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SEMI-SIMPLE CLASSES IN CHEVALLEY TYPE GROUPS

N . BURGOYNE AND C. WILLIAMSON

A practical method is given for finding the classes and
centralizers for arbitrary p '-elements in the automorphism
group of a Chevalley type group over a field of characteristic p.

1. Introduction. In the study of finite simple groups it is
important to know their conjugacy classes and the structure of the
corresponding centralizer subgroups. For the alternating groups the
results are well known; for the sporadic groups the calculations are
special to each group. In this article the authors will study the semi-
simple classes in Chevalley type groups. Different methods are required
for their unipotent classes.

Our approach is to work, as far as possible, in the algebraic group G
corresponding to the given finite Chevalley type group. If t is a
semi-simple element in G then, in general, CG(t) is not connected and its
component of the identity is not semi-simple but only reductive. Since
certain applications [3] require the structure of centralizers of pairs of
commuting semi-simple elements we are led to study the rather general
situation described in §2, 3, and 4. The underlying theory for these
sections is quite simple and is based on essentially two results; (i) the
algorithm which leads to the fundamental domain 3?d of 2.4, for this see
[2], [14] or Appendix 2, and (ii) a general result about algebraic groups,
see [14, §7], which allows one to reduce questions about semi-simple
elements in G to linear algebra problems in certain lattices. In a given
case, once the situation in G is clear, the step down to the finite group is
easily done by application of Lang's theorem, see [11], [13] and §5 below.

In two unpublished notes [4], [5] this approach was used to calculate
(i) the classes of involutions at odd characteristic and (ii) the 3-elements
at even characteristic in Aut(L) for all finite Chevalley type groups
L. We also described the layer of CL{t). Rather than reproduce these
results, we include, in Appendix 1, the structure of certain centralizer
subgroups that are of interest for current work on simple groups of
component type, see for example [7], [9].

We are indebted to the fundamental paper of Steinberg [14] for the
basic theory. Earlier work on these question occurs in Abe [1], Ree [12]
and Iwahori [10]. In fact the starting point for our work was the attempt
to put the ideas of [10] in a form which would give rapid and explicit
answers to the sort of questions which arise from finite group theory.

Our notation for finite groups follows [8] and for algebraic groups [6]
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and [14]. In particular, if C is an algebraic group then C° denotes its
connected component of the identity. All homomorphisms in §2 are
algebraic.

2. Reductive groups.

2.1. Some standard notation. G is a connected reductive algebraic
group over the algebraically closed field k. T is a maximal torus of
G. Put N = NG(T) and W = N/T. I f n E N let w(n) denote its image
in W.

Let X = X(T) = Hom(T,fc*) and Γ = Γ(Γ) = Hom(fc*, Γ), where
fc* is the multiplicative group of k. They are Z-lattices of rank
r = dimension of Γ. Identify Γ with the Z-dual of X by putting
X(v(ζ))=ζv(x\ where AT EX, ηGΓ, ζέk*.

The root system of G relative to T is denoted by Σ and consists of all
a G X for which there exists an isomorphism xa of the additive group k+
into G satisfying txa{ζ)rι = xa(ζa(t)) for t G T, £ G fc.

If α G Σ the subgroup C/β = xa(k+) is uniquely determined. Let
Ta = TΠ(Um U-a), a one-dimensional torus, and define the co-root
ά G Γ b y ά(fc*)= Ta and ά(α) = 2. If Na = N Π (Um l/_β) there exists
naEN such that Nβ. = (Γβ, nβ>. Let wα = w(nα) then W = (wα: a G Σ)
and vvα permutes S as follows: wα)3 = β - ά(β)a.

If B is a Borel subgroup of G which contains Γ let Π denote the
resulting set of simple roots in Σ and Σ+ the corresponding positive roots.

Let E = E(G) be the unique maximal connected semi-simple sub-
group of G and F = F(G) the unique torus in G satisfying EF = G,
[E,F] = 1. Note that FCT.

2.2. Lattices and tori Let XΛd be the sub-lattice of X spanned by
all a E.X. Let Xe be the unique smallest sub-lattice containing Xad and
such that X/Xe is torsion free. Put Xf = {χ G X: ά(χ) = 0 all α G Σ};
then X/Xf is torsion free, Xe ΠXf = 0 and X/Xe + Xr is finite.

Let Γ5C be the sub-lattice of Γ spanned by all a where a G Σ. Let P
be the smallest sub-lattice containing Γ5C with Γ/P torsion free. Put
Γf = {ηEΓ:η(a) = 0 all a G Σ}. The pairs X\ V and X;, Γ are
orthogonal complements, i.e. Xe = {χ E X: η(χ) = 0 all T J G P } , etc.
This gives a useful way to compute Xe.

