(l, \theta_1, \theta_2)$ with the boundaries $\overline{C}(l, \theta_1, \theta_2) \cap \{z \mid \arg z = \theta_2\}$ and $\overline{C}(l, \theta_1, \theta_2) \cap \{z \mid \arg z = \pi - \theta_2\}$ identified by the map $z \mapsto z \exp i(\pi - \theta_2)$ $(2\theta_2)$; the quotient $A(l, \theta_1, \theta_2) = \tilde{C}(l, \theta_1, \theta_2)/\{z \mapsto z \exp l\}$ is conformally an annulus. Let $\alpha(\theta)$ (resp. $\beta(\theta)$) denote the projection to $A(l, \theta_0)$ (resp. $A(l, \theta_1, \theta_2))$ of the curve $z = r \exp i\theta$, $1 \le r \le \exp l$ provided $\theta_0 \le \theta \le$ $\pi - \theta_0$ (resp. $\theta_1 \leq \theta \leq \theta_2$). A quotient metric for $A(l, \theta_0)$ (resp. $A(l, \theta_1, \theta_2)$ is obtained from the restriction to $C(l, \theta_0)$ (resp. $C(l, \theta_1, \theta_2)$) of the line element |dz|/y. The distance between the boundaries of $A(l, \theta_0)$ (resp. $A(l, \theta_1, \theta_2)$) in the quotient metric will be referred to as the width of $A(l, \theta_0)$ (resp. $A(l, \theta_1, \theta_2)$). Since each curve $z = r \exp i\theta \subset H$ $0 < \theta < \pi$ is a Poincaré geodesic it follows that the width of $A(l, \theta_0)$ is given by the integral $\int_{0}^{\pi-\theta_{0}} rd\theta/r \sin\theta = 2\ln(\cot\theta_{0} + \csc\theta_{0})$. The induced quotient metric for $A(l, \theta_1, \theta_2)$ is not differentiable on the curve $\beta(\theta_2)$; nevertheless, it is straightforward that the width of $A(l, \theta_1, \theta_2)$ is $2\ln(\cot\theta + \csc\theta)|_{\theta_2}^{\theta_1}$. The curve $\beta(\theta_2)$ has length $\int_{1}^{\exp^2} dr / r \sin\theta_2 =$ $l \csc \theta_2$.

The following lemmas of N. Halpern [9] and L. Keen [10] are essential to our argument.

LEMMA 2.6. Let R be a compact Riemann surface. For every $c_1 > 0$ there exists a $c_2 > 0$ such that for γ a simple closed Poincaré geodesic of length l at most c_1 , the region $A(l, \theta_l)$, $\theta_l = \cot^{-1}(c_2/2l)$, can be isometrically imbedded into R with $\alpha(\pi/2)$ realizing γ .

Observe that $2l \cot \theta_l$ represents the area of $A(l, \theta_l)$.

LEMMA 2.7. Let R be a compact Riemann surface of genus g, $g \ge 2$. There exists a constant $c_3 > 0$ such that there are at most 3g - 3simple closed Poincaré geodesics of length at most c_3 .

Proof of Lemma 2.7. By Lemma 2.6 one can choose $c_3 < c_1$ such that the width of $A(l, \theta_1)$ for $l \leq c_3$ is at least c_3 . The conclusion now follows since there are at most 3g - 3 mutually disjoint, homotopically nontrivial, simple closed curves on R which are mutually not freely homotopic.

Let $\Phi_l = \cot^{-1}(c_2/4l)$ and consider the domain $A(l, \theta_l, \Phi_l)$. The width of $A(l, \theta_l, \Phi_l)$ is $2\ln(\cot \theta + \csc \theta)|_{\Phi_l}^{\theta}$ which is bounded from below for $l \leq c_3$ provided there exists a constant c > 0 such that

 $(\cot \theta_l + \csc \theta_l)/(\cot \Phi_l + \csc \Phi_l) \ge c$ for $l \le c_3$.

For c_3 sufficiently small $\csc \Phi_l \leq 2 \cot \Phi_l$ thus

(2.1)
$$(\cot \theta_l + \csc \theta_l)/(\cot \Phi_l + \csc \Phi_l) \ge \cot \theta_l/3 \cot \Phi_l \ge 2/3.$$

The length of $\beta(\Phi_l)$ is

(2.2)
$$l \csc(\cot^{-1}(c_2/4l)) \ge l \cot(\cot^{-1}(c_2/4l)) = c_2/4.$$

For an annulus $A = \{z \mid 1 < |z| < r\}$ we make the following definition.

