LOCALLY BOUNDED TOPOLOGIES ON $F(X)$

Jo-Ann Cohen

It is classic that, to within equivalence, the only valuations on the field $F(X)$ of rational functions over a field F that are improper on F are the valuations v_{p}, where p is a prime of the principal ideal subdomain $F[X]$ of $F(X)$, and the valuation v_{∞}, defined by the prime X^{-1} of the principal ideal subdomain $F\left[X^{-1}\right]$ of $F(X)$ ([1], p. 94, Corollary 2). If \mathscr{T} is the supremum of finitely many of the associated valuation topologies, then \mathscr{T} is a Hausdorff, locally bounded ring topology on $F(X)$ for which F is a bounded set and for which there is a nonzero topological nilpotent a. In this paper we shall show conversely that any topology on $F(X)$ having these properties is the supremum of finitely many valuation topologies.

A subset S of a topological ring R is bounded if given any neighborhood V of 0 , there exists a neighborhood U of 0 such that $S U \subseteq V$ and $U S \subseteq V$. The topology on R is locally bounded if there is a bounded neighborhood of 0 . A bounded subfield of a Hausdorff topological ring is discrete ([2], p. 119, Exercise 13). It is easy to see that if $\lim _{n \rightarrow \infty} x_{n}=0$ and if $\left\{a_{n}\right\}_{n=1}^{\infty}$ is a bounded sequence, then $\lim _{n \rightarrow \infty} a_{n} x_{n}=0$.

An element c of a topological ring is a topological nilpotent if $\lim _{n \rightarrow \infty} c^{n}=0$. Let $\mathscr{P}=\{p \in F[X]: p$ is a prime polynomial $\}$, and let $\mathscr{P}^{\prime}=\mathscr{P} \cup\{\infty\}$. For each $p \in \mathscr{P}^{\prime}$, we shall denote by \mathscr{T}_{p} the topology defined by the valuation v_{p}. Then for any finite subset L of \mathscr{P}^{\prime}, $\sup _{p \in L} \mathscr{T}_{p}$ has a nonzero topological nilpotent. Indeed, let g be the product of the members of $L \cap \mathscr{P}$. If $\infty \notin L, g$ is a nonzero topological nilpotent for $\sup _{p \in L} \mathscr{T}_{p}$; if $\infty \in L$, let q be a prime polynomial not in L and let $r>0$ be such that $\operatorname{deg}\left(q^{r}\right)>\operatorname{deg} g$; then $g q^{-r}$ is a nonzero topological nilpotent of $\sup _{p \in L} \mathscr{T}_{p}$.

We recall that a norm $\|\cdot\|$ on a field K is a function to the nonnegative reals satisfying $\|x\|=0$ if and only if $x=0,\|x-y\| \leqq$ $\|x\|+\|y\|$, and $\|x y\| \leqq\|x\|\|y\|$ for all $x, y \in K$. Clearly a subset of K is bounded in norm if and only if it is bounded for the topology defined by the norm; in particular the topology given by a norm is a locally bounded topology. We shall use the following theorem of P. M. Cohn ([4], Theorem 6.1): A Hausdorff, locally bounded ring topology on a field K for which there is a nonzero topological nilpotent is defined by a norm.

Theorem 1. Let F be a field and x a transcendental element over F in some field extension. Let \mathscr{T} be a Hausdorff, locally bounded ring
topology on $F(x)$ for which the subfield F is bounded (and hence discrete) and for which there exists a nonzero topological nilpotent $g_{0}(x) \in F[x]$, and let $J=\left\{f \in F[X]: \lim _{n \rightarrow \infty} f(x)^{n}=0\right\}$. Then

1. $F[x]$ is bounded.
2. J is a proper ideal of $F[X]$; its monic generator h is the product of a sequence p_{1}, \cdots, p_{k} of distinct prime polynomials of $F[X]$.
3. $\mathscr{T}=\sup _{1 \leqq i \leqq k} \mathscr{T}_{p(x)}$.