If Y is any sub-lattice of X define Ann Y = {t G Γ: χ(t) = 1 all
^ G y}. Then Ann Y is always a closed subgroup of T and is a torus if
X/y is torsion free. For example, T Π E = Ann Xf and F-
Ann Xe. Hence, we have the natural isomorphisms, X(T Π E) — X/X;,

£ ) - P and X(Γ/F)-X C , Γ(Γ/F)-Γ/Π.
Note that £ Π F = 1 if and only if Xe + Xf = X.
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2.3. Morphisms. If / is a morphism of G onto itself which
stabilizizes T then / induces endomorphisms /* on X and / on Γ as
follows: if χ E X, η E Γ, t E Γ, £ G fc* then / * * ( 0 = *(/ ' ) and /τ,(f) =
/(τ,(f)). Thus (ff% = nf* and /*?(*)= τ/(f,*).

An example is / = in where n E N and ίng = rcgn ι for g E G. If
w = w(n) we put inη = wr/ for 17 E Γ. This gives a representation of W
on Γ. If α E X one has wατ7 = η - η(a)ά. We adopt a common
convention by letting w also denote the action of W on X induced by the
permutation of Σ given in 2.1, together with trivial action on Xf\ thus
WaX = X - ά(χ)a for χ E X Then (/„)*= w"1 and so wη{wχ)= η(χ).

2.4. Λcίion 0/ W on Γ. Let d be a fixed, positive integer
and put dΓ = {dη : η E Γ}. Consider the group ^ — sίd(W9 Γ) =
{α(w, λ): w E W, A E dΓ} of all affine motions α(w, λ)μ = wμ + A where
μ E Γ. We wish to describe the orbits of sέd on Γ.

Let sίs

d

c = s#d(W, P c ) and note that stfs

d

c^ Md. A standard result, [2],
[14, §1], or Appendix 2, states that a fundamental domain for si* on Γ is
given by the set

^d = &d(Γ) = {μ GΓ:0^ μ(a)^d all a E Σ+}.

Using this result we next describe a fundamental domain for jί*
Let Π* denote the extended system of simple roots obtained by

adjoining to Π all lowest roots in Σ; one such root for each connected
piece of the Dynkin diagram. Let V denote the stabilizer in W of Π*;
its elements are completely characterized by their action on the subset
Π*-Π. Put, for d = 1, & = 9*χ and to each θ E & associate a unique
vθ E V by: vθa* = α* if 0(α*) = 0 for α* E Π* - Π, otherwise υθct* = α
where α is the unique element in the orbit of α* under V which satisfies
β ( α ) = l .

^ is a set of coset representatives for Γ5C in Γ. If 17 E Γ let 0η E ^
satisfy θv - η E. Γsc. We define a map δd of Γ into ^ d by 8dη = a(υθ, dθ)
where θ = θv. Since W centralizes Γ/Γ5C we see that δ^ is a homomor-
phism with kernel P c (e.g. δd(η + η')= δd(η)δd(η')). It is easy to verify
that the group %d — ̂ ( Γ ) = 8dΓ stabilizes SFd and is a complement to stfd

in sίά. Thus,

PROPOSITION A. Any fundamental domain for ^ on 3<d is also a
fundamental domain for sέd on Γ.

Now consider a fixed μ E 3*d and define the subgroups W(μ) =
{w E W: (1 - w)μ E rfΓ}, W(μ)5C = {w G W: (1 - w)μ E dP c } and
V(/x) = {vθ E V: (1 - t»β)μ = dθ}. Using Proposition A and the connec-
tion between 9 and Γ and, for (ii), a result in [14, §1], we have
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PROPOSITION B. (i) W(μ)sc ^ W(μ) and V(μ) is a complement
(ii) W(μy = (wa: a (Ξ^μ(a)ζΞ dZ).

Define the homomorphism δ of Γ into V by δη = vθ where
θ = θ_η. Since Γf C ^ and vθ = vφ if and only if θ-φEΓf, we have
Kerδ = P c + Γ'. Let Γ(μ) = {η EΓ: (8dη)μ = μ}, i.e. such that
vθμ + dθ = μ where (9 = 0η. Then δΓ(μ) = V(μ).

Since ^ is abelain V(μ) and Γ(μ) depend only on the % -orbit of μ
in ^d. Note that V(μ) = 1 in three particular cases, (i) d = 1 with
arbitrary Γ, (ii) P = Γsc with arbitrary d, and (iii) μ = 0.

3. Semi-simple classes.

3.1. Automorphisms. Let ψ be an algebraic automorphism of G
and assume φ has finite order, equal to a. We assume that a is
relatively prime to the characteristic of k. By [14, §7] we may suppose
that φ stabilizes a maximal torus T and a Borel subgroup B containing
T. Thus φ induces a permutation /3 —> ι/>(β) on both Σ and Π, defined
by φUφiβ) = Uβ for β G S.

If ψ is multiplied by an inner automorphism, defined by a suitable
element of Γ, we may suppose that φ(xψ^)(ζ)) = xa(ζ) for all f Efe*,
± α E Π. From now on, we assume that φ is always in this "standard
form" relative to T and B.

