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LIPSCHITZ SPACES OF DISTRIBUTIONS
ON THE SURFACE OF UNIT SPHERE

IN EUCLIDEAN rc-SPACE

HARVEY C. GREENWALD

In this paper Lipschitz spaces of distributions are defined
and various inclusion relations are shown. Certain properties
such as completeness, separability, and the density of the testing
space for appropriate Lipschitz spaces are proved. The
Littlewood-Paley function is defined and used to prove inclusion
relationships between Lipschitz and Lebesgue spaces.

This paper is the second in a series of papers by the author of which
[1] will be used extensively in this paper. As a result, a knowledge of [1]
would be useful to the reader. In [1] the discussion was limited to
Lipschitz spaces of functions. Here we extend the definition of a
Lipschitz space to Distributions.

Conventions and notation.
R1 will denote the real numbers.
R" = {x = (*„ , xn): xt E R1, i = 1, , n}.
Σn_i = {JC E R": I x I = (JC? + + x2

n)
m = 1}. All functions are com-

plex valued unless otherwise stated.
C°°(Σn-i) is the set of indefinitely differentiable functions on Σπ-i.
All statements about continuity, bounded, finiteness, etc., are made

modulo sets of measure zero unless otherwise specified. By this we
mean that a function that can be modified on a set of measure zero to
have the property will be said to have the property.

If /(JC, r), where JC E Xn_, and 0 < r < 1, is differentiable with respect
to r, we define Tf(x9r)= d/dr(rf)(x9r) and Γk/(jc, r) = Γ(Γ k l/)(x, r)
where k is an integer greater than 1. We say /(JC) = O(g(jc)), x —> α, if
f{x)lg{x) is bounded as JC —> a.

f(x) = o(g(x)), x-*a, if /(x)/g(x)->0 as x -> a.
/ ( * ) « g(x), x -> α, if /(x)/g(*)-> l a s x ^ α .
For a real, a will denote the smallest nonnegative integer larger

than a. If /(JC) is measurable on Xn-U we define | |/(JC)| |P =

[1 J ' 1 = P < 0 0 ' and||/(x)||00=esssupJceΣr)_1|/(x)| where dx is

nonnormalized Lebesgue measure on Σn-i. If /(JC, r) is measurable in JC
and r where x E Σn-i and 0 < r < 1, we define
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164 HARVEY C. GREENWALD

\\f(r,x)\U=

\f{r,x)\'dx

ess sup |/(r, JC)|

if 1 g p < oo

if p =

ess sup \\f(r,x)\\p,

- r if 1 ^

p,dx i f ύf = oo.

If a > 0 and 1 ̂  p, g = °°, we say / E Λ(α p, q) if

is finite.
The Poisson kernel is the function P(rx, y) = l/cn(l - r2)/\ rx ~ y \n

where X = and cn is a constant so that

L , y)dy = 1 f o r e a c h x. W e s h a l l a l s o u s e P(r,x-y) =

l/cn(l-r2)/[l-2rx'y + rψ2.
If f(x) E Lp(Σn_i), 1 ̂  p ̂  °°, then the Poisson integral of / is defined

as = Jv f(y)P(r,X'y)dy.

{Y\k)}, / = 1, , M(/C), denotes an orthonormal basis for the spheri-
cal harmonics of degree k. Z{

y

k) denotes the zonal harmonic of degree k
with pole y.

