LOCALLY BOUNDED TOPOLOGIES ON F(X)

JO-ANN COHEN

It is classic that, to within equivalence, the only valuations on the field F(X) of rational functions over a field F that are improper on F are the valuations v_p , where p is a prime of the principal ideal subdomain F[X] of F(X), and the valuation v_{∞} , defined by the prime X^{-1} of the principal ideal subdomain $F[X^{-1}]$ of F(X) ([1], p. 94, Corollary 2). If \mathcal{T} is the supremum of finitely many of the associated valuation topologies, then \mathcal{T} is a Hausdorff, locally bounded ring topology on F(X) for which Fis a bounded set and for which there is a nonzero topological nilpotent a. In this paper we shall show conversely that any topology on F(X) having these properties is the supremum of finitely many valuation topologies.

A subset S of a topological ring R is bounded if given any neighborhood V of 0, there exists a neighborhood U of 0 such that $SU \subseteq V$ and $US \subseteq V$. The topology on R is locally bounded if there is a bounded neighborhood of 0. A bounded subfield of a Hausdorff topological ring is discrete ([2], p. 119, Exercise 13). It is easy to see that if $\lim_{n\to\infty} x_n = 0$ and if $\{a_n\}_{n=1}^{\infty}$ is a bounded sequence, then $\lim_{n\to\infty} a_n x_n = 0$.

An element c of a topological ring is a topological nilpotent if $\lim_{n\to\infty} c^n = 0$. Let $\mathscr{P} = \{p \in F[X]: p \text{ is a prime polynomial}\}$, and let $\mathscr{P}' = \mathscr{P} \cup \{\infty\}$. For each $p \in \mathscr{P}'$, we shall denote by \mathscr{T}_p the topology defined by the valuation v_p . Then for any finite subset L of \mathscr{P}' , $\sup_{p \in L} \mathscr{T}_p$ has a nonzero topological nilpotent. Indeed, let g be the product of the members of $L \cap \mathscr{P}$. If $\infty \notin L$, g is a nonzero topological nilpotent for $\sup_{p \in L} \mathscr{T}_p$; if $\infty \in L$, let q be a prime polynomial not in L and let r > 0 be such that deg $(q') > \deg g$; then $g q^{-r}$ is a nonzero topological nilpotent of $\sup_{p \in L} \mathscr{T}_p$.

We recall that a norm $\|\cdot\cdot\|$ on a field K is a function to the nonnegative reals satisfying $\|x\| = 0$ if and only if x = 0, $\|x - y\| \le \|x\| + \|y\|$, and $\|xy\| \le \|x\| \|y\|$ for all $x, y \in K$. Clearly a subset of K is bounded in norm if and only if it is bounded for the topology defined by the norm; in particular the topology given by a norm is a locally bounded topology. We shall use the following theorem of P. M. Cohn ([4], Theorem 6.1): A Hausdorff, locally bounded ring topology on a field K for which there is a nonzero topological nilpotent is defined by a norm.

THEOREM 1. Let F be a field and x a transcendental element over F in some field extension. Let \mathcal{T} be a Hausdorff, locally bounded ring

topology on F(x) for which the subfield F is bounded (and hence discrete) and for which there exists a nonzero topological nilpotent $g_0(x) \in F[x]$, and let $J = \{f \in F[X]: \lim_{n\to\infty} f(x)^n = 0\}$. Then

1. F[x] is bounded.

2. J is a proper ideal of F[X]; its monic generator h is the product of a sequence p_1, \dots, p_k of distinct prime polynomials of F[X].

3. $\mathcal{T} = \sup_{1 \leq i \leq k} \mathcal{T}_{p_i(x)}$.

Proof. 1. By Cohn's Theorem there exists a norm $\|\cdot\|$ defining \mathcal{T} . Then $\|g_0(x)^n\| < 1$ for some $n \ge 1$; let $g = g_0^n$. Then g(x) is a topological nilpotent and $\|g(x)\| < 1$.