Proof. 1. By Cohn's Theorem there exists a norm $\|\cdot \cdot\|$ defining \mathscr{T}. Then $\left\|g_{0}(x)^{n}\right\|<1$ for some $n \geqq 1$; let $g=g_{0}^{n}$. Then $g(x)$ is a topological nilpotent and $\|g(x)\|<1$.

As F is bounded for \mathscr{T}, there exists a positive constant M such that $\|a\| \leqq M$, for all $a \in F$. Let $L=M \sum_{i=0}^{m}\|x\|^{i}$, where $m=\operatorname{deg} g$. As F is discrete, F contains no nonzero topological nilpotents, so $m \geqq 1$. For any polynomial f such that $\operatorname{deg} f<m, f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}$ where $n<m, a_{0}, a_{1}, \cdots, a_{n} \in F$; so

$$
\|f(x)\| \leqq \sum_{i=0}^{n}\left\|a_{i}\right\|\|x\|^{i} \leqq M \sum_{i=0}^{n}\|x\|^{i} \leqq M \sum_{i=0}^{m}\|x\|^{i}=L
$$

Therefore, $\{f(x) \in F[X]$: $\operatorname{deg} f<m\}$ is a bounded subset of $F(x)$.
We shall show next that $\|f(x)\| \leqq S$ for all $f \in F[X]$, where $S=$ $L /(1-\|g(x)\|)$. Given $f \in F[X]$, there exists an integer $n \geqq 0$ and polynomials q_{0}, \cdots, q_{n} such that $f=g^{n} q_{n}+\cdots+g q_{1}+q_{0}$ and for each $i \in[0, n], q_{i}=0$ or $\operatorname{deg} q_{i}<m$. Therefore,

$$
\begin{aligned}
\|f(x)\| & =\left\|g(x)^{n} q_{n}(x)+\cdots+g(x) q_{1}(x)+q_{0}(x)\right\| \\
& \leqq \sum_{i=0}^{n}\left\|g(x)^{i}\right\|\left\|q_{i}(x)\right\| \leqq L \sum_{i=0}^{n}\left\|g(x)^{i}\right\| \\
& \leqq L \sum_{i=0}^{\infty}\left\|g(x)^{i}\right\| \leqq L \sum_{i=0}^{\infty}\|g(x)\|^{i}=S
\end{aligned}
$$

Thus $F[x]$ is bounded.
2. Let $f_{\mathrm{l}}, f_{2} \in J$, and let $t \in F[X]$. Then

$$
\begin{aligned}
\left\|\left(f_{1}+f_{2}\right)^{2 n}(x)\right\|= & \left\|\sum_{k=0}^{2 n}\binom{2 n}{k} f_{1}^{2 n-k}(x) f_{2}^{k}(x)\right\| \\
= & \| f_{1}^{n}(x) \sum_{k=0}^{n}\binom{2 n}{k} f_{1}^{n-k}(x) f_{2}^{k}(x) \\
& +f_{2}^{n}(x) \sum_{k=n+1}^{2 n}\binom{2 n}{k} f_{1}^{2 n-k}(x) f_{2}^{k-n}(x) \|
\end{aligned}
$$

$$
\begin{aligned}
& \leqq\left\|f_{1}^{n}(x)\right\|\left\|\sum_{k=0}^{n}\binom{2 n}{k} f_{1}^{n-k}(x) f_{2}^{k}(x)\right\| \\
& \quad+\left\|f_{2}^{n}(x)\right\|\left\|\sum_{k=n+1}^{2 n}\binom{2 n}{k} f_{1}^{2 n-k}(x) f_{2}^{k-n}(x)\right\| \\
& \leqq S\left\|f_{1}^{n}(x)\right\|+S\left\|f_{2}^{n}(x)\right\| \rightarrow 0
\end{aligned}
$$