The possible actions of φ on G are easily described: if {Eu , Es} is
a ψ-orbit of simple components of E = E(G) then ψΈ! = £Ί and ψ V l
on Ex only if ί?! is of type A, D, or E6. The restriction of φ to F = F(G)
defines an element of GL(/, Z) —AutF where / = dimension of F.

Let (G, φ) be the semi-direct product defined by φgφ~ι = Φ(g) and
φa = 1. We wish to describe the classes of semi-simple elements of
finite order in (G, ψ). It suffices to describe those classes in the coset Gφ
under conjugation by G.

In practice, φ - 1 is the most important example. Many of the
following calculations simplify considerably in this case.

3.2. The root system Σ0. φ induces endomorphisms on X and Γ
(as in 2.3 but, for convenience, we use φ instead of φ*). The action on
X is consistent with the permutation of X. Put Cφ = φ - 1 and Sφ =
1 + </r + + Ψ0"1. Define Xc = {* E X: Q * = 0}, Xs = {* E X: S,* = 0}
and Γo Γs similarly. Note that Xc and Γ = Γ/Γs are natural Z-duals via

Let Γo = {t~λφ(t)\ t E Γ}, then To = Ann Xc is a sub-torus ofJΓ. JPut
T = 77To then we have the natural isomorphisms X(T) =* Xc, Γ(T) ̂  Γ.

If n<ΞN define ψ(w(n)) = ι//(n)T and let Wφ =
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{w E W: φ(w) = w}. Wφ acts as a reflection group on T and hence on
Xc, Γ (see [14, §1] and below).

For a E X let 0α = {α, ψα, } denote the orbit due to the action of
φ. Let 0, 0' be two such orbits in X, if a E 0, a'E 0' and a + a' E X
define 0 + 0' = 0α+α'. This sum is well-defined; i.e., it is independent of
the choice of the representatives α, a'. The orbit 0 is called 'good' if
there does not exist an orbit 0' such that 0' + 0' = 0 ('bad' orbits can only
occur if E(G) contains components of type A of even rank).

Let 0α be a good orbit, put

(a + φa + )
if 0α + 0α exists
otherwise,

and then define X̂  =_{Λα: a E X, Oα a good orbit}. X̂  is a root-system
in Xc with ά + Γs E Γ the co-root corresponding to Aa.

If 0α + 0α exists, there is a unique a' = φsa E 0α, where |0α | = 2s,
such that a + α' EX. Define

Γwα+α'WιMα+α) if (L + 0α exists

^w«w,φa otherwise.

The products depend only on 0α and not on the order. From [14, §1] we
have Wφ = (wA: A E Σφ). Note that if A = Aa and χ E Xc then wAχ =
χ-ά(χ). Let Π, ={Λ α EX,: a E Π} and X; = {Aa E X,: α E X+}.

When G is simple and φ^ 1 the type of X̂  is:

a

c

2

A2 r_,

B,

2

Dr

2

E*

F4

2

D 4

G2

3

If G = E(G) and Γ = Γsc then Γ is spanned by the elements a + Γs and
hence is the 'simply-connected' lattice for f and X̂ .

3.3. Reduction to T. If t E T let Γ= ίΓ0E f.

PROPOSITION C. (i) Any semi-simple class in Gφ intersects Tφ.
(ii) // t,t'E T then tφ is conjugate to t'φ under G if and only if

wt = t' for some w E Wφ.
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Proof, (i) Let g E G and suppose gψ is semi-simple. By [14, §7]
gψ fixes Tx and Bx for some x E G. Since ψ stabilizes Γ and B and

"1 we have xgψ(x'1) Eί B Π N. Hence xgψ(x~ι) - t E T and

(ii) We first show that if w E Wφ then we can choose n E N so that
w = w(n) and ψn = n. It suffices to do this for w = wA where
A E Uφ. For any α £ Π define nα = Jtα(l)jc_α(- l)xα(l). We may as-
sume that xa, x_α are chosen such that na E N. Then w(nα) = wa and,
since ψ is in standard form, ψ(nφa) = na. If wA = wαw^ put nA =
nanφa . In this case, if α, /3 are distinct elements in 0α then [Ua, Uβ] =
1 and hence [nα, nβ] = 1. Thus ψnΛ = nΛ. If wA = wα+α-w^(α+α) (the
case where 0α + 0α exists) let nA = (nana na) . Now a direct calcula-
tion shows that nanana = nanana and since, as above, distinct terms in nA

commute we again have ψnA = nA.
To prove (ii) use the Bruhat normal form for the conjugating

element. Thus, in an obvious notation, (usnv)tψ = t'ψ(usnv). This
yields w(n)ζΞ Wφ and by the previous paragraph we may nowsuppose
that φn = n. Thus, if w = w(n), wt = trs~1φ(s) and hence wΓ= ί'.