As F is bounded for \mathcal{T} , there exists a positive constant M such that $||a|| \leq M$, for all $a \in F$. Let $L = M \sum_{i=0}^{m} ||x||^i$, where $m = \deg g$. As F is discrete, F contains no nonzero topological nilpotents, so $m \geq 1$. For any polynomial f such that $\deg f < m$, $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0$ where n < m, $a_0, a_1, \cdots, a_n \in F$; so

$$||f(x)|| \leq \sum_{i=0}^{n} ||a_i|| ||x||^i \leq M \sum_{i=0}^{n} ||x||^i \leq M \sum_{i=0}^{m} ||x||^i = L.$$

Therefore, $\{f(x) \in F[X]: \deg f < m\}$ is a bounded subset of F(x).

We shall show next that $||f(x)|| \leq S$ for all $f \in F[X]$, where S = L/(1-||g(x)||). Given $f \in F[X]$, there exists an integer $n \geq 0$ and polynomials q_0, \dots, q_n such that $f = g^n q_n + \dots + gq_1 + q_0$ and for each $i \in [0, n], q_i = 0$ or deg $q_i < m$. Therefore,

$$\|f(x)\| = \|g(x)^{n}q_{n}(x) + \dots + g(x)q_{1}(x) + q_{0}(x)\|$$

$$\leq \sum_{i=0}^{n} \|g(x)^{i}\| \|q_{i}(x)\| \leq L \sum_{i=0}^{n} \|g(x)^{i}\|$$

$$\leq L \sum_{i=0}^{\infty} \|g(x)^{i}\| \leq L \sum_{i=0}^{\infty} \|g(x)\|^{i} = S.$$

Thus F[x] is bounded.

2. Let $f_1, f_2 \in J$, and let $t \in F[X]$. Then

$$\|(f_1 + f_2)^{2n}(x)\| = \left\| \sum_{k=0}^{2n} {\binom{2n}{k}} f_1^{2n-k}(x) f_2^k(x) \right\|$$
$$= \left\| f_1^n(x) \sum_{k=0}^n {\binom{2n}{k}} f_1^{n-k}(x) f_2^k(x) + f_2^n(x) \sum_{k=n+1}^n {\binom{2n}{k}} f_1^{2n-k}(x) f_2^{k-n}(x) \right\|$$

$$\leq \|f_1^n(x)\| \left\| \sum_{k=0}^n \binom{2n}{k} f_1^{n-k}(x) f_2^k(x) \right\| \\ + \|f_2^n(x)\| \left\| \sum_{k=n+1}^{2n} \binom{2n}{k} f_1^{2n-k}(x) f_2^{k-n}(x) \right\| \\ \leq S \|f_1^n(x)\| + S \|f_2^n(x)\| \to 0.$$

Thus, $(f_1 + f_2)^2(x)$ is a topological nilpotent, whence $(f_1 + f_2)(x)$ is. Also $||(f_1t)^n(x)|| \leq ||f_1^n(x)|| ||t^n(x)|| \leq S ||f_1^n(x)|| \to 0$, so $f_1t \in J$. Hence as $1 \notin J$, J is a proper nonzero ideal of F[X], a principal ideal domain. Let h be its monic generator, and let $h = \prod_{i=1}^k p_i^r$ where p_1, \dots, p_k are distinct prime polynomials. Let $h_0 = \prod_{i=1}^k p_i$, and let $r = \max\{r_1, \dots, r_k\}$. Then $h | h_0'$, so $h_0' \in J$ and hence, $h_0(x)$ is a topological nilpotent. Therefore, h_0 belongs to J. So as $h_0 | h, h_0 = h$.

3. We shall first show that the topology induced on F[x] by \mathcal{T} is weaker than that induced on F[x] by $\sup_{1 \le i \le k} \mathcal{T}_{p(x)}$.

For all $n \ge 1$, let $U_n = \{f(x) \in F[x] : p_i^n | f, 1 \le i \le k\}$. Then $(U_n)_{n\ge 1}$ is a fundamental system of neighborhoods of zero for the topology induced on F[x] by $\sup_{1\le i\le k} \mathcal{T}_{p(x)}$. But clearly $p_i^n | f$ for all $i \in [1, k]$ if and only if $h^n | f$ as $h = p_1 \cdots p_k$. Thus $U_n = F[x]h^n(x)$.