Thus, $\left(f_{1}+f_{2}\right)^{2}(x)$ is a topological nilpotent, whence $\left(f_{1}+f_{2}\right)(x)$ is. Also $\left\|\left(f_{1} t\right)^{n}(x)\right\| \leqq\left\|f_{1}^{n}(x)\right\|\left\|t^{n}(x)\right\| \leqq S\left\|f_{1}^{n}(x)\right\| \rightarrow 0$, so $f_{1} t \in J$. Hence as $1 \notin J$, J is a proper nonzero ideal of $F[X]$, a principal ideal domain. Let h be its monic generator, and let $h=\Pi_{i=1}^{k} p_{i}^{r}$ where p_{1}, \cdots, p_{k} are distinct prime polynomials. Let $h_{0}=\Pi_{i=1}^{k} p_{i}$, and let $r=\max \left\{r_{1}, \cdots, r_{k}\right\}$. Then $h \mid h_{0}^{r}$, so $h_{0}^{r} \in J$ and hence, $h_{0}(x)$ is a topological nilpotent. Therefore, h_{0} belongs to J. So as $h_{0} \mid h, h_{0}=h$.
3. We shall first show that the topology induced on $F[x]$ by \mathscr{T} is weaker than that induced on $F[x]$ by $\sup _{1 \leqq 1 \leqq k} \mathscr{T}_{p(x)}$.

For all $n \geqq 1$, let $U_{n}=\left\{f(x) \in F[x]: p_{i}^{n} \mid f, 1 \leqq i \leqq k\right\}$. Then $\left(U_{n}\right)_{n \leqq 1}$ is a fundamental system of neighborhoods of zero for the topology induced on $F[x]$ by $\sup _{1 \leqq ı \leqq k} \mathscr{T}_{p_{f(x)}}$. But clearly $p_{i}^{n} \mid f$ for all $i \in[1, k]$ if and only if $h^{n} \mid f$ as $h=p_{1} \cdots p_{k}$. Thus $U_{n}=F[x] h^{n}(x)$.

For each $\epsilon>0$, let $B_{\epsilon}=\{y \in F(x):\|y\|<\epsilon\}$. It suffices to show that there exists $N \in \mathbf{N}$ such that $F[x] h^{N}(x) \subseteq B_{\epsilon} \cap F[x]$.

Let N be such that $\left\|h(x)^{N}\right\|<\epsilon / S$. Then for any $g(x) \in F[x]$,

$$
\left\|g(x) h^{N}(x)\right\| \leqq\|g(x)\|\left\|h^{N}(x)\right\|<S \cdot \frac{\epsilon}{S}=\epsilon
$$

Hence $F[x] h^{N}(x) \subseteq B_{\epsilon} \cap F[x]$.
We next show that $\mathscr{T} \subseteq \sup _{1 \leqq!\leqq k} \mathscr{T}_{p(x) x}$, that is, that given $\epsilon>0$, there exists $R \geqq 0$ such that for every $y \in F(x)$, if $v_{p \neq(x)}(y)>R$ for all $i \in[1, k]$, then $\|y\|<\epsilon$.

Let $\epsilon>0$. As the mapping $(y, z) \rightarrow y z$ is continuous at $(1,0)$, there exists $\delta, \gamma>0$ such that $\left(B_{\delta}+1\right) B_{\gamma} \subseteq B_{1}$. By 2 , there exists k_{0} such that $\left\|h(x)^{k_{0}}\right\|<\gamma$. Then $\left(B_{\delta}+1\right) \subseteq h(x)^{-k_{0}} B_{1}$ and so $h(x)^{-k_{0}} B_{1}$ is a neighborhood of 1 . As the topology \mathscr{T} is given by a norm, $y \rightarrow y^{-1}$ is continuous for \mathscr{T} on the set of nonzero elements of $F(x)$ (the proof is the same as for normed algebras found in [3], p. 75, Proposition 13), so there exists η such that $0<\eta<1$ and $\left(B_{\eta}+1\right)^{-1} \subseteq h(x)^{-k_{0}} B_{1}$. Since the topology induced on $F[x]$ by \mathscr{T} is weaker than that induced on $F[x]$ by $\sup _{1 \leqq 1 \leqq k} \mathscr{T}_{p(x)}$, there exists N such that $F[x] h(x)^{N} \subseteq B_{\eta}$. Then for all $t \in F[X]$,

$$
\left\|\frac{1}{t(x) h(x)^{N}+1}\right\| \leqq\left\|h(x)^{-k_{0}}\right\| .
$$