If F(jc)GL1(Σn_1) and G(s)E Lx{[- 1,1], dμ(s)) where d/i(s) =
(1 - s2)(n"3)/2, the spherical convolution of F and G is the function

CHAPTER I. Lipschitz Spaces, a Real.
In this chapter the notion of a Lipschitz space for a real is

defined. For this a brief discussion of distributions is necessary.
Let the testing space S = {φ: φ G Cφπ-i)} . Let Y{k)(x), / =

1, ••*,«(&), be an orthonormal basis for the spherical harmonics of
degree L φ E C^X^O if and only if φ = ΣklakIY\k) with akl = 0(ks) for
all reals. For a proof of see Seeley [3]. φ can be considered to be in
C°°(Rn - {0}) by noting that
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φ(x)= Σ akιYf\x)= 2

where P\k) are harmonic polynomials of degree k.
Let Daf = d^fldxV '' ' dxa

n

n where α: = ( α b , α j , α, nonnegative
integers, and | a \ = aλ + + an. It is easy to see that Daφ =
ΣkJaklD

aY{k) and the convergence is uniform. A topology can be
defined on S by letting

JV,M(0)=UεC-(ΣB_1): Σ \\DaΦl<e\

be a neighborhood system at 0. A standard argument shows that with
respect to this norm, S is complete.

Let the distributions S' be the set of continuous linear functionals on
5. The action of / G Sf on φES will be denoted by f(φ). If φ G S
and φ = ΣkjakιY\k\ then the Poisson integral of φ,

also is in S for fixed r < 1. It is easy to see that φ(rx)-+ φ(x) as r -> 1
in the topology of S.

If fESf and P is the Poisson kernel, define f*P by ( / * F ) ( φ ) =
/(P * φ). We call this the Poisson integral of the distribution /. In view
of the above, if /, g G S" and if / and g have the same Poisson integral,
they are equal as distributions.

If / G Lpφn-x), 1 ̂  p ^ oo, / defines a distribution by letting /(φ) =

f(x)φ(x)dx. If fELpQn-!), define Γaf by /
Σn-l

f(ΣkJakl(k + l)αY(/°) where α ^ 0 and φ = Σ fc iZαwy}k).
Clearly Σ akt(k + l)αy(/fc)G S. An easy check shows that this does

define a distribution. Moreover,

is the Poisson integral of J~af.
In view of the above Jaf(rx) = ΣkJbklr

k(k + iyaY\k)(x) for a real
where f ~ΣkAbklYf\ This is easily seen to be harmonic on {Z E
Rn: | Z | < 1 } . '

The above definition of J~af agrees with the J~af defined in
Proposition 5.10 of Greenwald [1] for / G Λ(α + β\p,q). Hence,

PROPOSITION 1.1. Jβ maps A(a;p,q) isomorphically onto
Λ(α + β \p,q) provided only a, a + β > 0,1 ^ p, q ^ ».
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DEFINITION. The Lebesgue space Lp,α(Σ«-i) = { / 6 S ' : / =
Jaφ9φELp(Zn^)} for α real, l ^ p ^ o o . Define'||/||p,α = \\φ\\p. Thus
LPta is a Banach space that is an isometric image of Lp(Σπ_i).

DEFINITION. For α ^ 0 , l ^ p , q = °°, let Λ(α;p, ^) be the set of
distributions / G Lpα_i for which ||(1 - r)ά'aTάf(rx)\\pq is finite. For a g
0, define | | / | | β ; M = \\fLaA + Ul-r)*-*T*f(rx)\\n.

Noίe. We are essentially defining Λ ( - α ; p , g) to be
J~a~*[Λ(£; p, <jr)]. The choice of J is arbitrary. Any β > 0, would work as
well.

REMARK. Let a be real and 1 ̂  p, g ^ °°. Let / G LPfβ-i. Then if
fc is any nonnegative integer greater than α, the following norms are
equivalent:

(i) ||(l-r)*-r/(rx)|U
(ii) Ul-r)*-°T<f(rx)\U

Proof. This is an immediate consequence of (2.3) of Greenwald [1],

PROPOSITION 1.2. Lei α be reα/ and 1 ̂  p, g ^ °°. ΓΛen ί/ie 5βί o/
distributions f E LPta-ϊ for which \\(1-r)ά~aTάf(rx)\\pq <co normed with

(*) = | | ( l-r) f i " a Γ δ /(r jc) | | M + ||/| |P f a.i is topologically and algebraically
equal to A(a;p,q).

Proof For a ^ 0 this is the definition. Hence it suffices to con-
sider the case a > 0.