3.4. Computation of the classes. Let 3Γ be a class of semi-simple
elements of order d in Gψ. Thus d is a multiple of a ( = order of ψ) and
is also relatively prime to the characteristic of k. These are the only
restrictions on d. Choose ξd E k * a fixed primitive dth root of unity.

Le^ Td= {t E T: (tψ)d = 1} and jput 7; for its image in f. Let
Γ(d) = {ί E T: td = 1} and note that T d C T((i).

For / I E Γ define β (ξd)^T by β(ξd) = μ(ξd) ( = μ(ξd)T0) where
μ E Γ is any inverse image of /!._ The map β -> μ(ξd) is a homomor-
phism of f onto f(d) with kernel df. Let Γc denote the image of Γc in Γ.

PROPOSITION D. The homomorphism β —> β(ξd) maps Tc onto Td.

Proof Let μ 6 Γ c and_ e = d/α then (μ(ξd)φ)d = eSφμ(ξd) =
dμ(ξd) = 1 and hence β(ξd)E Td. Conversely, suppose μ(^d) E Td then,
as above, βS^μ E dΓ. Thus e5ψμ = dλ some A E Γ. Since ψ5ψ = Sφψ
we have A E Γc and hence dλ = eS^λ. Therefore μ - A E Γ5, as re-
quired.

Thus the semi-simple classes, of order dividing d, in Gψ are in 1:1
correspondence with the orbits of sέd{Wφ, Γ) on Γc. Using proposition A
these orbits are easily found.

We have &d(T) =_{β E Γ: 0 ^ β(Aa)^ d all Aa E Σ;}. If {/Σ, — } is
a ^(Γ)-orbit in f d ( Γ ) Π Γ c let μ E Γc be an inverse image of μ. A
representative for the class corresponding to {μ, •} is μ(ξd)φ. Since
Γs Π Γc = 0 μ is uniquely determined by μ also [μ(&), ψ] = 1 .
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3.5. Examples. Let G be simple of type Dn with r g 4 and even,
and suppose X = Xad. Let φ be of order a = 2.

Index the simple roots Π = {au , ar} as follows,

2 O '

Let {η; }GΓ be a dual basis to Π, i.e. 17,(0:,) = δj;. We have φax = α2,
φa2 = «i, c/̂ α, = α, for i i? 3 and similarly for ψη^ Thus Γs = (ηι — η2),
Γc = <Ί7i + η2,η3, ,r?r> and so Γ = (η 1 ? ηj3, , η r) and Γc =

η3, ,ijΓ). Πψ ={α! + α2, α3, ,αΓ} and A * =
α2 + a2 + 2α3 -f + 2αΓJ is the corresponding low root in Σ^. Thus
T) {O,fj1} and so ^d(T) = {l,a(v,dή1)} where ϋ 6 V ψ (see 4.2), is

defined by υηλ - - rju vήj = - 2ή1 -f f/r+3_; for 3 ̂  / ' ^ r.
Consider^ the case d = 2. Proposition A gives the following ^2(T)

orbits in ^ 2(Γ): {0,2??!}, {rjx}, {ή3j η r},Jη4, τ?r-i}, * ",{*?,» τ?P+i} where p =
(r + 2)/2. Except for {f/J, all lie in Γc. Thus there are r/2 classes of
involutions in Gψ. Representative elements are ψ,

If r = 4 and ψ is of order 3 a similar calculation with d = 3 gives two
classes, with representatives φ, η3(ξ3)φ.

Calculations for other G, φ are entirely similar. The only require-
ment is a practical description of Π, Π*, X, Γ and V.

4. Centralizer subgroups.

4.1. The component of the identity. We continue with the notation
introduced in §3. Let μ E Γc and / x E f ^ f ) then φ = μ(ξd)φ is a
typical semi-simple element in Gφ with order dividing d. We put
C = CG(φ) and will begin by describing the structure of C°. From [14,
§8] we know it is reductive (see also our proof of proposition E).

Put Tφ = {t E T: </tf = ί} then T°φ is a maximal torus of C°. Since
ΓJ = Ann Xs we have the isomorphisms X(T°Ψ) - X/X, = X and
Γc. If α E Σ let ά denote its image in X and put

PROPOSITION E. Σ(φ) is α rooί system for C° in X.

Proof Let a EX and 0α a good orbit (see 3.2) and suppose first that
0 α + 0 α does not exist. Choose xa and then define xφa,JC^2

α, by
Φixψ'a)^ Xψ'-'a for i = 1,2, ,s - 1 where s = | 0 β | . A simple argu-
ment, using induction on the height of a and the fact that φ is in standard
form, shows that φxa - jcψ->β. This is the key-point. Since
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(a + ψa + )μ(&) = ξϊ(AJ we now find that

Γ 1 if μ ( Λ α ) ^ d Z
cn([/Λ ) =

I Uά if μ(Λ α )GdZ

where Uά = xά(k+) and ̂ ( ί ) = x f f(ί)xψα(€,0 V Λ ( ^ i 0 for £ E k
and 6, - £7' with et = μ(α + ψα + + ψ'"^)- If ί E ΓJ then a(t) =
ψa(t)= — - = ά(t), hence ίJCαCO*"1 = *«(£<* (ί)) and so ά is a root.