For each $\epsilon > 0$, let $B_{\epsilon} = \{y \in F(x) : ||y|| < \epsilon\}$. It suffices to show that there exists $N \in \mathbb{N}$ such that $F[x]h^{N}(x) \subseteq B_{\epsilon} \cap F[x]$.

Let N be such that $||h(x)^{N}|| < \epsilon/S$. Then for any $g(x) \in F[x]$,

$$\|g(x)h^{N}(x)\| \leq \|g(x)\| \|h^{N}(x)\| < S \cdot \frac{\epsilon}{S} = \epsilon$$

Hence $F[x] h^{N}(x) \subseteq B_{\epsilon} \cap F[x]$.

We next show that $\mathcal{T} \subseteq \sup_{1 \le i \le k} \mathcal{T}_{p(x)}$, that is, that given $\epsilon > 0$, there exists $R \ge 0$ such that for every $y \in F(x)$, if $v_{p(x)}(y) > R$ for all $i \in [1, k]$, then $||y|| < \epsilon$.

Let $\epsilon > 0$. As the mapping $(y, z) \rightarrow yz$ is continuous at (1, 0), there exists $\delta, \gamma > 0$ such that $(B_{\delta} + 1)B_{\gamma} \subseteq B_1$. By 2, there exists k_0 such that $||h(x)^{k_0}|| < \gamma$. Then $(B_{\delta} + 1) \subseteq h(x)^{-k_0}B_1$ and so $h(x)^{-k_0}B_1$ is a neighborhood of 1. As the topology \mathcal{T} is given by a norm, $y \rightarrow y^{-1}$ is continuous for \mathcal{T} on the set of nonzero elements of F(x) (the proof is the same as for normed algebras found in [3], p. 75, Proposition 13), so there exists η such that $0 < \eta < 1$ and $(B_{\eta} + 1)^{-1} \subseteq h(x)^{-k_0}B_1$. Since the topology induced on F[x] by \mathcal{T} is weaker than that induced on F[x] by $\sup_{1 \le i \le k} \mathcal{T}_{p(x)}$, there exists N such that $F[x]h(x)^N \subseteq B_{\eta}$. Then for all $t \in F[X]$,

$$\left\|\frac{1}{t(x)h(x)^{N}+1}\right\| \leq \|h(x)^{-k_{0}}\|.$$

Choose $R \in \mathbb{N}$ such that $||h(x)^{R}|| < \epsilon / ||h(x)^{-k_0}||S$. Suppose $v_{p_i}(y) \ge R$ for all $i = 1, 2, \dots, k$. Then

$$y = p_{1}^{R}(x) \cdots p_{k}^{R}(x) r(x) \frac{f(x)}{q(x)} = h^{R}(x) r(x) \frac{f(x)}{q(x)}$$

where $r, f, q \in F[X]$, and in F[X], $p_i \nmid f, p_i \nmid q, i = 1, 2, \dots, k$. Thus h^N and q are relatively prime, so there exists polynomials $s, t \in F[X]$ such that $q(x)s(x) = h^N(x)t(x) + 1$. Thus,

$$y = h^{R}(x) r(x) \frac{f(x)}{q(x)}$$
$$= h^{R}(x) \frac{r(x) s(x) f(x)}{h^{N}(x) t(x) + 1}$$

and therefore

$$||y|| \le ||h^{R}(x)|| ||r(x)s(x)f(x)|| ||(h^{N}(x)t(x)+1)^{-1}||$$

$$< \frac{\epsilon}{||h(x)^{-k_{0}}||S} S||h(x)^{-k_{0}}|| = \epsilon.$$

To complete the proof of the theorem it remains to show that $\sup_{1 \le i \le k} \mathcal{T}_{p(x)} \subseteq \mathcal{T}$. For this, as both \mathcal{T} and $\sup_{1 \le i \le k} \mathcal{T}_{p(x)}$ are locally bounded topologies, it suffices to show that $B_1 \subseteq \{y \in F(x): v_{p(x)}(y) \ge 1, 1 \le i \le k\}$. Let $y \in B_1$ and let $y = p_1(x)^{e_1} \cdots p_k(x)^{e_k} f(x)/q(x)$ where $e_i \in \mathbb{Z}$, $f, q \in F[X]$, and $p_i \not\prec f$, $p_i \not\prec q$ for all $i \in [1, k]$, and f and q are relatively prime. Let $I = \{i \in [1, k]: e_i \le 0\}$. Then $yq(x)\prod_{i \in I} p_i(x)^{-e_i}$ is a topological nilpotent in \mathcal{T} as F[x] is bounded. But