(a) Assume that / G Lpα_i and that (*) < α>. We want to show that
fEA(a;p,q). There is a g6L p (X n _,) such that

Hence | |/(πc)|U ^ Afβ ||g ||, = Mα ||/|U«_- if r £ I
By Proposition 5.1 of Greenwald [1], f(rx) is the Poisson integral of

a function h G Lp(Xn_i) and \\h \\p ̂  Mβ(*). Now h and / have the same
Poisson integral and thus are equal as distributions. Hence / is a
function and is in Lp(Σn_i). Therefore f E A(a;p,q) and||/||α;/M? g M(*).

(b) Let / G Λ ( α ; p , g ) . The proof of this part is essentially the
same as that for Lemma 8 of Taibleson [18; p. 438].

The proofs of the following Propositions 1.3, 1.4, 1.5, and 1.6 are
analogous to the proofs of Theorems 6, 7, 8, and 9 of Taibleson [7; p.
437-443]. The appearence of the (n - 1) in Proposition 1.6 comes from
the estimate | |P((1 + r)/2x)||P ^ A ( l - rf~n)lt> where l/r + 2 / ί ' = l . See
Greenwald [1;(1.8)].
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PROPOSITION 1.3. Let a, β be real and 1 ^ p, q ^ <». ThenJβ maps
A(a;p,q) isomorphically onto A(a + β;p,q).

PROPOSITION 1.4. Let fESr and f(rx) be its Poisson
integral Then for each integer k ^ a and real number β < a, the norm

is equivalent to | | / | | a , M where 1 ^ p, q ^ oo.

PROPOSITION 1.5. Suppose f E Λ(a( ph qt) where i = 0,1 and 1 ̂  p,,
g, ^ oo. Lei 0 ^ ί ^ 1 and define a - (1 - ί)a 0 4- ί a b \\p =
(l-t)/po+t/pu and 1/q = (1-t)qo+t/q^ Then f E A(a p, q) and

A/50, (0 II/IU ^ II/II^||/IU M β < «o, *i.

^Tkf{)\\yfk < a(), a ,

PROPOSITION 1.6. Lei l ^ p , ^ g , ^ ° o . Then
Λ(a2; p2g2) // a, - (n - 1)//?! > a2 - (n - l)/p2 or // a, - (n
a2 - (n - l)/p2 and 1 ^ ^j ^ g2 = °° Moreover, the inclusion map is con-
tinuous.

PROPOSITION 1.7. (i) A(a;p,q) is complete if 1 ^ p, ^ <°°. (ii) S is
dense in Λ(a ] p,q) if l^ p ^™, 1 ̂  g < oo. We 5/ιa// need ί/ie following
lemma.

LEMMA 1.1. If f E A(a\^,q), 0< a <1, then f is uniformly con-
tinuous.

Proof It suffices to show that | | / (ΓJC)- /OOIU* ->0 as r->V. By

Proposition 1.6, / E Λ(α;oo,oo). ^ ( r χ ) ~ ^ ( χ ) = fp(ρx)dp for almost

every JC6XB-,. Hence \\f(rx)-f(x)\U ^2 j'\\pfp(px)\Udp if r ^

i Thus

Hence | |/(rx)-/(x)| |oc^ ^ M α ( l - r ) α and thus tends to zero as
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Proof of Proposition 1.7. (i) The proof is similar to the proof of the
corresponding part of Theorem 11 of Taibleson [7; p. 444]. (ii) It is easy
to see that Jas = S. Hence, it suffices to consider the case 0 < a < 1. We
claim that S CA(a;p,q). Let φ E S with φ = ΣkιakιY\k\ Then φ(rx) =
ΣkJaklr

kY\k\x) and Tφ(rx) = ΣkJakι(k 4- l)rkY\k\x).
Since akl = O(k~s) for every s >0, \Tφ(rx)\^

Σ M | akl(k + 1) Yίfc)| rfc ^ M < α>. So, φE A(a p, 4). Let / G
Λ(α;p, 9). If 1 ̂  p < oc, /(rjc)-+/(x) in M Σ ^ ) as r->V.