If 0α + 0α exists the argument is completely similar but slightly more
involved. The case where G is simple of type A2 and ψ^ 1 is quite
typical. In this case suppose Π = {a, β) and ψ/ 1. Using the commu-
tation rules in U and the fact that ψ is in standard form we get

Ψ(Xa(ζa)Xβ(ζβ)Xa + β(ζ))=Xa(ζβ)Xβ(ζa)Xa + β(€ζaζβ ~ ζ)

where e = ± 1.
Since μ(Aa) = μ(2(a + β)) we have ξζ<a+n= ±1 for μ(Aa)<ΞdZ.

Thus

f l if

cn t/= I
I t/d if μ(Aa)£dZ

where the form of Uά = xά(k+) depends on whether or not μ(Aa)G
2dZ. We find xά(ζ) = xa+β(ζ) if μ(Aa)ξέ2dZ and xά(ζ) =
xΛζ)Xβ(ξμ

d

(a)ζ)xa+β(eξ^)ζ2/2) if μ(Aa)G2dZ

The co-root in Γc corresponding to ά E X(φ) is denoted by Aa and is
given by replacing the α's by ά's in the definition of Aa.

Using the Bruhat normal form in G we have C = (C Π U, C Π N)
where U is the unipotent radical of B. Thus the above proof shows that
C° = <C4Γj:άεΣ(?>)>. Hence its Weyl group is (C°ΠN)/T0

Φ^
(wA: μ(A)£dZ,A Eϊψ).

The structure of C° may be described by the methods of 2.1 and 2.2
using X, Γ o X(<p) in place of X, Γ, X. The fact that {α E X(<p): Λα E Π^}
contains a set of simple roots for X(<p) is very useful in calculations.

4.2. Structure of C/C°. We will use proposition B but with W, Γ
replaced by Wφ, Γ. Thus Vφ will denote the stabilizer in Wφ of the
extended root system Π* corresponding to Π^ in X .̂

Observe that C = C°(C Π N) and if n E C Π N then w(n)<Ξ
Wφ. Let β denote the homomorphism of C Π N into W^ given by
e(n)= w(n). A simple calculation, using the proof of part (ii) of
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proposition C, yields that Kere = Tφ and lme = Wφ(β). Now the
results of 4.1 together with proposition B imply that €(C°Γ\N)= Wφ(β)sc

and hence (C Π N)/TΦ(C°Π N ) - Vψ(β).
Since Tφ=AnnCφX and Z(G) = Ann Xad we have TΦΠZ(G) =

Ann(CφX + Xad) and thus Γ°(7; Π Z(G)) = Ann(Xs Π (QX + Xfld)).
Since ^ permutes the simple roots Π and Xad = ZΠ we have CφX

ad =
X"d Π Xs and hence find that T°Φ(TΦ Π Z(G)) = Tφ. Thus,

PROPOSITION F. (i) C = C !(C Π JV) where C1 = C°(7; Π Z(G)).
(ϋ) c/C 1 - V,(/Z) and C'/C0 - X5/QX.

Jn particular | C/C°| is /ϊra'te and relatively prime to the characteristic of
k. Ifψ = l then C1 = C° and C/C°- V(μ) - Γ(/z)/Pc 4- Γ', as in 2.4.

The action of C/C° on C° is found from the permutations induced
on X(φ) by VΦ(β). In general C will not split over C°, however in
certain cases it does: an example is G simple, X = Xad, ψ = 1 and
d = 2. We will not prove this result but the example below should
indicate the line of argument.

4.3. Examples. Suppose G is simple of type D4, X = Xad and
φ = 1. We use the notation in 3.5 and consider the involution η3( - 1) in
G. We wish to describe the structure of C = CG(η3(- 1)).

Since d = 2 and α* =-(aι + a2+ α4 + 2α3) we find Π* Π
Σ(τ73(- 1)) = {au α2, α4, α*} as a set of simple roots for C°. Since
- α3 = (#! + α2 + α4 + a *)/2 we see that C° is a central product of four
SL2(fc )'s (and Z(C°) = (r / 3(-l))).

In D4; 2F = {0,17!, η2, r/4} and if υt = vηi we have 1̂73 = - 2ηt + η3 for
i = 1,2,4. Thus V(r/3)= V and hence C / C ° ^ Z 2 x Z 2 and acts as a
regular permutation group on the four components of C°.