$$yq(x)\prod_{i\in I}p_i(x)^{-e_i}=f(x)\prod_{i\notin I}p_i(x)^{e_i}\in F[x],$$

so $f\prod_{i \notin I} p_i^{e_i} \in J = (h)$. Hence as $h = p_1 \cdots p_k$, $[1, k] \sim I = [1, k]$, i.e., $I = \phi$. So $e_i \ge 1$ for all $i \in [1, k]$, and thus $v_{p(x)}(y) \ge 1$ for all $i \in [1, k]$.

COROLLARY. Let \mathcal{T} be a Hausdorff ring topology on F(x) for which the subfield F is bounded and let p be a prime polynomial in F[X]. Then $\mathcal{T} = \mathcal{T}_{p(x)}$ if and only if \mathcal{T} is locally bounded and $\lim_{n\to\infty} p^n(x) = 0$.

THEOREM 2. Let F be a field, x a transcendental element over F. Let \mathcal{T} be a Hausdorff, locally bounded ring topology on F(x) for which the subfield F is bounded and for which there is a nonzero topological

128

nilpotent y. Then there exists a finite subset S of \mathcal{P}' such that $\mathcal{T} = \sup_{s \in S} \mathcal{T}_{s}$.

Proof. As each valuation v on F(x) that is improper on F is equivalent to v_s for exactly one $s \in \mathcal{P}'$ ([1], p. 94, Corollary 2) it suffices to show that \mathcal{T} is the supremum of finitely many valuation topologies where each valuation is improper on F.

Let $y = g(x)/h(x) \neq 0$ where (g(x), h(x)) = 1. By Cohn's Theorem, there is a norm $\|\cdot\|$ defining the topology on F(x).

Case 1. deg $h < \deg g$. Let $n = \deg h$, $n + r = \deg g$. We shall show that

$$F[x] \subseteq F[y] + F[y]x + \cdots + F[y]x^{n+r-1},$$

that is for each $f \in F[X]$ there exists $Q \in F[y][X]$ of degree < n + rsuch that f(x) = Q(x). For this it clearly sufficies to show that for each $k \ge 0$, $x^{n+r+k} = Q_k(x)$ for some $Q_k \in F[Y][X]$ of degree < n + r.

Let $g(x) = a_{n+r}x^{n+r} + \cdots + a_1x + a_1x + a_0$, where each $a_i \in F$, and let $h(x) = b_nx^n + \cdots + b_1x + b_0$, where each $b_i \in F$. Then $yb_nx^n + yb_{n-1}x^{n-1} + \cdots + yb_0 = a_{n+r}x^{n+r} + \cdots + a_1x + a_0$. So $x^{n+r} = Q_0(x)$ where

$$Q_0(X) = \sum_{j=0}^n a_{n+r}^{-1}(b_j y - a_j) X^j - \sum_{j=n+1}^{n+r-1} a_{n+r}^{-1} b_j X^j.$$

Assume $x^{n+r+k} = Q_k(x)$ where Q_k is a polynomial of degree $\leq n+r-1$ over F[y]; let $Q_k = g_0(y)x^{n+r-1} + P_k$ where $g_0 \in F[X]$ and P_k is a polynomial in F[y][X] of degree $\leq n+r-2$. Then

$$x^{n+r+k+1} = g_0(y) x^{n+r} + x P_k(x)$$

= $g_0(y) Q_0(x) + x P_k(x) = Q_{k+1}(x)$

)

where $Q_{k+1}(X) = g_0(y) Q_0(X) + X P_k(X)$, a polynomial over F[y] of degree $\leq n + r - 1$. Therefore

$$F[x] \subseteq F[y] + F[y]x + \cdots + F[y]x^{n+r-1}.$$

By 1 of Theorem 1, applied to F(y) with its induced nondiscrete topology which is given by the induced norm, F[y] is bounded in norm, and hence F[x] is also. Thus F[x] is a bounded subset of F(x). Consequently, h(x)y is a topological nilpotent; but h(x)y = g(x), so g(x) is a topological nilpotent. Then by Theorem 1, \mathcal{T} is the supremum of p_i -adic topologies for some finite sequence of primes in F[x].