If p = oo? f is continuous by Lemma 1.1 and so /(rx)—>/(JC) in
LxCSπ-i) as r->l". We claim that for each r, (1 - r ) 1 ^ || Tf(rsx)-
Tf(rx)ldx^0 as s->l".

Let g(jc) = Γ/(ΓJC). Then g(sx)= Tf(rsx). By the above,
g(sx)-> g(x) in L/Σ^O as s -> Γ. Also, || Tf(rsx)ldx g || 7]f(rx)|U.

If q < oo? by applying the Dominated Convergence Theorem we have
that | | (1- r)ι-[Tf(rsx)- Tf(rx]\\pq^0 as s-*V.

Thus f(sx)-* f(x) in A(a;p, q) if ^ < oo. For fixed 5 < 1, f(sx) is
clearly in S. This finishes the proof.

REMARKS. Let A = {φ E S: akι are rational}. It is clear that A is
dense in A(a;pyq) if q < oo. Hence Λ(α;p, ̂ ) is separable if q < oo.

Let JB = {α E S: Σfc,/βΣfc/βfc/y
(

/'
c) consists only of a finite number of

terms}. It is clear that B is dense A(a\p,q) if q <<*>.
Lastly, before finishing this chapter we would like to relate the

Lipschitz spaces defined here to those defined by Ragozin [2]. For this
we will need the notion of a derivative in the distribution sense.

DEFINITION. If / is differentiate on Σn-i and D is a skew-
symmetric n x n matrix then we define Df{x) = (d/dt)f[(exp tD)(x)]\t=0.

See Rogazin [2] for a more complete discussion of this topic.
Let /, φ E 5. Then an easy argument shows that

ί Df(x)φ(x)dx = ί f(x)(- D)φ(x)dx. This leads to the follow-
JΣΠ-1 JΣn-l

ing definition.

DEFINITION. Let fES'. We define Df to be the distribution
defined by Df(φ) = / ( - Dφ) for φ E S.

If / </, let Dί; be the n x n matrix with a 1 in the (/,/) place, a (- 1)
in the (j,i) place, and zeros everywhere else. See Ragozin [2].

DEFINITION. We define (Diy)
fc to be the result of applying some

fc-fold product of Diy's to / in the distribution sense where f E S'. This
is clearly ambiguous but we shall be summing over all possible fc-fold
products. Hence, no problem will arise.
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PROPOSITION 1.8. Let α > 0 and ί^p, <? = °°. Then the norm
\\f(x)\\p + Σ | | ( D i ; )

k / | | α , M is equivalent to \\f\\a+k,M where the sum is over all

k-fold products of the D i y ' s .

Proof. The proof is essentially the same as that used by Taibleson
for the analogous result in R". See Taibleson [7; Theorem 10, p.
444]. The proof uses (1.3) and Proposition 5.1 of Greenwald [1].

CHAPTER II. The Relation of Lipschitz Spaces to Lebesgue Spaces.

In this chapter certain inclusion relations between Lipschitz Spaces
and Lebesgue Spaces are proved. The chief tool is an analogue of the
Littlewood-Paley function. The proofs are, for the most part, direct
analogues of those used by Stein [4], [5] for the Littlewood-Paley
function in a compact Lie group. The reader is referred to Zygmund [8;
Chapter XIV] for the one dimensional version of the Littlewood-Paley
function.

DEFINITION . Let f*(x) = supo<t^Γn+ι \ \f(y)\dy if
Jd(x,y)^t

REMARK. If / G L P (X Π - , ) ; 1 < P ̂  OT, then /* e Lp(£„_,) and

Λ.J/IU
p(£„_,) and | |/*| |p =i

(2.1) Let / £ L,(2n-,). Then supOSr<, \f{rx)\ fk Anf*(x) for all

Proof. We may assume that f(x) ̂  0. Let x E Σn_, and let g(θ) =

ί f(y)dy and G(t)= ί' sin"-2θg(θ)dθ.
Jx y=cosθ Jθ

The proof now proceeds in a manner similar to the proof of
Theorem 3.4 of Stein and Weiss [6; p. 101].