If rci lies in the coset vλ E W, it induces an algebraic (outer)
automorphism of C° and we may choose nx so that it is in standard form
(see 3.1) relative to the simple roots {au a2, α4, α*}. Thus ή\ will
centralize C°. Now niJCa^nΓ1 = *>A-ζ) and hence n? centralizes
Um. Since (C°, L^) = G we conclude that nϊ = 1. Choose rc2 similarly,
so that n 2 = 1, and put n 4 = ΠiM2. Since nu n2 are in standard form so
also is n4 and thus n\ - 1. This implies nxn2 = n2nγ and so (πi, n2) is a
complement to C° in C and the extension splits.

As a further example we describe the structure of C when G is
simple, X = Xαd, ψ ^ 1 and where ψ runs over the classes of order d = a
in the coset Gψ. A typical calculation of these classes was given in
3.5. We find that C° is always semi-simple; the following table describes
the various cases.
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G

Λ2r

A2r_, , r^2

Dr r ^ 4

D4

E6

a

2

2

2

3

2

C°

Br

CnDr

Br-U Bt x B^-i for i-l,2, , p ^ J

G2,Λ2

F4,C4

The lattice for C° is always adjoint and C = C° with two exceptions:
(i) G = Λ2r-i, C° = Dr when C = (C°, n) where n is the automorphism

interchanging and α2 and rc2=l, (ii) G = Dr r = odd, C° =
J5(r-i)/2x B{r-\)i2 when C = (C°, n) where n interchanges the two compo-
nents and n2 = 1.

5. The finite groups.

5.1. Endomorphisms of finite type. Let σ be a morphism of G
onto itself with kerσ = l and such that G(σ)-{gEG:σg = g} is
finite. If E(G)/ 1 the existence of such a σ implies that the charac-
teristics of k is PT^ 0 and that σ"1 is not a morphism (although σ is an
automorphism of G considered as an abstract group). The possibilities
for σ are well known, see [14, §11].

We may suppose that σ stabilizes T and hence that σ induces a
permutation on X. This permutation is consistent with the action of σ*
on X as defined in 2.3. If n E N and p = inσ then p* = σ^w'1 where
w = w(n) (and p = wσ on Γ). Using a theorem of Lang [11] we may
find h E.G such that hσ{h~ι) = n and hence g —> ihg gives an isomorph-
ism of G(σ) onto G(p).

5.2. Structure of G(σ). Put L = Op(G(σ)) where p is the charac-
teristic of k. 0p (X) denotes the normal subgroup of X generated by all
elements of order p. Thus L is that subgroup of G(σ) generated by all
the unipotent elements. Put J = CG(σ)(L), Z = J Π L and D = G(σ)/JL.
Then J = Z(G(σ)) and Z = Z(L) and D induces 'diagonal type' au-
tomorphisms of L. If we make allowance for the usual 8 exceptions
(A1(2),2A2(2),C2(2),2C2(2),G2(2),2F4(2) and Aί(3),2G2(3)) then L is the
layer of G(<x), i.e., L/Z is a direct product of simple components.
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The components in LjZ can be immediately described once the
action of σ on Σ (or on Π) is given. To describe / we introduce
T* = cr* — 1 and note that it is always nonsingular on X. Then T(σ) =
{/E T: σt = t} = Annτ*X. Since CG(L) = CG(E(G)) we have / =
Ann(τ*X + Xad) and hence / - X / τ * X + X^.

We now describe Z and D. Let Esc be a simply-connected
covering group of E = E(G) and let π be the natural isogeny of Esc onto
£". Choose Tsc a maximal torus of Esc so that ττT5C = T Π J5. Let TΓ*
denote the natural homomorphism of X into X9C — X(TSC) induced by
TT. We have Kerτr*= :X / and Ker π = Ann(Im TΓ*). Define Δsc =
ΔSC(G) = Xsc/π*Xad; this is a finite group, in fact just the 'weight
lattice/root lattice' for the root system X.

We may extend σ to Esc so that CΓTΓ = πσ (see [14, §9]). Hence r*
is defined on Xsc and so on Δsc. We use the notation Kerr*, Imτ* to
denote the kernel and image for the action of r* on Δsc. Let Δ, Δ*
denote the images of X, Xe respectively in Δ5C.

PROPOSITION G. Z — Δ/Δnimτ* and D — Ker τ*/Δe ΠKer r*.

Proo/. Γ Π L = ^ ( Γ ( σ ) ) and so T Π L = Ann Y where Y =
TΓ X T * ^ 0 Π 77*X). Thus, using r^XC Y, we find Z = J Π ( Γ Π L ) =
Ann(Y + Xαd) and /(T Π L) = Ann(τ*X + Xad Π Y). Hence

and

D^(τ*X + Xad Π Y)lτ*X - (Xαd Π Y)/(Xαd Π τ*X).

Now Imτ^ = (τ*Xsc -f π*Xαd)/τ7*Xαd and, since r* is nonsingular
on X*, Kerr* = (X J C Πr; 1 π*X Λ l )/π*X Λ < . Using the above expres-
sions for Z and D and the fact that X C\ τ*ιXad = Xe C\ τlλXad we
immediately obtain the required formulas.

