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LIPSCHITZ SPACES OF DISTRIBUTIONS
ON THE SURFACE OF UNIT SPHERE
IN EUCLIDEAN n-SPACE

HARrRVEY C. GREENWALD

In this paper Lipschitz spaces of distributions are defined
and various inclusion relations are shown. Certain properties
such as completeness, separability, and the density of the testing
space for appropriate Lipschitz spaces are proved. The
Littlewood-Paley function is defined and used to prove inclusion
relationships between Lipschitz and Lebesgue spaces.

This paper is the second in a series of papers by the author of which
[1] will be used extensively in this paper. As a result, a knowledge of [1]
would be useful to the reader. In [1] the discussion was limited to
Lipschitz spaces of functions. Here we extend the definition of a
Lipschitz space to Distributions.

Conventions and notation.
R' will denote the real numbers.
"={x=(x, %) x, ERi=1--- n}

S.={x ER":|x|=(x}+---+x2)"=1}. All functions are com-
plex valued unless otherwise stated.

C~*(X,-)) is the set of indefinitely differentiable functions on X,_,.

All statements about continuity, bounded, finiteness, etc., are made
modulo sets of measure zero unless otherwise specified. By this we
mean that a function that can be modified on a set of measure zero to
have the property will be said to have the property.

If f(x,r), where x €2, ; and 0 < r <1, is differentiable with respect
to r, we define Tf(x,r)=d/dr(rf)(x,r) and T*f(x,r)= T(T*'f)(x,r)
where k is an integer greater than 1. We say f(x)=0(g(x)), x = a, if
f(x)/g(x) is bounded as x — a.

f(x)=o0(g(x)), x—>a, if f(x)/g(x)—0 as x = a.

f(x)=g(x), x—=a, if f(x)/g(x)—>1 as x = a.

For a real, @ will denote the smallest nonnegative integer larger
than o If f(x) is measurable on X,, we define [[f(x)|,=

Uzn_. 'f(x)'p]l/p’ 1=p <o, and ||[f(x)[.= esssup,es. | f(x)| where dx is

nonnormalized Lebesgue measure on 3,_,. If f(x, r) is measurable in x
and r where x €3, ; and 0<r <1, we define

163



164 HARVEY C. GREENWALD

U Jf(r,x);"dx]”p if 1=p<ow
”f(r’x)”p,dx = J

=N
~
I
3

esssup | f(r, x)|
XEXn 1

r U:,l [ £Cr, ) paxdr/1—r if 1=q <o

LFCr x) s = !

—

f q=oe.

ess sup || £(r, x)llpax

If «a>0and 1=p, g =, we say f€ A(a;p,q) if

F G = NGO, + 1A =) Tf(r, )]l

is finite.
The Poisson kernel is the function P(rx,y)=1/c,(1=r))/|rx —y|"
where |x|=|y|=1, 0=r<1, and ¢, is a constant so that

P(rx,y)dy =1 for each x. We shall also use P(r,x-y)=

Veo(1= r)[1=2rx - y + r]"2.
If f(x)€e L,(2,.,), 1 =p =, then the Poisson integral of f is defined

as )= [ f0IPCx ).

n- 1

{Y®}, 1=1,---, n(k), denotes an orthonormal basis for the spheri-
cal harmonics of degree k. Z denotes the zonal harmonic of degree k
with pole y.

If F(x)eL,(2,-)) and G(s)€ L,([—1,1],dun(s)) where du(s)=
(1—s*"2 the spherical convolution of F and G is the function

FrG()=[  F0IGG& vy

Tnoa

CHAPTER 1. Lipschitz Spaces, a Real.

In this chapter the notion of a Lipschitz space for a real is
defined. For this a brief discussion of distributions is necessary.