(2.2) If / G MΣn-i), then supo<Γ<1 r ln(l/r)|(rf)Γ(rx)| ^ AJ*(x).

Proof

) | s |/(y)| |(rP)Γ(πc y)\dy

\ \f{y)\\P{rx y)\dy^Anr{x)
Jin-:

by (2.1) above.
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(2.3) If / E L ^ - , ) , then | Vf(rx)\ ^ An/*(x) if r ̂ \ where V is
the gradient in Rn.

Proof. The proof is similar to proof of (2.2) above.

(2.4) Let /ELP(ΣΛ-,) and F(rx) = [f(rx)]p where Kp<
oo. Then |FΓ(rx)|^Ap n(l-r)-1(/*(jc))p.

)r l/Γ(fx). As in (2.2),
Λ π ( l - r) 1/*(JC) The result now easily follows.

DEFINITION. Let / E Li(Σn-i). Define

1/2

REMARK. The map f—>g(f) is sublinear. This will enable us to
apply the Marcinkiewicz Interpolation Theorem later in the chapter.

PROPOSITION 2.1. Let f E LP(ΣB_,), 1< p < 2. Then g(f)E Lp(Zn^)
and \\g(f)(x)\\P^ΛpJf\\p.

Proof. It suffices to prove this for / strictly positive. In view of
Γ Γ l ΊJ/2

(2.3) we need only consider r ln(l/r)| Vf(rx)\2dr\ .
L J 1/2 J

Let F(rx)= [f(rx)]p. An easy calculation shows that |V/(rx)|2 =
p-χP-lΓ[f(rx)γ-Ά[(f(rx)n So

f r\n(l/r)\Vf(rx)\2dr = p-'(p-iyl[ rln(l/r)[f(rx)]^F(rx)dr
J 1/2 J 1/2

g [/*(x)]2^Ap,n Γ r In(l/r)ΔF(rx)dr.
J 1/2

Let I(x)= f rln(l/r)ΔF(«)dr.
J 1/2

ί I(x)dx=[ rln(l/r)f AF(rx)dxdr
Jin -I J 1/2 Jlπ-1

= £ r l n ( 1 / r ) L r"+I
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Now

= Γ rln(l/r)Fn(rx)dr + (n-l) f ln(l/r)Fr(rx)dr.
J 1/2 J 1/2

The second integral is bounded by BpJ*(x)p by (2.4) since ln(l
Λ(l - r) if r g 1/2. Upon integrating the first by parts, one gets

*i Q.[/•(*)]'.

Thus

f
Jln-

Hence

1/2 *ML
by Holder's inequality.

The above is bounded by Ap,π||/||p. The result for an arbitrary /
now follows from an easy limiting argument.

PROPOSITION 2.2. Let /GLp(Σn_,), 2^/?<<*>. Then g(f)E

Proof. By the Marcinkiewicz Interpolation Theorem it suffices to
prove this for p ^ 4. Choose q such that q~ι + (p/2)'1 = 1. Then

\<q ^ 2 . ||g(/)||p=sup g\f)(x)h{x)dx where the sup is over all
Jin I

h^O such that h <Ξ L.Q^) and ||ft||« = 1.

f g\f)(x)h{x)dx = ί ίΓ r\n(l/r)\Vf(rx)\2dr] h(x)dx.
Jϊn-l Jin I LJ() J

Let w(rx)= |V/(rx)|2. Since each partial derivative is harmonic, w is

subharmonic. Thus w(rρx)^\ w(py)P(rx y)dy since the right
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side is harmonic in rx and converges to the continuous function w(pjc) as

r—> 1". Hence w(r2x)^ w(ry)P(rx - y)dy. Hence
Jln-y

ί g\f)(x)h(x)dy ^4 ί [ f rMn(lr)|V/(rx)|2Λ(rχ)drl dx.