In practice the action of r* on Δsc is easily found and the above
expression for /, Z, D give a most useful and easy method for describing
G(σ); see for example [5]. To find the explicit extension of G(σ) over
JL use the description of J(TΠL) given in the proof. Note that Δsc

may be replaced by 0p<(Δsc).
The above results extend to the disconnected case as follows:

suppose G+ = (G,ψ1,ψ2, * *) where the φt are automorphisms of G. If
σ acts on G+ it permutes the cosets Gψi. Using [11] we see that
G+(σ)Π Gψ^ φ if and only if σ fixes Gψ.
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5.3. Classes and centralizers in G{σ). Let φ be as in 3.1 and put
G+ - (G, φ). We suppose that σ is as described above and acts on
G+. We also assume that σ(φ) = φ. This is a minor restriction which is
justified by the applications (by putting φ and σ in standard form we may
always assume σ(φ) - zφ, where z E Z(G)\ it is not difficult to extend
the following arguments to this case). Using the results of §3 and §4
together with Lang's theorem see [13, §2, 3], we will now describe the
semi-simple classes in G+(σ), under conjugation by G(σ), and the
structure of their corresponding centralizer subgroups in G(σ).

Let ĵf be as in 3.4 and suppose μ{ξd)φEjfc where μ E Γc and
μ E 2Fd(T). For convenience, we put JC = [μ], with the understanding
that φ, d, ξd are fixed.

Now [μ] Π G+(cr)^ φ if and only if cr[μ] = [μ], which is equivalent
to σμ and μ lying in the same sέd(Wφ, Γ) orbit. The proof that &ά is a
fundamental domain for sέs

d yields a practical algorithm for finding the
representative in 3*d of any sέ$

d orbit (see Appendix 2). Thus proposi-
tion A will determine whether [μ] intersects G+(σ). Suppose now that
G+(or)Π [μ]^φ, then the algorithm yields a wEWφ such thajt
(wσ - l)μ E dT. Let w = nT and put p = inσ. Thus (p - l)μ E dT
which, since dΓΓ)Γc = dΓ o is equivalent to jn(^)GG(p) and hence
μ(ξd)φeG+(p).

Assume μ(ξd)E G(p). The set [μ]Π G+(ρ) will, in general, split
into several classes under conjugation by G(ρ). Let C = CG(μ(ξd)φ)
and put [C, p] = {c">(£:): c E C}. By [11] [C, p] D C° and hence [C, p]
is a group and the quotient C = C/[Q p] is finite and abelian. Choose
c E C, then by 4.2 we may find m E c Π N and may choose h EL G such
that h~1ρ(h)= m. Then, again using [11], the G(ρ) classes in [μ]Π
G+(p) are in 1:1 correspondence with the elements of C: c corresponds
to the class containing hμ(ξd)φh~\ It is easily checked that this
correspondence is independent of the choices of m, h. Note that
hμ(ξd)φh~ιE G+{p) since ρ(h)= hm and m EC.

In practice it is not necessary to compute m, h. Instead, define
ρm = imρ then, since 4(G(ρm))= G(ρ) we may replace
hμ(ξd)φh-ιEG(p) by μ(ξd)φ E G(pm). Thus we describe the G(p)
classes in [μ] Π G+(ρ) by the pairs [μ, p], [μ, pm], where m runs over
coset representatives for [Qp] in C

If [μ, ρm] is such a class the centralizer in G(p) of an element of this
class is isomorphic to C(pm) (where C = CG(μ(^)ι^)). The structure of
C(ρm) is determined by the methods of 5.2. Note that we only need
w(m) for these calculations.

5.4. The semi-simple case. Throughout this subsection we assume
that G is semi-simple. Thus Xe = X, Xf = 0, etc. We introduce the
symbol G(μ)u in place of 0p(G(σ)) = L of 5.2. G(σ)u is generated by
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the unipotent elements (= p-elements) in G{σ). If X = Xad and G is
simple then G(σ)u is, with the usual 8 exceptions, a non-abelian simple
group.

The expression for / in 5.2 may be simplified to J —
Δ/r^Δ. Together with Ae = Δ and the formula for D this yields
G (σ) I = I G (σ)u /Z\ \ Ker r * |. In particular, \G(σ)\ depends only on

Σ and σ and not on X.
We now consider two questions: first, if [μ] is a semi-simple class in

G and G(σ)Π[μ]/ φ when is G(σ)u Π[μ]^ φΊ and second, if
C = CG(μ(ξd)) what is the structure of C Π G ( σ ) u ? We have phrased
these questions for the case ψ = 1 but their extension to ψ/ 1 is quite
obvious.