Choose $R \in \mathbf{N}$ such that $\left\|h(x)^{R}\right\|<\epsilon\| \| h(x)^{-k_{0}} \|$ S. Suppose $v_{p i}(y) \geqq$ R for all $i=1,2, \cdots, k$. Then

$$
y=p_{1}^{R}(x) \cdots p_{k}^{R}(x) r(x) \frac{f(x)}{q(x)}=h^{R}(x) r(x) \frac{f(x)}{q(x)}
$$

where $r, f, q \in F[X]$, and in $F[X], p_{i} \nsucc f, p_{i} \nsucc q, i=1,2, \cdots, k$. Thus h^{N} and q are relatively prime, so there exists polynomials $s, t \in F[X]$ such that $q(x) s(x)=h^{N}(x) t(x)+1$.
Thus,

$$
\begin{aligned}
y & =h^{R}(x) r(x) \frac{f(x)}{q(x)} \\
& =h^{R}(x) \frac{r(x) s(x) f(x)}{h^{N}(x) t(x)+1}
\end{aligned}
$$

and therefore

$$
\begin{gathered}
\|y\| \leqq\left\|h^{R}(x)\right\|\|r(x) s(x) f(x)\|\left\|\left(h^{N}(x) t(x)+1\right)^{-1}\right\| \\
<\frac{\epsilon}{\left\|h(x)^{-k_{0}}\right\| S} S\left\|h(x)^{-k_{0}}\right\|=\epsilon .
\end{gathered}
$$

To complete the proof of the theorem it remains to show that $\sup _{1 \leq i \leq k} \mathscr{T}_{p(x)} \subseteq \mathscr{T}$. For this, as both \mathscr{T} and $\sup _{1 \leq i \leq k} \mathscr{T}_{p(x)}$ are locally bounded topologies, it suffices to show that $B_{1} \subseteq\left\{y \in F(x): v_{p(x)}(y) \geqq 1\right.$, $1 \leqq i \leqq k\}$. Let $y \in B_{1}$ and let $y=p_{1}(x)^{e_{1} \cdots p_{k}(x)^{e_{k}} f(x) / q(x) \text { where }}$ $e_{i} \in \mathbf{Z}, f, q \in F[X]$, and $p_{i} \nsucc f, p_{i} \nmid q$ for all $i \in[1, k]$, and f and q are relatively prime. Let $I=\left\{i \in[1, k]: e_{i} \leqq 0\right\}$. Then $y q(x) \Pi_{i \in I} p_{i}(x)^{-e_{i}}$ is a topological nilpotent in \mathscr{T} as $F[x]$ is bounded. But

$$
y q(x) \prod_{i \in I} p_{i}(x)^{-e_{i}}=f(x) \prod_{i \notin I} p_{i}(x)^{e_{i}} \in F[x],
$$

so $f \Pi_{i \notin I} p_{i}^{e_{i}} \in J=(h)$. Hence as $h=p_{1} \cdots p_{k},[1, k] \sim I=[1, k]$, i.e., $I=\phi . \quad$ So $e_{i} \geqq 1$ for all $i \in[1, k]$, and thus $v_{p(x)}(y) \geqq 1$ for all $i \in[1, k]$.

Corollary. Let \mathscr{T} be a Hausdorff ring topology on $F(x)$ for which the subfield F is bounded and let p be a prime polynomial in $F[X]$. Then $\mathscr{T}=\mathscr{T}_{p(x)}$ if and only if \mathscr{T} is locally bounded and $\lim _{n \rightarrow \infty} p^{n}(x)=0$.

Theorem 2. Let F be a field, x a transcendental element over F. Let \mathscr{T} be a Hausdorff, locally bounded ring topology on $F(x)$ for which the subfield F is bounded and for which there is a nonzero topological
nilpotent y. Then there exists a finite subset S of \mathscr{P}^{\prime} such that $\mathscr{T}=$ $\sup _{s \in S} \mathscr{T}_{s}$.