Let the testing space S={¢: b€ C*(Z..)}. Let Y¥(x), [=
1,---,n(k), be an orthonormal basis for the spherical harmonics of
degree k. ¢ € C*(2,-,)if and only if ¢ = =y a, Y with a,, = 0(k ) for
all reals. For a proof of see Seeley [3]. ¢ can be considered to be in
C*(R" - {0}) by noting that
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o(x)= E a,Y(x)= Z aur P (rx)
ol ol

where P are harmonic polynomials of degree k.

Let Df = 3"'f/ax¢ -+ - dx % where a = (ay, " *, @,), @ nonnegative
integers, and |a|=a;+ -+ a, It is easy to see that D°¢ =
SwauD*Y® and the convergence is uniform. A topology can be
defined on S by letting

Nw(©)={p € C(s, ) 3 1D )< |

be a neighborhood system at 0. A standard argument shows that with
respect to this norm, S is complete.

Let the distributions S’ be the set of continuous linear functionals on
S. The action of fE S’ on ¢ € S will be denoted by f(¢). If pES
and ¢ = 2;,a,Y (", then the Poisson integral of &,

d(rx) =2 aurY{(x)

alsoisin S for fixed r <1. Itis easy to see that ¢(rx)— d(x)asr— 1"
in the topology of S.

If f€ S’ and P is the Poisson kernel, define f* P by (f* P)(¢)=
f(P*¢). Wecall this the Poisson integral of the distribution f. In view
of the above, if f, g € S’ and if f and g have the same Poisson integral,
they are equal as distributions.

If fEL,(2,.1), 1=p =, f defines a distribution by letting f(¢) =

L f(x)¢(x)dx. It fEL,(S,) define Jf by Jf(¢)=

fCe au(k +1)Y") where « =0 and ¢ = Z,,a,Y .
Clearly 2 ay(k +1)*Y{ € S. An easy check shows that this does
define a distribution. Moreover,

Tof()= [ 3 e+ 1yrze e f| @)
k=0
is the Poisson integral of J°f.

In view of the above Jef(rx) =2, bur*(k + 1) *Y{¥(x) for a real
where f~2,,b,Y{"". This is easily seen to be harmonic on {Z €
R":|Z|<1}.

The above definition of J °f agrees with the J *f defined in
Proposition 5.10 of Greenwald [1] for f € A(a + B;p,q). Hence,

ProposITION 1.1. J? maps A(a;p,q) isomorphically onto
A(a + B ;p,q) provided only a,a + B3 >0,1=p,q = .
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DEeFINITION. The  Lebesgue  space L,.(2,.)={f€S': f=
JY, ¢ € L,(2.-1)} for a real, 1=p =w. Define |fl|,.=[¢],. Thus
L,. is a Banach space that is an isometric image of L,(%,-)).

DEFINITION. For a =0, 1=p, g =%, let A(a;p,q) be the set of
distributions f € L,, -1 for which [[(1—=r)**T*f(rx)||,, is finite. For a =
0, define || fllaipg = | fllpa-t+11(1 = 1) Tf (rx) |

Note. We are essentially defining A(—a;p,q) to be
J*[A(G; p,q)]. The choice of ! is arbitrary. Any 8 >0, would work as
well.

REMARK. Let @ berealand1=p,gq=». Letf€L,,1s Thenif
k is any nonnegative integer greater than «, the following norms are
equivalent:

@) @ =) T () g + ] f [l

(i) (=) T (rx) g + 11 f [l

Proof. This is an immediate consequence of (2.3) of Greenwald [1].

ProprosITION 1.2. Let a be real and 1=p, q =x. Then the set of
distributions f € L,,s for which ||(1—r)* *T*f(rx)|,, <® normed with
®) = 1A= r)* T (rx)|lpg + | fl,a-t is topologically and algebraically
equal to A(a;p,q).

Proof. For a =0 this is the definition. Hence it suffices to con-
sider the case a > 0.

(a) Assume that f€ L,, 1 and that (*) <». We want to show that
f€A(a;p,q). Thereisa g€ L,(Z,,) such that

f(rx) = [g * G*7(r, )] (x).