Now |V/(ΓΛ:)| 2HΔ/ 2OJC) and

Δ[f (r Λ(ΓX)Δ/2(ΓJC)+ Σ^f2(rx)^

where xu- ,xn are the Cartesian Coordinates. Since h{rx) is har-
monic, Ah = 0. Thus,

The second integral is bounded by An f*(x)g(f)(x)g(h)(x)dx
jΣn-l

by Schwartz's Inequality since \f(rx)\ ^ A ή/*(*) By Holder's Inequal-
ity, this integral is bounded by ApJrl\\g(f)l\\g(h)\\q ^
Λ'PJfl \\g(f)l since ||g(Λ)||, ^ BnA \\h\\, = Bn,q for 1< ^ 2. The first
integral equals

7 =

since spherical part of the Laplacian vanishes.

In the second integral use | r ln(l/r)/r(rx)| ̂  BΠ/*(JC),

r\n(l/r)h,(rx)\^Bnh*(x), \f(rx)\^ Bnf*(x), and \h{rx)\fkBnh*{x).



LIPSCHITZ SPACES OF DISTRIBUTIONS 173

Hence, the second integral is bounded by B'nf*(xfh *(JC). The first
integral equals

r3\n(l/r)fr(f(rx)h(rx))\'o- | [3r2ln(l/r)- r2) f (f\rx)h(rx))dr

-[3rHn(ί/r)-r2][f\rx)h(rx)]\l

+ f [6r\n(ί/r)-5r][f\rx)h(rx)]dr.
Jo

Using the above estimates one gets that the absolute value is
bounded by B:f*(x)2h*(x). So

ι Thus | |g(/)| |pgA;,π |/ |U|g(/)| |p + Cn,p||/||p. Hence | |g(/) | |P^

DEFINITION.

Γ f i πi/p

gP(f)(x)=\ (Πn(l/r)|(rf)r(rx)|ydr/(rln(l/r))

for f(rx) harmonic on Bn if 1 ̂  p < w.

gco(/)(jc)= sup r ln(l/r)|(r/)Γ(rjc)|.
0<r<l

PROPOSITION 2.3. Let /GLp(Σn_i) and q=max[p,2]. TΛen for

Proof. Case I. 1 < p ^ 2. Then g = 2 and

-11/2 Γ Γ l -1.1/2

r'\n{llr)\fr{rx)fdr\ + [^ rln(l/r)|/(rx)|2drj .

The second integral is bounded by BpJ*{x). Since |/r(rjc)|s=
I V/(rx)|, the first integral is bounded by g(/)(*).

Thus g2(f)(x)^ BpJ*(x) + g(f)(x) and so by Proposition 2.1,
) e Lp(Σn-,) and ||
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Case II. 2 ̂  p ^ oo. Then q = p. If p = oo,

llgσ)(*)ll-= I sup rln(ί/r)\(rf)r(rx)\ I iAp,n
II o < r < i Hoo ĵt

If /? < oo5 then

Hence \\gp(f)\\>* C, n | / * | | r 2 " 2 | | g 2 (/) r g Λ,n ||/||p by Holder's in-
equality, Proposition 2.2, and the argument above in Case I. We have
the following converse.

PROPOSITION 2.4. Let f(rx) be harmonic on Bn. Let q = τnin[p,2]
and gq(f)£ Lp(Sn-i). f(rx) is the Poisson integral of a function f(x)E
Lp(Σn-0 and ||/||p ^ Λp,n ||g,(/)||p for 1 g p < oo.

We will need the following lemmas.