Proof. As each valuation v on $F(x)$ that is improper on F is equivalent to v_{s} for exactly one $s \in \mathscr{P}^{\prime}([1]$, p. 94, Corollary 2$)$ it suffices to show that \mathscr{T} is the supremum of finitely many valuation topologies where each valuation is improper on F.

Let $y=g(x) / h(x) \neq 0$ where $\quad(g(x), h(x))=1$. By Cohn's Theorem, there is a norm $\|\cdot \cdot\|$ defining the topology on $F(x)$.

Case 1. $\quad \operatorname{deg} h<\operatorname{deg} g$. Let $n=\operatorname{deg} h, n+r=\operatorname{deg} g$. We shall show that

$$
F[x] \subseteq F[y]+F[y] x+\cdots+F[y] x^{n+r-1},
$$

that is for each $f \in F[X]$ there exists $Q \in F[y][X]$ of degree $<n+r$ such that $f(x)=Q(x)$. For this it clearly sufficies to show that for each $k \geqq 0, x^{n+r+k}=Q_{k}(x)$ for some $Q_{k} \in F[Y][X]$ of degree $<n+r$.

Let $g(x)=a_{n+} x^{n+r}+\cdots+a_{1} x+a_{1} x+a_{0}$, where each $a_{1} \in F$, and let $h(x)=b_{n} x^{n}+\cdots+b_{1} x+b_{0}$, where each $b_{i} \in F$. Then $y b_{n} x^{n}+$ $y b_{n-1} x^{n-1}+\cdots+y b_{0}=a_{n+r} x^{n+r}+\cdots+a_{1} x+a_{0}$. So $x^{n+r}=Q_{0}(x)$ where

$$
Q_{0}(X)=\sum_{j=0}^{n} a_{n+r}^{-1}\left(b_{j} y-a_{j}\right) X^{j}-\sum_{j=n+1}^{n+r-1} a_{n+r}^{-1}, b_{j} X^{\prime} .
$$

Assume $x^{n+r+k}=Q_{k}(x)$ where Q_{k} is a polynomial of degree \leqq $n+r-1$ over $F[y]$; let $Q_{k}=g_{0}(y) x^{n+r-1}+P_{k}$ where $g_{0} \in F[X]$ and P_{k} is a polynomial in $F[y][X]$ of degree $\leqq n+r-2$. Then

$$
\begin{aligned}
x^{n+r+k+1} & =g_{0}(y) x^{n+r}+x P_{k}(x) \\
& =g_{0}(y) Q_{0}(x)+x P_{k}(x)=Q_{k+1}(x)
\end{aligned}
$$

where $Q_{k+1}(X)=g_{0}(y) Q_{0}(X)+X P_{k}(X)$, a polynomial over $F[y]$ of degree $\leqq n+r-1$. Therefore

$$
F[x] \subseteq F[y]+F[y] x+\cdots+F[y] x^{n+r-1} .
$$

By 1 of Theorem 1, applied to $F(y)$ with its induced nondiscrete topology which is given by the induced norm, $F[y]$ is bounded in norm, and hence $F[x]$ is also. Thus $F[x]$ is a bounded subset of $F(x)$. Consequently, $h(x) y$ is a topological nilpotent; but $h(x) y=g(x)$, so $g(x)$ is a topological nilpotent. Then by Theorem $1, \mathscr{T}$ is the supremum of p_{i}-adic topologies for some finite sequence of primes in $F[x]$.

Case 2. $\operatorname{deg} h=\operatorname{deg} g$.
Choose N such that

$$
\left\|\left(\frac{g(x)}{h(x)}\right)^{N}\right\|<\frac{1}{\|x\|} . \quad \text { Then } \quad x\left(\frac{g(x)}{h(x)}\right)^{N}
$$

is a topological nilpotent. Since $\operatorname{deg} g=\operatorname{deg} h, \operatorname{deg}\left(X g^{N}\right)>$ $\operatorname{deg} h^{N}$. By Case $1, \mathscr{T}=\sup _{1 \leqq i \leqq k} \mathscr{T}_{p_{i}}$ for some sequence p_{1}, \cdots, p_{k} of primes in $F[x]$.