٢

Case 2. $\deg h = \deg g$.

Choose N such that

$$\left\| \left(\frac{g(x)}{h(x)} \right)^{N} \right\| < \frac{1}{\|x\|}.$$
 Then $x \left(\frac{g(x)}{h(x)} \right)^{N}$

is a topological nilpotent. Since deg $g = \deg h$, deg $(X g^N) > \deg h^N$. By Case 1, $\mathcal{T} = \sup_{1 \le i \le k} \mathcal{T}_{p_i}$ for some sequence p_1, \dots, p_k of primes in F[x].

Case 3. deg $g < \deg h$ and there exists $a_0 \in F$ such that $X - a_0 \not\prec g$. g. Since the substitution mapping $f \rightarrow f(x - a_0)$ is an automorphism of F[x], let $g(x) = g_1(x - a_0)$, $h(x) = h_1(x - a_0)$ where g_1 , $h_1 \in F[X]$. Then deg $g_1 < \deg h_1$ and as $X - a_0 \not\prec g$, $X \not\prec g_1$. Let $g_1 = C_n X^n + \cdots + C_0$, $h_1 = b_{n+r} X^{n+r} + \cdots + b_0$. Then $C_0 \neq 0$ as $X \not\prec g_1$. Hence

$$\frac{g(x)}{h(x)} = \frac{C_n(x-a_0)^n + \dots + C_0}{b_{n+r}(x-a_0)^{n+r} + \dots + b_0}$$

= $\frac{(x-a_0)^{n+r}}{(x-a_0)^{n+r}} \frac{C_n(x-a_0)^{-r} + \dots + C_0(x-a_0)^{-(n+r)}}{b_{n+r} + \dots + b_0(x-a_0)^{-(n+r)}}$
= $\frac{g_0((x-a_0)^{-1})}{h_0((x-a_0)^{-1})}$

where $g_0 = C_0 X^{n+r} + \cdots + C_n X^r$, a polynomial of degree n + r as $C_0 \neq 0$, and $h_0 = b_0 X^{n+r} + \cdots + b_{n+r}$, a polynomial of degree $\leq n + r$. Let $z = (x - a_0)^{-1}$. Then F(z) = F(x) and $g_0(z)/h_0(x)$ is a topological nilpotent. By Cases 1 and 2, $\mathcal{T} = \sup_{1 \leq i \leq k} \mathcal{T}_{p_i}$ for some sequence of primes in $F[(x - a_0)^{-1}]$.

Case 4. deg $g < \deg h$ and for all $a \in F$, $X - a \mid g$.

In this case F is a finite field; let p be the characteristic of F and let q be its order.

By the corollary to Theorem 1 applied to the prime polynomial Y of F[Y], the topology induced on F(y) is the y-adic topology. Moreover, $[F(x): F(y)] \le \deg h$.

Let K be a maximal subfield of F(x) such that K contains F(y) and the topology induced on K by \mathcal{T} is the supremum of finitely many valuation topologies, each of which is discrete on F. Let $K_0 = \{z \in F(x): z \text{ is separable over } K\}$. Then by Theorem 5 of ([5]), the topology induced on K_0 is the supremum of finitely many valuation topologies. Hence $K = K_0$, that is F(x) is a purely inseparable extension of K. Let n be such that $x^{p^n} \in K$. Let v_1, \dots, v_r be valuations on K such that $\mathcal{T}|_K = \sup_{1 \le i \le r} \mathcal{T}_{v_i}$. Since every valuation on K admits an extension to F(x) ([1], p. 105, Proposition 5), we may assume each $v_i = v_{s_i}|_K$ for some $s_i \in \mathcal{P}'$.