Hence | f(r)lhue = M, g, = M, [f ot if r =

By Proposition 5.1 of Greenwald [1], f(rx) is the Poisson integral of
a function h € L,(2,-,) and || h |, = M,(*). Now h and f have the same
Poisson integral and thus are equal as distributions. Hence f is a
function andisin L,(2,-,). Therefore f € A(a;p,q) and|/f|la.ps = M (*).

(b) Let fE A(a;p,q). The proof of this part is essentially the
same as that for Lemma 8 of Taibleson [18; p. 438].

The proofs of the following Propositions 1.3, 1.4, 1.5, and 1.6 are
analogous to the proofs of Theorems 6, 7, 8, and 9 of Taibleson [7; p.
437-443]. The appearence of the (n — 1) in Proposition 1.6 comes from
the estimate ||P((1+r)/2x)|, = A(1—r)"™™" where 1/t +2/t'=1. See
Greenwald [1;(1.8)].
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ProposITION 1.3. Leta, Bberealand 1=p,q=x. ThenJ® maps
A(a; p, q) isomorphically onto A(a + B;p,q).

ProposiTION 1.4. Let f€S' and f(rx) be its Poisson
integral. Then for each integer k = & and real number B < a, the norm

”(1 - r)k_aka(rx)”pq + ”f”p.ﬁ

is equivalent to ||f||.,, where 1=p, q = .

ProposiTION 1.5. Suppose f € A(a,; p, q;) wherei =0,1 and 1= p,
qg=co. Let 0=t=1 and define a=(1-t)atta, 1/p=
(I-1t)/po+t/p,, and 1/q =(1—1t)q,+t/q,. Then f € A(a;p,q) and

”.fHOf,qu é Ma(lval(”f||“U-F’U-qﬂ)l_{(”f“al?Plvq‘)I'

Also, (i) [|fll,s = HfHLZkallp.a for B < ey, .
(ii) ”(1 - r)k-aka(rx)”pq
= (”(l - r)k*a”ka(rx)“mq‘»)l",(l‘(1 - r)k_a]ka(rx)Hpnqn)l fork < a, a;.

ProrosiTiON 1.6. Let l1=p=q,=». Then Ala;pi,q) C
Ay prqy) if ai—(n—=1)/py>a,—(n—1)/p, or if a,—(n—-1)/p,=
a,—(n—1)/p,and 1=q,=q,=*. Moreover, the inclusion map is con-
tinuous.

ProrosiTioN 1.7. (i) A(a;p,q) iscomplete if 1 = p, q <. (ii) Sis
dense in A(a;p,q)if l1=p=wo,1=q<w. Weshall need the following
lemma.

LemmA 1.1. If fE A(a;2,q), 0<a <1, then f is uniformly con-
tinuous.

Proof. 1t suffices to show that || f(rx) — f(x)|.sc >0 as r— 1. By
1
Proposition 1.6, f € A(a;®, ). f(rx)—f(x)=f f,(px)dp for almost

1
every x €%,,. Hence [[f(rx)—f(x)|ha = 2[
. Thus

lof, (px)||-.acdp if r=

(=) 1) = fllw 22017 [ A= p)dp = M,

r

Hence ||f(rx) = f(x)|l<.ac = M.(1—r)* and thus tends to zero as r —>1".
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Proof of Proposition 1.7. (i) The proof is similar to the proof of the
corresponding part of Theorem 11 of Taibleson [7;p.444]. (ii) It is easy
tosee that J°s = S. Hence, it suffices to consider the case 0 < a < 1. We
claim that S CA(a;p,q). Let ¢ €S with ¢ =2,,a,Y". Then ¢(rx) =
ZaurtY(x) and To(rx) =2, au(k + 1)r*Y(x).

Since ay = O(k™) for every s>0, [T (rx)| =
Zulank +1)YP|r* =M <. So, ¢ EA(a;p,q). Let fe
Ale;p,q). If1=p <o, f(rx)—f(x)in L,(2,.;) as r—>1".

