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MATRIX TRANSFORMATIONS INVOLVING
SIMPLE SEQUENCE SPACES

Roy T. Jacos, Jr.

One property of spaces of analytic or entire sequences is
that every bounded subset of each of them is contained in the
normal hull of a single point of the space. In this paper
sequence spaces having this property are studied and many
characterizations of matrix transformations involving these
spaces and their duals are shown to involve it. Several simple
theorems about matrix transformations are proved, and many of
the known theorems about matrix transformations on analytic
and entire sequences are shown to be special cases of these
general theorems.

A sequence space is a linear space each point of which is an infinite
complex sequence. If A is a sequence space then A*, the dual (or
a-dual or Kéthe dual) of A, is the collection of all infinite complex
sequences y such that =;_,| x,y, | converges whenever x is a point of A.

A sequence space A is called perfect if A = A**. Clearly, the dual
of every sequence space is perfect. Some examples of perfect sequence
spaces are the space w of all complex sequences, the space ¢ of all
complex sequences that do not have infinitely many nonzero terms, the
space | of all absolutely convergent complex sequences, and the space m
of all bounded complex sequences.

A sequence space A is said to be normal provided that whenever y is
a point of A and x is a complex sequence such that |x,|=]|y,]| for
every nonnegative integer n then x is also a point of A. Every perfect
space contains ¢ and is normal.

For each sequence space A that contains ¢, a dual system with A * is
formed using the bilinear functional

0tn)=$ w

where x is a point of A and y is a point of A *. Under this duality, A is
provided with its usual dual system topologies.

Theorems A and B are due essentially to Kothe and Toeplitz and
Allen (see [12], Satz 1, p. 208, and [6], Theorem 6.2.1I).

THEOREM A. Suppose each of A and u is a sequence space and A
contains ¢ and is normal. A linear transformation from X to u is a matrix
transformation if and only if it is weakly continuous.
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Whenever each of A and u is a sequence space then (A, u) denotes
the set of all infinite matrices that transform A into pu.

THEOREM B. Suppose each of A and wu is a sequence space, A
contains ¢ and is normal, and M is an infinite matrix. Condition (1)
implies condition (2):

(1) Misin (A\,u);

(2) M’ (the transpose of M) is in (u™, A1 *).

Whenever p is perfect, these two conditions are equivalent.

1. Simple Sequence Spaces. A point y of a sequence
space A is said to dominate a point set X in A provided |x,|=|y.|
whenever n is a nonnegative integer and x is a point of X. A sequence
space is said to be simple whenever each bounded point set in the space is
dominated by a point of the space.

THEOREM 1. If A is a simple sequence space that contains ¢ then A **
is simple.

Proof. Suppose X is a bounded subset of A **. Consider the set Y
to which y belongs if and only if there exist a point x in X and a
nonnegative integer n such that 'y is the sequence
(X0, X1, " "+, X0, 0,0,---). The point set Y is a bounded subset of A, so it is
dominated by some point of A. This point also dominates
X. Therefore, A ** is simple.

THEOREM 2. If A is a simple space then a point sequence is weakly
Cauchy in A if and only if it is bounded and coordinatewise convergent.

Proof. Let y denote a point of A that dominates the bounded,
coordinatewise convergent point sequence a. For each point u of A *,

2 ’ankuk,é z ')’kuk!<°°,
k=0 k=0

SO Zi_oaul is uniformly convergent. It follows that the complex
sequence {Q(a,, u)} converges. Therefore, a is weakly Cauchy.

Since in every sequence space, every weakly Cauchy point sequence
is bounded and coordinatewise convergent, the theorem is proved.

CoroLLARY 1. If A is a simple space then every bounded point
sequence in A has a weakly Cauchy subsequence.

Indication of Proof. Corollary 1 can be proved by an easy but
tedious diagonalization argument.
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COROLLARY 2. If A is a simple space, X a bounded set in A, and x a
weak limit point of X, then x is a weak sequential limit point of X.

Proof. The set X is bounded in w, and the point x is a weak limit
point in w of X. Since the weak topology on w is metrizable, there is a
sequence of points from X converging weakly in w to x, i.e. converging
coordinatewise to x. This sequence converges to x in A.

COROLLARY 3. If A is a simple space then the weak topology on A is
metrizable on each bounded set in A.

Proof. By Corollary 2 and its proof, the topology induced on a
bounded set X by the weak topology of A is identical with that induced
on X by the weak topology of w, which is metrizable.

THEOREM 3. Every normal simple space is weakly sequentially
complete.

Proof. Suppose A is a normal simple space, @ a weakly Cauchy
point sequence in A, x the weak limit of @ in A **, and y a point of A that
dominates a. Since |a, | =|y. | whenever each of j and k is a nonnega-
tive integer and x, = lim, a; for each nonnegative integer k, it is also true
that | x, | = |y« | for each nonnegative integer k. Since A is normal, x is a
point of A. Consequently, A is weakly sequentially complete.