DEFINITION 2.8. The extremal length E(A) of A is given by $E(A) = 2\pi/\log r$.

Now the extremal length of $A(l, \theta_l, \Phi_l)$ is $E(A(l, \theta_l, \Phi_l)) = l/2(\Phi_l - \theta_l) = l/2(\cot^{-1}(c_2/4l) - \cot^{-1}(c_2/2l))$ where by l'Hopital's rule

(2.3)
$$\lim_{l \to 0} \frac{l/2}{\cot^{-1}(c_2/4l)} - \cot^{-1}(c_2/2l) = c_2/4.$$

It is now clear that $c', 0 < c' < c_3$ can be chosen such that for $l \leq c'$

(2.4)
$$2\ln\left(\cot\theta + \csc\theta\right)|_{\Phi_l}^{\theta_l} \ge c'$$

$$(2.5) l \csc \Phi_l \ge c'$$

and

$$(2.6) label{eq:loss} l/2(\Phi_l - \theta_l) \leq c_2.$$

These inequalities will now be used to estimate the diameter of R_g . The region $K_{c'} \subset R_g$ is compact and thus has finite ω diameter. Let a Riemann surface R represent a point in T_g such that $\pi_g(R) \notin K_{c'}$ with $\gamma_1, \dots, \gamma_n$ the geodesics of R of length less than c'. The object is to "fatten" R in a neighborhood of each of $\gamma_1, \dots, \gamma_n$ thereby obtaining a surface in $K_{c'}$. By Lemma 2.6 a region $A(l, \theta_l)$ can be considered as a coordinate neighborhood of γ_1 where l is the length of γ_1 . A new surface R^* can be formed by removing the part of $A(l, \theta_l)$ corresponding to $A(l, \theta_l)$ and identifying the boundaries by the map $z \mapsto z \exp i(\pi - 2\Phi_l)$. Thus $A(l, \theta_l, \Phi_l)$ represents a coordinate patch in a neighborhood of the gluing $\lambda_R|_{R^*}$, the Poincaré metric of R restricted to R^* , is defined in terms of the coordinate patch $A(l, \theta_l, \Phi_l)$; for coordinate patches disjoint from the gluing $\lambda_R|_{R^*} = \lambda_R$. Assuming that $\lambda_R|_{R^*}$ is