If p =, f is continuous by Lemma 1.1 and so f(rx)— f(x) in
L.Z,.) as r—1. We claim that for each r, (1—r)" | Tf(rsx)—
Tf(rx)|lpar =0 as s > 1.

Let g(x)=Tf(rx). Then g(sx)= Tf(rsx). By the above,
g(sx)—g(x) in L,(3,-) as s > 1. Also, [ Tf(rsx)[lpec = TF(rx)pa

If g <=, by applying the Dominated Convergence Theorem we have
that |(1—r)"*[Tf(rsx)— Tf(rx]|l,, >0 as s > 1.

Thus f(sx)— f(x) in A(a;p,q) if g <. For fixed s <1, f(sx) is
clearly in S. This finishes the proof.

REMARKS. Let A ={¢ € S: a,, are rational}. It is clear that A is
dense in A(a;p,q) if g <. Hence A(a;p,q) is separable if g <.

Let B={a €S:3,aZ,,a,Y" consists only of a finite number of
terms}. It is clear that B is dense A(a;p, q) if g <.

Lastly, before finishing this chapter we would like to relate the
Lipschitz spaces defined here to those defined by Ragozin [2]. For this
we will need the notion of a derivative in the distribution sense.

DeriniTION.  If f is differentiable on 2, , and D is a skew-
symmetric n X n matrix then we define Df(x) = (d/dt)f[(exp tD)(x)]/.=o

See Rogazin [2] for a more complete discussion of this topic.
Let f, ¢€S. Then an easy argument shows that

LH Df(x)¢(x)dx = LM f(x)(= D)¢(x)dx. This leads to the follow-

ing definition.

DEerINITION. Let fE€ S’. We define Df to be the distribution
defined by Df(¢) = f(— Do) for ¢ € S.

If i <j, let D; be the n X n matrix with a 1 in the (i, j) place, a (— 1)
in the (j, i) place, and zeros everywhere else. See Ragozin [2].

DEeriNITION.  We define (D;)* to be the result of applying some
k-fold product of D;’s to f in the distribution sense where f € S'. This
is clearly ambiguous but we shall be summing over all possible k-fold
products. Hence, no problem will arise.
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ProrosITION 1.8. Let « >0 and 1=p, q=»=. Then the norm
1FCO, + ZN(Dy)f llapq is equivalent to ||f||asx ., where the sum is over all
k-fold products of the D;’s.

Proof. The proof is essentially the same as that used by Taibleson
for the analogous result in R". See Taibleson [7; Theorem 10, p.
444]. The proof uses (1.3) and Proposition 5.1 of Greenwald [1].

CHaPTER II. The Relation of Lipschitz Spaces to Lebesgue Spaces.

In this chapter certain inclusion relations between Lipschitz Spaces
and Lebesgue Spaces are proved. The chief tool is an analogue of the
Littlewood-Paley function. The proofs are, for the most part, direct
analogues of those used by Stein [4], [5] for the Littlewood-Paley
function in a compact Lie group. The reader is referred to Zygmund [8;
Chapter XIV] for the one dimensional version of the Littlewood-Paley
function.

DEFINITION.  Let f*(x)= Supo<,§ﬂf"”J’ |f(y)|dy if
d(x,y)=t
f€L(Z,-).

REMARK. IffEL,(2,);1<p=c, then f*€ L,(Z,.)and|f*|, =
Apn |l £l

(2.1) Let f€ Li(2,-1)). Then supys,|f(rx)|= A,f*(x) for all
XEZ, .

Proof. We may assume that f(x)=0. Letx €3, andlet g(8)=
f f(y)dy and G(t) = j sin"20g (8)do.
x-y=cosf 0

The proof now proceeds in a manner similar to the proof of
Theorem 3.4 of Stein and Weiss [6; p. 101].