Case 3. $\operatorname{deg} g<\operatorname{deg} h$ and there exists $a_{0} \in F$ such that $X-a_{0} \nmid$ g. Since the substitution mapping $f \rightarrow f\left(x-a_{0}\right)$ is an automorphism of $F[x]$, let $g(x)=g_{1}\left(x-a_{0}\right), \quad h(x)=h_{1}\left(x-a_{0}\right) \quad$ where g_{1}, $h_{1} \in F[X]$. Then $\operatorname{deg} g_{1}<\operatorname{deg} h_{1}$ and as $X-a_{0} \nmid g, X \nmid g_{1}$. Let $g_{1}=$ $C_{n} X^{n}+\cdots+C_{0}, \quad h_{1}=b_{n+r} X^{n+r}+\cdots+b_{0}$. Then $\quad C_{0} \neq 0 \quad$ as $X \nmid g_{1}$. Hence

$$
\begin{aligned}
\frac{g(x)}{h(x)} & =\frac{C_{n}\left(x-a_{0}\right)^{n}+\cdots+C_{0}}{b_{n+r}\left(x-a_{0}\right)^{n+r}+\cdots+b_{0}} \\
& =\frac{\left(x-a_{0}\right)^{n+r}}{\left(x-a_{0}\right)^{n+r}} \frac{C_{n}\left(x-a_{0}\right)^{-r}+\cdots+C_{0}\left(x-a_{0}\right)^{-(n+r)}}{b_{n+r}+\cdots+b_{0}\left(x-a_{0}\right)^{-(n+r)}} \\
& =\frac{g_{0}\left(\left(x-a_{0}\right)^{-1}\right)}{h_{0}\left(\left(x-a_{0}\right)^{-1}\right)}
\end{aligned}
$$

where $g_{0}=C_{0} X^{n+r}+\cdots+C_{n} X^{r}$, a polynomial of degree $n+r$ as $C_{0} \neq 0$, and $h_{0}=b_{0} X^{n+r}+\cdots+b_{n+r}$, a polynomial of degree $\leqq n+r$. Let $z=$ $\left(x-a_{0}\right)^{-1}$. Then $F(z)=F(x)$ and $g_{0}(z) / h_{0}(x)$ is a topological nilpotent. By Cases 1 and $2, \mathscr{T}=\sup _{1 \leqq i \leqq k} \mathscr{T}_{p_{i}}$ for some sequence of primes in $F\left[\left(x-a_{0}\right)^{-1}\right]$.

Case 4. $\operatorname{deg} g<\operatorname{deg} h$ and for all $a \in F, X-a \mid g$.
In this case F is a finite field; let p be the characteristic of F and let q be its order.

By the corollary to Theorem 1 applied to the prime polynomial Y of $F[Y]$, the topology induced on $F(y)$ is the y-adic topology. Moreover, $[F(x): F(y)] \leq \operatorname{deg} h$.

Let K be a maximal subfield of $F(x)$ such that K contains $F(y)$ and the topology induced on K by \mathscr{T} is the supremum of finitely many valuation topologies, each of which is discrete on F. Let $K_{0}=$ $\{z \in F(x): z$ is separable over $K\}$. Then by Theorem 5 of ([5]), the topology induced on K_{0} is the supremum of finitely many valuation topologies. Hence $K=K_{0}$, that is $F(x)$ is a purely inseparable extension of K. Let n be such that $x^{p^{n}} \in K$.

Let v_{1}, \cdots, v_{r} be valuations on K such that $\left.\mathscr{T}\right|_{K}=\sup _{1 \leqq!\leqq r} \mathscr{T}_{v_{r}}$. Since every valuation on K admits an extension to $F(x)$ ([1], p. 105, Proposition 5), we may assume each $v_{t}=\left.v_{s_{i}}\right|_{K}$ for some $s_{t} \in \mathscr{P}^{\prime}$.