ultrahyperbolic Theorem 2.3 implies that $\lambda_R |_{R^*} \leq \lambda_{R^*}$ where λ_{R^*} is the Poincaré metric of R^* . To show that $\lambda_R \mid_{R^*}$ is ultrahyperbolic it suffices to consider the metric in a neighborhood of the gluing. Define the metric $\tilde{\lambda}(z)|dz|$ on $\tilde{C}(l, \theta_b, \Phi_l)$ by setting $\tilde{\lambda}(z)|dz| = |dz|/\text{Im } z$ for 1 < |z| < 1 $\exp l, \theta_l < \arg z < \Phi_l$ and $\tilde{\lambda}(z) |dz| = |dz| / \operatorname{Im} (z \exp i(2\Phi_l - \pi))$ for 1 < z = 1 $|z| < \exp l, \pi - \Phi_l < \arg z < \pi - \theta_l$; that $\tilde{\lambda}(z) |dz|$ satisfies (ii) of Definition 2.2 relative to the quotient metric of $\tilde{C}(l, \theta_{l}, \Phi_{l})$ is clear. The objective is to show that R^* is "fat" in the free homotopy class of γ_1 and that no new (i.e., other than $\gamma_2, \dots, \gamma_n$) "pinched" free homotopy classes were introduced. Let $\gamma_0^* \subset R^*$ be a simple closed λ_R , geodesic of length less than c'. If γ_0^* does not intersect the gluing then γ_0^* can also be considered as a curve γ_0 on R. Since $\lambda_R|_{R^*} \leq \lambda_{R^*}$ the length of γ_0 is also less than c'. If γ_0 is freely homotopic to γ_1 then γ_0 can be lifted to the universal cover H of R with initial point z_0 and end point z_1 such that $|z_0| = 1$ and $|z_1| = \exp l$. By the assumption that γ_0^* is disjoint from the gluing the lift of γ_0 is disjoint from the domain $A(l, \Phi_l)$ and thus by estimate (2.5) has length at least c', a contradiction. By Lemma 2.7 γ_0^* cannot intersect and yet be distinct from the geodesics $\gamma_2, \dots, \gamma_n$. Thus γ_0 must be freely homotopic to one of $\gamma_2, \dots, \gamma_n \subset R$ or γ_0^* intersects the gluing. If γ_0^* is contained in $A(l, \theta_b \Phi_l)$ then it must be freely homotopic to γ_1 a case considered above; otherwise γ_0^* intersects the gluing and the boundaries of $A(l, \theta_{l}, \Phi_{l})$ hence crosses the domain. By estimate (2.4) γ_0^* has length at least c' in terms of the $\lambda_R |_{R^*} \leq \lambda_{R^*}$ metric, a contradiction. Thus γ_0^* is freely homotopic to one of $\gamma_2, \dots, \gamma_n$. The deformation corresponding to the replacing of $A(l, \theta_l)$ by $A(l, \theta_b \Phi_l)$ can be realized in terms of quasiconformal maps. For $A = A(l, \theta_b \Phi_l) =$ $\{z \mid 1 < |z| < \rho\}$ the domain $A(l, \theta_l)$ corresponds to the deformation of A given by the element $(t - 1/t + 1)(z/|z|)^2 \overline{dz}/dz \in M(A(l, \theta_l, \Phi_l))$ where $t = (\pi - 2\theta_l)/2(\Phi_l - \theta_l)$. We consider $(\tau - 1/\tau + 1)(z/|z|)^2 dz/dz$ restricted to $A(l, \theta_{l}, \Phi_{l}) \subset R^{*}$ $1 \leq \tau \leq t$ as a curve in $M(R^{*})$. The estimate for an annulus given by (1.4) can be now applied upon noting that $\lambda_R|_A \leq \lambda_A$ and $Q(R)|_A \subset Q(A)$, [16]. The Weil-Petersson length of this curve is seen to be bounded in terms of $E(A(l, \theta_{l}, \Phi_{l}))^{1/2}$. Estimate (2.6) bounds the latter quantity by the constant $c_2^{1/2}$. Repeating this "fattening" process n times a surface $\tilde{R} \in K_{c'}$ is obtained. By Lemma $n \leq 3g-3;$ above remarks vield $\omega(R, \tilde{R}) \leq$ 2.7 the now $(3g-3)c_2^{1/2}$. The proof is complete.

3. The Poincaré diameter and length of the shortest closed geodesic. Let R be a compact Riemann surface of genus g, $g \ge 2$. Let l(R) denote the length of the shortest closed Poincaré geodesic and d(R) the Poincaré diameter of R. The following lemma is a consequence of the considerations of 2.

LEMMA 3.1. There exist constants $\overline{c_1}$ and $\overline{c_2}$ depending only on the genus such that

$$\ln(\bar{c}_1/l(R)) \leq d(R) \leq 6g \ln(\bar{c}_2/l(R)).$$

Proof. Maintaining the constants c_1 , c_2 , c_3 and c' of §2 we consider a surface $R \in K_{c'}$. As $K_{c'}$ is compact l(R) and d(R) are bounded above and below hence constants \tilde{c}_1 \tilde{c}_2 exist to yield

$$\ln(\tilde{c}_1/l(R)) \leq d(R) \leq 2\ln(\tilde{c}_2/l(R))$$

for surfaces in $K_{c'}$. Now let $R \notin K_{c'}$ then clearly d(R) is bounded below by one-half the width of $A(l, \theta_l) \subset R$ where l = l(R). Thus