(22) Iff€ L,(Z..1), then supye,<; r In(1/r)|(rf),(rx)| = A.f*(x).

Proof.
PN A1 = rin(Un) | 1F) PG -y)] dy
=B.|  OIIPGx-y)ldy = Af )

by (2.1) above.
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(23) Iffe L,(2..), then |Vf(rx)|= A,f*(x) if r =} where V is
the gradient in R".

Proof. The proof is similar to proof of (2.2) above.

(24) Let feL,(3..) and F(rx)=[f(rx)]” where 1<p<
. Then |F,(rx)| = A,.(1-r)'(f*(x)y.

Proof. F,(rx)=p[f(r)PP'f,(rx). As in (22), |fi(m)|=
A,(1-=r)'f*(x). The result now easily follows.

DEefFINITION. Let f€ L(X%,-,). Define

12

s @=[[ rmam|vreora]”.

REMARK. The map f— g(f) is sublinear. This will enable us to
apply the Marcinkiewicz Interpolation Theorem later in the chapter.

ProposiTiON 2.1. Letf€ L,(%,-), 1 <p <2. Theng(f)E L,(%..))
and |[g () (), = Apu || fl-

Proof. It suffices to prove this for f strictly positive. In view of
1/2

(2.3) we need only consider [JI r1n(1/r)’Vf(rx)]2dr] :
12

Let F(rx)=[f(rx)]’. An easy calculation shows that |Vf(rx)|*=
p(p = D f(m)) P A[(f(rx)) ] So

f] rin(1/r)|Vf(rx)|’dr=p~'(p - 1)"'[1 rin(1/r)[f(rx)] ?AF(rx)dr

1

=[f*(x)fA,. rin(1/r)AF(rx)dr.

Let I(x)= fl rin(1/r)AF(rx)dr.

172
1
j I(x)dx = f rln(l/r)j AF(rx)dxdr
2n-a 12 oot
= f] r ln(l/r)J’ gt 2 (r"" g F(rx)) dxdr
1”2 Soi ar ar

= 1 —n+]_i< n—li )
J;H J'UZ rin(1/ryr=t =2 (et 2 F(rx) ) drds.
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Now

[, rmamp (e 2 F ) ) ar

2

= fl rin(1/r)F,(rx)dr + (n — 1)]l In(1/r)F,(rx)dr.

The second integral is bounded by B, . f*(x)” by (2.4) since In(1/r) =
A(l—r)if r=1/2. Upon integrating the first by parts, one gets

= Galf* ().

! d d
-n+l1 _2_ n~1 _¥_
, J:Q rin(1/r)r o <r o F(rx)) dr

Thus

| 1mde=c.] @eoyar = cis.

Hence

=] i)

= A @l I

[, rmamivseopar]”

p

by Holder’s inequality.
The above is bounded by A",|f|,- The result for an arbitrary f
now follows from an easy limiting argument.

ProposiTION 2.2. Let fE€L,(2,.,), 2=p<wo. Then g(f)€
Lp(zn'l) and ”g(f)"p = Ap‘n "f”p

Proof. By the Marcinkiewicz Interpolation Theorem it suffices to
prove this for p=4. Choose q such that q'+(p/2)"'=1. Then

1<qg=2.|gHlE= supf g°(f)(x)h(x)dx where the sup is over all
Zn1
h =z 0 such that h € L,(3,-,) and ||k, = 1.

Ln_‘ g7 (f) (x)h (x)dx =L UO' rln(l/r)]Vf(rx)lzdr] h(x)dx.