LEMMA 2.1. LetfELp(Zn^)andh G Lp<Σπ-i) where l/p + l/p'= 1
1 < p < oo. 77ten

ί /(x)g(x)dx =4 ί f rln(l/r)(r/)r(rx)(rMr(rx)drdx.
JΣ^-I J Σ Λ - , JO

/. It suffices to prove this for / E Lp(Σn_i) and g G C°°(Σn-i)
since C°°(Σn-i) is dense in Lp(Σn-i). Let 0< s < 1. Then

ί f{x)h{x)dx = lim f f(sx)h(sx)dx.
Jln-l S~" 1 J Σ n - .

Let /(sx) = ΣkJaklS
kY\k\x) and h(sx) = ΣkJbklS

kY\k)(x) where fek/ =
') for all t since Λ G C"(ΣΛ-i).

Thus f{x)g(x)dx =ΣkJaklbkl.
Jin I

An easy argument shows that

4 ί f rln(l/r)(rf)r(rx)(rh)r(rx)drdx = Σ aklbk,
Jln-i JO k,l
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REMARK. This Lemma shows that the map / -»ίg2(/) is an isometry
of L2(ΣΛ-,).

LEMMA 2.2. Let f E Lp(Σn_i) and f(rx) be its Poisson integral Let
,2] and gq(f)E L ^ . , ) . Ήien | |/ | |p ^ A,n \\gp(f)\\p for

/. /? = 1. rf(rx) = Γ (pf)p (px)dp.
Jo

So |r/,(rx)|g|j(p/)p(px)| ίίpSgv(/)(x). Thus \\rf(rx)\U ̂

||g,(/)||, and so

Case II. K p ^ o o . Then ^ = p. | |/ | |p = sup ί f(x)h(x)dx

where the sup is over all h £ Lp (Σn-i) where ||A ||p = 1 and 1/p + l/p'= 1.
By Lemma 2.1,

If f( x)h(x)dx [
u~, Jo

r\n{\lr){rf),{rx){rh),{rx)drdx

^4 f gP{f)(x)gPif)(x)dx^4\\gPif)lhΛh)l

by Proposition 2.3 since p'^2.

Case III. 2^p<°o. Then q = 2. An argument similar to the
one above applies here.

Proof of Proposition 2.4.

Case L p = 1. In view of Lemma 2.2, it suffices to show that f(rx)

is the Poisson Integral for a function in L^Xn-i). rf(rx)= (ρf)p(ρx)dρ

and so ||r/(rx)|| l tέ ix =| |gι(/)(*) | | i . The result now follows from an easy
argument.

Case II. 1 < p < ». In view of Lemma 2.2, it suffices to show that
f(rx) is the Poisson Integral of a function in Lp(Σn_i). An easy variant of
Lemma 2.2 shows that if /GL p (Σ n _,), then | |/ | |p ^ Ap,n \\g2(f)\\p for
1 < p < oo. A straightforward argument finishes this part of the proof.

We have the following easy corollaries.
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C O R O L L A R Y 2 . 1 . Let f(rx) be harmonic for x E Σ π _ b 0 ^ r < l , and
let g2(f) E Lp(Σn-i) /or 1 < p < oo. 77ιerc /(rx) is ί/ie Poisson integral of a
function /(x)EL p (Σ n _ I ) and | |/(JC)| |P ^ Λp,n | |g2(/)(x)||p.

COROLLARY 2.2. Let f(rx) be harmonic for x E Xπ_b 0 ^ r < 1, and
let g(f) E Lp(Σn_i) for 1 < p < oo. 77ιen /(ΓJC) ΐs the Poisson integral of a
function /(x)ELp(Σ,-0 and ||/(x)||p ^ ApJg(f)(x)\\p.

PROPOSITION 2.5. (a) Lpα CΛ(α;p, g), q = max[p,2], K p ^ o o ,
(b) Λ(α;p,g)CLp,α, ^ = min[p,2], l ^ p < o o .
(c) L l αCΛ(α;l,oo)
(d) A(α;oo,l)CLα.
The inclusion maps are continuous.

Proof With minor changes the proof of Theorem 15 of Taibleson
[7; p. 452] can be apllied here to give the result.
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