By Theorem 4 of ([5]) there exist ring topologies $\mathcal{T}_1, \dots, \mathcal{T}_r$ on F(x) = K[x] such that $\mathcal{T}_i|_{\kappa} = \mathcal{T}_{v_i}$ and $\mathcal{T} = \sup_{1 \le i \le r} \mathcal{T}_i$. Furthermore, as \mathcal{T} is a locally bounded topology, by the proof of Theorem 4 of ([5]), each \mathcal{T}_i is locally bounded. Therefore it suffices to show that for $1 \le i \le r$, \mathcal{T}_i is the supremum of finitely many valuation topologies, each of which is discrete on F.

Let $1 \leq i \leq r$. Suppose that $v_i = v_s |_{\kappa}$ where s is a prime polynomial of F[X]. As g(x)/h(x) is a topological nilpotent for the given topology it is also a topological nilpotent for the weaker topology induced on K by v_i , and hence $v_i(g(x)/h(x)) > 0$. Furthermore by our assumption on v_i , $v_i(x) \geq 0$. Let m be such that $p^m M > \deg h$. Then $v_i(x^{p^m}g(x)/h(x)) > 0$, so $x^{p^m}g(x)/h(x)$ is a nonzero topological nilpotent for \mathcal{T}_{v_i} and hence for \mathcal{T}_i . Furthermore, $\deg X^{p^m}g > \deg h$. As F is a finite field, F is a bounded set for \mathcal{T}_i and therefore by Case 1, \mathcal{T}_i is the supremum of finitely many valuation topologies on F(x), each of which is discrete on F.

So we may assume that $v_i = v_x|_{\kappa}$. Let t be the highest power of X occuring in the factorization of the polynomial g. Choose m such that $mp^n > t$. Let g_0 , h_0 be relatively prime polynomials such that $g_0/h_0 = g/h \ 1/X^{p^n m}$. Since $v_x(g(x)/h(x)) > 0$ and $v_x(1/X^{p^n m}) > 0$, $g_0(x)/h_0(x)$ is a nonzero topological nilpotent for \mathcal{T}_{v_i} and hence for \mathcal{T}_i . Moreover, $X \nmid g_0$. Therefore by Case 3, \mathcal{T}_i is the supremum of finitely many valuation topologies, each of which is discrete on F. This completes the proof of the theorem.

COROLLARY. Let F be a field, x a transcendental element over F. Let \mathcal{T} be a Hausdorff locally bounded ring topology on F(x) for which the subfield F is bounded and for which there is a nonzero topological nilpotent. Assume further that the completion of F(x) for \mathcal{T} is a field. Then \mathcal{T} is either the p-adic topology for some prime p in F[x] or \mathcal{T} is \mathcal{T}_{∞} .

Proof. By Theorem 2, there exists a nonempty finite subset S of \mathcal{P}' such that $\mathcal{T} = \sup_{s \in S} \mathcal{T}_{s}$. As the completion of F(x) for \mathcal{T} is a field, the cardinality of S is 1 by the Approximation Theorem ([1], p. 136, Theorem 2).

REFERENCES

- 1. N. Bourbaki, Algèbra Commutative, Ch. 5-6, Hermann, Paris, 1964.
- 2. ____, Topologie Générale, Ch. 3-4, Herman, Paris, 1960.
- 3. ——, Topologie Générale, Ch. 9, Hermann, Paris, 1958.

JO-ANN COHEN

4. P. M. Cohn, An invariant characterization of pseudo-valuations on a field, Proc. Cambridge Phil. Soc., 50 (1954), 159-177.

5. T. Rigo and S. Warner, Topologies extending valuations, to appear.

Received October 29, 1976 and in revised form January 7, 1977 The results presented here are part of a doctoral dissertation, written under the supervision of Seth Warner of Duke University.

DUKE UNIVERSITY, DURHAM, NC 27706 Present address: NORTH CAROLINA STATE UNIVERSITY RALEIGH, NC 27607

132