By Theorem 4 of ([5]) there exist ring topologies $\mathscr{T}_{1}, \cdots, \mathscr{T}_{r}$ on $F(x)=K[x]$ such that $\left.\mathscr{T}_{1}\right|_{K}=\mathscr{T}_{v_{i}}$ and $\mathscr{T}=\sup _{1 \leqq 1 \leqq r} \mathscr{T}_{i} . \quad$ Furthermore, as \mathscr{T} is a locally bounded topology, by the proof of Theorem 4 of ([5]), each \mathscr{T}_{i} is locally bounded. Therefore it suffices to show that for $1 \leqq i \leqq r, \mathscr{T}_{\text {, }}$ is the supremum of finitely many valuation topologies, each of which is discrete on F.

Let $1 \leqq i \leqq r$. Suppose that $v_{i}=\left.v_{s}\right|_{\kappa}$ where s is a prime polynomial of $F[X]$. As $g(x) / h(x)$ is a topological nilpotent for the given topology it is also a topological nilpotent for the weaker topology induced on K by v_{t}, and hence $v_{i}(g(x) / h(x))>0$. Furthermore by our assumption on v_{l}, $v_{1}(x) \geqq 0$. Let m be such that $p^{n} m>\operatorname{deg} h$. Then $v_{i}\left(x^{p^{n} m} g(x) / h(x)\right)>$ 0 , so $x^{p^{n m}} g(x) / h(x)$ is a nonzero topological nilpotent for $\mathscr{T}_{v_{1}}$ and hence for \mathscr{T}_{1}. Furthermore, $\operatorname{deg} X^{p^{n m} g}>\operatorname{deg} h$. As F is a finite field, F is a bounded set for \mathscr{T}_{i} and therefore by Case $1, \mathscr{T}_{1}$ is the supremum of finitely many valuation topologies on $F(x)$, each of which is discrete on F.

So we may assume that $v_{t}=\left.v_{\alpha}\right|_{\kappa}$. Let t be the highest power of X occuring in the factorization of the polynomial g. Choose m such that $m p^{n}>t$. Let g_{0}, h_{0} be relatively prime polynomials such that $g_{0} / h_{0}=$ $g / h 1 / X^{p^{n_{m}}}$. Since $v_{\infty}(g(x) / h(x))>0$ and $v_{\infty}\left(1 / X^{p^{n_{m}}}\right)>0, g_{0}(x) / h_{0}(x)$ is a nonzero topological nilpotent for $\mathscr{T}_{v_{i}}$ and hence for \mathscr{T}_{1}. Moreover, $X \nmid g_{0}$. Therefore by Case $3, \mathscr{T}_{1}$ is the supremum of finitely many valuation topologies, each of which is discrete on F. This completes the proof of the theorem.

Corollary. Let F be a field, x a transcendental element over F. Let \mathscr{T} be a Hausdorff locally bounded ring topology on $F(x)$ for which the subfield F is bounded and for which there is a nonzero topological nilpotent. Assume further that the completion of $F(x)$ for \mathscr{T} is a field. Then \mathscr{T} is either the p-adic topology for some prime p in $F[x]$ or \mathscr{T} is \mathscr{T}_{∞}.

Proof. By Theorem 2, there exists a nonempty finite subset S of \mathscr{P}^{\prime} such that $\mathscr{T}=\sup _{s \in s} \mathscr{T}_{s}$. As the completion of $F(x)$ for \mathscr{T} is a field, the cardinality of S is 1 by the Approximation Theorem ([1], p. 136, Theorem 2).

References

1. N. Bourbaki, Algèbra Commutative, Ch. 5-6, Hermann, Paris, 1964.
2. -, Topologie Générale, Ch. 3-4, Herman, Paris, 1960.
3. -, Topologie Générale, Ch. 9, Hermann, Paris, 1958.
4. P. M. Cohn, An invariant characterization of pseudo-valuations on a field, Proc. Cambridge Phil. Soc., 50 (1954), 159-177.
5. T. Rigo and S. Warner, Topologies extending valuations, to appear.

Received October 29, 1976 and in revised form January 7, 1977 The results presented here are part of a doctoral dissertation, written under the supervision of Seth Warner of Duke University.

Duke University, Durham, NC 27706
Present address: North Carolina State University
Raleigh, NC 27607