COROLLARY 4. A simple space is perfect if and only if it contains ¢
and is normal.

Indication of Proof. Corollary 4 follows from Theorem 3 and
30.5(3) of [11].

THEOREM 4. If A is a sequence space containing ¢ whose dual is
simple then the weakly convergent (Cauchy) sequences in A are the same
as the strongly convergent (Cauchy) ones.

Proof. In a sequence space every strongly convergent (Cauchy)
point sequence is obviously weakly convergent (Cauchy).

Suppose a is a point sequence converging weakly in A to 0.
Suppose further that Y is a bounded subset of A *, that y is a point of A *,
every term of which is a nonnegative real number, that dominates Y, and
that e >0. Let B denote the point sequence in A ** such that B, = |a, |
whenever each of j and k is a nonnegative integer. The sequence f3
converges weakly in A** to 0 ([10], Hilfssatz 1, p. 74), so there is a
positive integer n such that Q(B, y) < e whenever j is an integer greater
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than n. Thus, whenever u is a point of Y and j is an integer greater
than n,

)O(aja u)) = ki AUy

=0

= 2 Bjkyk
k=0
< €.

Therefore, a converges strongly in A to 0. It follows that if « is a point
sequence converging weakly in A to the point x then a also converges
strongly in A to x.

If « is a weakly Cauchy point sequence in a (not necessarily perfect)
sequence space A then a is weakly convergent in A**. Since A** is
simple (by Theorem 1), « is strongly convergent in A **.  Consequently,
a is strongly Cauchy in A.

Theorem 4 generalizes a number of theorems in the literature,
including Theorem 15 of Lascarides [13].

2. Spaces of analytic sequences. If 0=r<ox, let &, de-
note the collection of all complex sequences x such that lim sup,|x, |"" =
r;and if 0 <r =, let #, denote the collection of all complex sequences x
such that lim sup,|x,["" <r.

In [18] Toeplitz established many topological properties of these
spaces. His results relevant to this paper are listed below:

THEOREM C. If 0=r <, then &, and ¥,, are dual to each other
and, hence, are both perfect (where 1/0 = ).

THEOREM D. (1) If 0=r <o, then ¥, is simple;

(2) If 0<r=oo, then ¥, is simple.

The following statement is equivalent to (2) and often more useful :

(2') If X is a bounded point set in ¥, then there exist numbers t and s
such that 0<s <r and |x,| = ts" whenever x is a point of X and n is a
nonnegative integer.

3. Matrix transformations involving simple sequ-
ence spaces. In this section several basic theorems about matrix
transformations involving simple spaces are stated and most of the
theorems about matrix transformations on &, (0=r <) found in the
literature are shown to follow from these general ones.

It should be noted that this work is similar in spirit to parts of the
papers of Bennett [1] and Snyder and Wilansky [17] in that a simple,
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possibly previously unnoticed, idea is used to unify a number of scattered
results already in the literature. However, their results generally do not
apply to the spaces studied here since perfect simple sequence spaces are
not necessarily FK spaces.

Our first theorem is an immediate consequence of the definitions:

THEOREM 5. Suppose A is a perfect simple space and M is an infinite
matrix. The following are equivalent:

(1) Misin (A*,m);

2) M'isin (LA);

(3) The point sequence My, M, M,, - - - is bounded in A, where for
each nonnegative integer n, M, is the nth row of M

(4) There is a point y of A such that | M, | =y, whenever each of j
and k is a nonnegative integer.

CoroLLARY 5. (See Ch. Rao [4], Th. 2, [5]), Lemma to Th. IV, and
Tonne [19], Th. 1) Suppose that 0=r<x and M is an infinite
matrix. The following are equivalent:

(1) Misin (%,m);
(2) There are numbers t and s such that 0 <s <1/r and |M, | = ts*
whenever each of j and k is a nonnegative integer;

3 M'isin (I, $,,).

For perfect spaces, Theorem 2 can be stated in terms of infinite
matrices:

THEOREM 6. Suppose A is a perfect simple space and M is an infinite
matrix. The following are equivalent:

(1) Misin (A*c);

(2) The point sequence My, M,, M,, - - - converges weakly in A;

(3) Each column of M is in c, and there is a point y of A such that
M, | = y. whenever each of j and k is a nonnegative integer.

COROLLARY 6. (See Ch. Rao [3], Th. III, and Tonne [19], Th. 2)
Suppose 0=r <~ and M is an infinite matrix. The following are
equivalent :

(1) Misin (%,¢);

(2) Each column of M is in ¢, and there exist numbers t and s such
that 0 <s < 1/r and | M, | = ts* whenever each of j and k is a nonnegative
integer.

COROLLARY 7. Suppose A is a perfect simple space and M is an
infinite matrix. The following are equivalent:
(1) Misin (A% c);
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(2) The point sequence My, M, M,, - - - converges weakly in A to the
point 0;

(3) Each column of M is in c,, and there is a point y of A such that
| M. | =y, whenever each of j and k is a nonnegative integer.