Let w(rx)=|Vf(rx)|>. Since each partial derivative is harmonic, w is

subharmonic. Thus w(rpx) éj w(py)P(rx - y)dy since the right
3

n—1
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side is harmonic in rx and converges to the continuous function w(px) as

r—>1". Hence w(rzx)éf w(ry)P(rx - y)dy. Hence
3

n—1

L g°(f)(x)h(x)dy §4L", UO1 r’ln(lr)lVf(rx)]zh(rx)dr] dx.
Now |Vf(rx)|* = 3Af*(rx) and
A[f(rx)h(rx)]) = f7(rx)Ah(rx) + h (rx)Af*(rx) + Z 5% fi(rx) a;i h(rx)

where x,,---,x, are the Cartesian Coordinates. Since h(rx) is har-
monic, Ah =0. Thus,

4L"’ U)l r3ln(l/r)]Vf(rx)]"h(rx)dr] dx

=2

LH UOI r*ln (l/r)A[fz(rx)h(rx)]dr] dx

van[ [ rmamiseo el 1 9a ) ar) ax

The second integral is bounded by Anf *(x)g(f)(x)g(h)(x)dx
P

by Schwartz’s Inequality since | f(rx)|= A.f*(x). By Holder’s Inequal-
ity, this integral is bounded by A, If*, I8l lg(h)], =
ALl gD, since [lg(h)lly = Bug |1 [l, = Bng for 1< g =2. The first
integral equals

I=

fz"-. Uol rin(/ryr 33; ('M :967 [fz(rx)h(rx)]dr} dx

since spherical part of the Laplacian vanishes.

fl rin/ryr—"! 8_(1 [r"“ Ear- f(rx)h (rx)] dr

= [ P = (o
+(n-1) L PIn(lr) 5‘9; (F(re)h (rx))dr.

In the second integral use |[rIn(1/r)f.(rx)| = B.f*(x),
[rin(1/r)h,(rx)| = B,h *(x), | f(rx)| = B.f*(x), and | h(rx)|= B,h *(x).
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Hence, the second integral is bounded by B f*(x)’h *(x). The first
integral equals

r’In(1/r) a_ar (F(rx)h () |5 — fol [3r2In(1/r)—r?] 8_ar (f*(rx)h (rx))dr

=r’In(1l/r) ;;—9’- [F2(rx)h (r)] 6
=[3rIn(1/r) = r’}[f*(rx)h ()]}
+f01 [6r In(1/r) — SF)[f2(re ) (rx )] db.

Using the above estimates one gets that the absolute value is
bounded by B f*(x)h*(x). So

I=BT|  fr(Fh(x)dx =B, |f*[;1h "] = C., IfI5

o lI?lIus leOIE= AL Nfll. gDl + Cop I fIl- Hence g, =

DEFINITION.

&)= ¢mamion. ey mam]”

for f(rx) harmonic on B, if 1=p <.

8-(f)(x) = sup r In (1/r)[(rf). (rx)|.

ProposiTION 2.3. Let fE€ L,(3,.,) and q = max[p,2]. Then for
1<p=o, gl = Al fl

Proof. Case . 1<p=2. Then q=2 and

12

a(f)(x) = Uol rzln(llr)]f,(rx)fzdr]m+ UOI ’ ln(l/r)lf(rx)lzdr] .

The second integral is bounded by B,.f*(x). Since |f(rx)|=
|Vf(rx)|, the first integral is bounded by g(f)(x).

Thus g(f)(x)=B,.f*(x)+ g(f)(x) and so by Proposition 2.1,
8:f)(x) € L,(3,-1) and || gf) (¥)[, = By lf* [l + 18 (DOl = A, I f -
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Case II. 2=p=w~. Then q=p. If p=ox,

= Apal £l

o, dx

lg @)= sup rinW/n)| ), ()|

If p <o, then
&) = [ 11 en. )P ), (P mm |

= C,.[f*(x)]r 2" ”:)l [rIn(1/r)(rf), (rx)|?dr/r ln(l/r)]”p
= Gl f* ()1 2gaAf) (x )"

Hence | g, ()l = G lIf*[If "l gPIF* = A, [fll, by Hélder’s in-
equality, Proposition 2.2, and the argument above in Case I. We have
the following converse.