(3.1)
$$\ln(c_2/2l) \leq \ln(\cot \theta_l + \csc \theta_l) \leq d(R).$$

Setting $\overline{c_2} = \min\{c_2, \tilde{c}_2\}$ the lower bound is established. Assume that $R \notin K_{c'}$ and has only one closed Poincaré geodesic of length less than c'. Forming the surface R^* as in 2. by removing $A(l, \Phi_l)$ from $A(l, \theta_l) \subset R$ where l = l(R) we have that d(R) is bounded by the sum of the width of $A(l, \theta_l)$, l/2 and $d(R^*)$. Specifically for two points x, y of R^* we connect them with a λ_R . length minimizing curve $\gamma_{x,y}$. If this curve intersects the gluing a new curve is formed as the union of the shortest segment of $\gamma_{x,y}$ from x to the gluing, a segment along the gluing and the shortest segment of R to $R^*d(R)$ is seen to be bounded by

$$2\ln(\tilde{c}_2/l(R)) + c' + 2\ln(\tilde{c}_2/l(R^*))$$

where \tilde{c}_2 has been appropriately modified. A constant $\overline{c_2}$ can now be chosen to bound this last quantity by $4\ln(\overline{c_2}/l(R))$. In general let S be a surface with exactly n closed Poincaré geodesics of length less than c'. We claim that $d(S) \leq 2(n+1)\ln(\overline{c_2}/l(S))$ for an appropriate $\overline{c_2}$. Proceeding by induction on n it remains only to consider the induction step. Let $R \not\in K_{c'}$ have exactly n+1 closed Poincaré geodesics of length less than c'. Forming the surface R^* and arguing as above d(R) is bounded by the sum of the width of $A(l, \theta_l) \subset R, l/2$ and $d(R^*)$ where l = l(R). Using the induction hypothesis this is bounded by

$$2\ln(\tilde{c}_2/l(R)) + c' + 2(n+1)\ln(\tilde{c}_2/l(R^*))$$

which in turn is bounded by

(3.2)
$$2(n+2)\ln(\overline{c_2}/l(R)).$$

Observing that n is at most 3g - 3 the upper bound is now established. In contrast to the present lemma the constructive estimate

(3.3)
$$d(R) \le (g-1)l(R)/\sinh^2(l(R)/2)$$

where

$$l(R)/\sinh^2(l(R)/2) \approx 4/l(R)$$

for l(R) sufficiently small was given by L. Bers, [4].

REFERENCES

1. L. V. Ahlfors, Some remarks on Teichmüller's space of Riemann surfaces, Ann. of Math., 74 (1961), 171–191.

2. ____, Conformal Invariants, McGraw-Hill, New York, N.Y., 1973.

3. L. Bers, *Quasiconformal mapping and Teichmüller's theorem*, Analytic Functions by R. Nevanlinna, et al., Princeton University Press, Princeton, N.J., 1960, 89-119.

4. ____, A remark on Mumford's compactness theorem, Israel J. Math., 12 (1972), 400-407.

5. ——, Uniformization, moduli, and Kleinian groups, Bull. London Math. Soc., 4 (1972), 257-300.

6. -----, Fiber spaces over Teichmüller spaces, Acta Math., 130 (1973), 89-126.

7. T. C. Chu, Noncompleteness of the Weil-Petersson metric, preprint.

8. -----, Thesis, Columbia University, 1976.

9. N. Halpern, Collars on Riemann surfaces, preprint.

10. L. Keen, Collars on Riemann surfaces, Ann. of Math. Studies, 79 (1974), 263-268.

11. S. Kravetz, On the geometry of Teichmüller spaces and the structure of their modular groups, Ann. Acad. Sci. Fenn., 278 (1959), 1-35.

12. H. Masur, The extension of the Weil-Petersson metric to the boundary of Teichmüller space, preprint.

13. D. Mumford, A remark on Mahler's compactness theorem, Proc. Amer. Math. Soc., 28 (1971), 289-294.

14. H. E. Rauch, A transcendental view of the space of algebraic Riemann surfaces, Bull. Amer. Math. Soc., 71 (1965), 1–39.

15. H. L. Royden, *Invariant metrics on Teichmüller space*, Contributions to Analysis by L. V. Ahlfors, et al., Academic Press, New York, N.Y., 1974, 393-399.

16. S. Wolpert, Non-completeness of the Weil-Petersson metric for Teichmüller space, Pacific J. Math., 61 (1975), 573-577.

17. ——, The Weil-Petersson metric for Teichmüller space and the Jenkins-Strebel differentials, Thesis, Stanford University, 1976.

Received June 23, 1976.

UNIVERSITY OF MARYLAND COLLEGE PARK, MD 20742

288