THEOREM 7. Suppose A is a normal space, u a normal simple space
and M an infinite matrix. The following are equivalent:

(1) Misin (A p);

(2) For each point x of A, there is a point y of u such that

E)Jkakﬁéy,-

whenever j is a nonnegative integer.

If w is perfect and A contains ¢, the following is equivalent to (1) and
(2):

(B) M'isin (u* A%).

Proof. (1)—(2). Suppose x is a point of A. Let X denote the set
to which z belongs if and only if | x, | = | z, | for every nonnegative integer
n. Since X is a bounded subset of A, M(X) is a bounded subset of
wn. Let y denote a point of u, every term of which is a nonnegative real
number, that dominates M(X). Then

s

[Myx | =y,

=
]
(=1

whenever j is a nonnegative integer.
(2)—(1). Suppose x is a point of A and y is a point of u such that

M

[Muxi | =y,

k=0

1]

whenever j is a nonnegative integer. Then, for each nonnegative
integer j, [(Mx);| <y, Since u is normal, Mx is a point of u.

The equivalence of statements (1) and (3) under the additional
hypothesis is a consequence of Theorem B.

COROLLARY 8. Suppose A is a perfect simple space and M is an
infinite matrix. The following are equivalent:

(1) Misin (A% 1);

2) M'isin (m,\);

(3) There is a linear subspace n of m containing c, such that M' is in
(1, A);
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(4) There is a point y of A such that

ZO My | = yi
=

whenever k is a nonnegative integer.

COROLLARY 9. (See Tonne [19], Th.3) Suppose 0=r <x and M
is an infinite matrix. The following are equivalent:

(1) Misin (%,1);

(2) There exist numbers t and s such that 0 <s <1/r and

> M| =ts*
1=0

for every nonnegative integer k.

CoroLLARY 10. (See Brown [2], Th. 1) Suppose 0=q <> and
0=r<w and M is an infinite matrix. The following are equivalent:

(1) Misin (%,%);

(2) For each number s such that 0 <s <1/r, there exist numbers t
and p such that 0<p <1/q and

> My |s’ = 1p*
1=0
for every nonnegative integer k.

If each of X and Y is a set of complex sequences then X - Y denotes
the set of all complex sequences of the form x,y,, x,y1, X2y, - - - where x is
an element of X and y isan element of Y. A sequence space A is said to
be nuclear with respect to A* whenever A* C [ -A*. Itis easy to see that
¥, and #,, are nuclear with respect to each other (0=r <x).

When u is perfect and nuclear with respect to u *, the following
stronger version of Theorem 7 holds:

THEOREM 8. Suppose A is a normal space containing ¢ whose dual is
simple, u a perfect space that is nuclear with respect to u*, and M an
infinite matrix. The following are equivalent:

(1) Misin (A p);

(2) For each point x of w*, there is a point y of \* such that
M x, | = y. whenever each of j and k is a nonnegative integer;

3) M'isin (u* A%).
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Proof. (1)—>(2). By Theorem B, M"isin (u* A*). By Theorem
7, if x is a point of u*, there is a point y of A* such that

;{)]M;kxkléy,

whenever j is a nonnegative integer. It follows that |M.x;|=y,
whenever each of j and k is a nonnegative integer.

(2)—(1). Suppose u is a point of A and v is a point of u *. There
‘exist a point a of I, a point x of u* and a point y of A* such that
|v | =|ax;| and | M,x; | = |y, | whenever each of j and k is a nonnegative
integer. Consequently,

Zl(Mu)/Uf’—S—Z Z!MU lue| o]

0,

| 2 Ml |5 [l

0 k=0

O’ajjzl“k)’k’-

A
M

I

]

1A
DM

]

Therefore, Mu is a point of u. It follows that M is in (A, ).
(1)«<>(3). The equivalence of statements (1) and (3) is a consequ-
ence of Theorem B.

Cororrary 11. (See Ch. Rao [3], Th. VII, and Fricke and Powell
[71, Th. 3) Suppose 0=qg<x and 0=r <o and M is an infinite
matrix. The following are equivalent:

1) Misin (%,%.);

(2) For each number s such that 0 <s <1/r, there exist numbers t
and p such that 0 <p <1/q and | M, |s’ = tp* whenever each of j and k is
a nonnegative integer.

Many other classes of matrices could be characterized, such as
(£, £), (£ %), (£, ¢0), (m, %), (1 F,) and (¢, ). (See [3], [4], [5], [9]
and [19].) In addition, there are similar theorems involving #, (See [3],
[4], [5], [8] and [15].)

Finally, there are other familiar simple spaces, including m, w, ¢ and
many of the spaces studied by Maddox and his students (cf. [13], [14] and
[16]). Similar theorems could be stated for them.

The author wishes to acknowledge several useful comments and
suggestions of the referee. In particular, the formulation and proof of
Theorem 2 and Corollary 2 given here was essentially suggested by the
referee.
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