ProposITION 2.4. Let f(rx) be harmonic on B,. Let ¢ = min[p,2]
and g,(f)€ L,(%.-)). f(rx) is the Poisson integral of a function f(x)€
L,(2.-) and [|f[l, = Ayl g (Pll, for 1=p <co.

We will need the following lemmas.

LEmma 2.1. Letf€ L,(%,-)andh € L,(%,-,) where 1/p +1/p'=1
and 1<p <o. Then

f f(x)g(x)dx = 4L f] rin(1/r)(rf), (rx)(rh), (rx )drdx.

Proof. 1t suffices to prove this for f€ L,(2,-,) and g € C*(2,-))
since C*(%,-,) is dense in L,(%,.,). Let 0<s<1. Then

[ reom@ax=tim [ s

Let f(sx)=Z2,auS*Y®(x) and h(sx)=Z.,buS*Y(x) where b, =
O(k™) for all ¢ since h € C*(Z,_)).
Thus L f(x)g(x)dx =2, ayb.

An easy argument shows that

4 L f " InQUr) (rf), () (rh), (rx )drdx = S abu
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REMARK. This Lemma shows that the map f — ig,(f) is an isometry

of L(%,-,).

LEmMMA 2.2, Letf€ L,(%,.-\) and f(rx) be its Poisson integral. Let

tlz =min[p,2] and g(f)EL,(2.-)). Then |fll,=A,.lgl, for
=p <®,

Proof. Case L p=1. rf(r)= fo " (of), (px )dp.

So 111(r)|= [ 16 (00| do = g (HG). Thus  [rf()le =
lg:(H)ll: and so || fll=llg:(f)]].-

Case II. 1<p=w. Then gq=p. |f],= supf f(x)h(x)dx

where the supisoverall h € L,(3,-,) where ||k |, = 1 and l/p +1/p'=1.
By Lemma 2.1,

' L f(x)h(x)dx | = ’ 4LH L‘ rn(1/r)(rf), (rx) (rh), (rx)drdx

=4 j & () (X)g () (x)dx = 4] g, (), | & (k)]s
= Ap,n “ 8p (f)”p “ h ”p’ = ‘An,p ”gp (f)”P

by Proposition 2.3 since p'= 2.

Case IlIl. 2=p <. Then q=2. An argument similar to the
one above applies here.

Proof of Proposition 2.4.

Case I. p=1. Inview of Lemma 2.2, it suffices to show that f(rx)
is the Poisson Integral for a function in L,(X,_,). rf(rx) = f (of),(px)dp
and so || rf(rx) | =) g:(f)(x)|;. The result now follows from an easy

argument.

Case II. 1<p <. Inview of Lemma 2.2, it suffices to show that
f(rx) is the Poisson Integral of a function in L,(X,-,). An easy variant of
Lemma 2.2 shows that if f€ L,(3,.,), then [f[, = A,.[g(f)|, for
1<p <. A straightforward argument finishes this part of the proof.

We have the following easy corollaries.
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CoRrOLLARY 2.1. Let f(rx) be harmonic forx €%,.,,0=r <1, and
let g.(f)€ L,(3,-)) for 1 <p <. Then f(rx) is the Poisson integral of a
function f(x) € L,(2,-1) and [f(x)], = Ayl g(f) ()]l

COROLLARY 2.2. Let f(rx) be harmonic forx €%, ,,0=r <1, and
let g(f)€ L,(X,-1) for 1 <p <. Then f(rx) is the Poisson integral of a
function f(x) € L,(2,-)) and [[f(x)], = A,.[lg () ()l

ProposiTiON 2.5. (a) L,, CA(a;p,q), q = max[p,2], 1<p =c.
(b) A(e;p,q)CL,. q=min[p,2], 1=p <.

(c) L,.CA(a;1,x)

(d) A(a;»,1)CL.,.

The inclusion maps are continuous.

Proof. With minor changes the proof of Theorem 15 of Taibleson
[7; p. 452] can be apllied here to give the result.
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