To answer the first question we may suppose μ G ^ and (σ - ί)μ E
dΓ, and hence μ(ξd)E G(σ). Then,

PROPOSITION H. μ(ξd)EG(σ)u if and only if (ί/d)(σ-l)μE
(

Proof Let tf = {μ - dθ: θ E &}. By proposition A the set Sf
contains a set of representatives for those sds

d orbits which lie in the sίd

orbit containing μ. There is a positive integer e such that eη E Γsc for
all η Etf. Choose ζ Ek* a primitive (ed)th root of unity such that
ζe ~ ξd. Let Gsc be the simply connected covering group of G and π
the isogeny of Gsc onto G. We may identify Γsc with the Γ-lattice for
Gsc. Then since keτπ ={edθ(ζ): θ E&(Γ)} we have π~\μ{ξd)) =
{eη(ζ):ηe9>}CGsc.

Since π(Gsc(σ))= G(σ)u we see that μ(ξd)E G(σ)u if and only if
eη(ζ)EG5C(σ) for some η E if, i.e., if and only if (σ-l)e(μ - dθ)E
edTsc for some θ E 3*. This gives the required result.

To answer the second question we first note that G(σ) = G(σ)uT(σ)
and ΓCC°. This implies that C(σ)/C°(σ)^ C Π G(σ)u/C°Π G(σ)u

and thus we need only describe C°Π G(σ)u.
Let Xad{μ\Xe{μ\ denote the lattices in X associated with

C°. Thus Xad(μ) is spanned by S(μ) = {α E Σ : μ ( α ) E dZ} (this is the
Σ(φ) of 4.1) and X(μ) = X Let Δ5C = ΔSC(C°) be defined as in 5.2 (but
for C°) and let Δ, Δe denote the images of X(μ) and Xe(μ)
respectively. Both Δ and Δe depend on X as it varies between Xad and
Xsc (the root and weight lattices of G). Let Δ(sc), Δe(se) denote their
values when X = Xsc.

Put L(μ) and /(/x) for the subgroups associated with C° as in
5.2. Since L(μ)CG(σ)u the structure of C°ΠG(σ)u is determined
once J(μ)u =J(μ)ΠG(σ)u and D(μ) u = C°Γ) G(σ)u/L(μ)J(μ)u are
given. Now J{μ)u = Ann(τ*X ίC Π X + Xad{μ)) and hence J(μ)u ^



96 N. BURGOYNE AND C. WILLIAMSON

X/(τ * Xsc Π X + Xαd (μ)). If C° is semi-simple this simplifies to J(μ )u =*
Δ/ΔΠτ*Δ(sc). A slight extension of the arguments in the proof of
proposition H gives D(μ)u — Ker τ*/Δe(sc) ΓΊ Kerr*.

5.5. Fie/d automorphisms. Let G be semi-simple. Suppose p is a
morphism of G onto itself such that pf = σ for some integer / ^
2. Then p induces an automorphism of order / on G(σ) whose
centralizer is clearly G(ρ) C G(σ). We call the restriction of p to G(σ)
a 'field automorphism'. If X = Xαd the field automorphisms together
with those induced by G(σ) (inner and diagonal) and by any φ^ 1
(graph) give a complete set of representatives for Aut(G(σ)). If
X^ Xad the only difference is that the diagonal automorphisms occur in
NG(G(σ)).

An example may clarify the implications of our definition of a field
automorphism. Let G be of type Eβ (and X = Xad) and let φ denote its
graph automorphism of order 2. Put σq for the Frobenius morphism of
G whose fixed points on k is the Galois field F(g), with q = pm. We
may suppose that φ and σq are in standard form relative to a fixed Π and
hence φσq = σqφ. Put 2σq = φσq then G(σ)u — E6(q) or 2Eβ(q) depend-
ing on σ = σq or 2σq. Suppose m is even, then G(σq) has two field
automorphisms of order 2, namely σ^q and Vv^; however GQσq) has
none. Of course G(σq) and G(Vq) both have two classes of graph
automorphisms of order 2 (see 4.3, the centralizers are isomorphic to
F4(q) or C4(q)).

Consider p as restricted to G(σ), then (G(σ),ρ) is a semi-direct
product (with pf = 1). If g G G(σ) and (gp); = 1 an application of
Lang's theorem shows that gp is conjugate to p under the action
of G(σ).

In practice it is useful to know the structure of G(p)Γ) G(σ)u. If
X = Xad one need only determine the diagonal part D(p)u =
G(p)ΠG(σ)u/G(p)u. The usual lattice calculations give £>(p)u =*
Ker(p * - 1)/Ker(p * - 1) Π Im(l + p * + + p I"1), computed in Δsc(G).

5.6. Examples. We consider the D 4 example discussed in
4.5. Let σ be in standard form relative to Π and suppose σ%ax - qa2,
<r*a2 = qau σ*a3 = qa3, σ*a4 - qa4 where q = pm, p = characteristic of
k. Thus G(σ)u — 2D4(q). We assume q is odd and consider the
involution τj3( - 1); since (σ - l)η3 = (q - l)η3 E 2Γ we have
τ j 3 ( - l ) e G ( σ ) . Since V(η3) = V - Z 2 x Z2, C-V/( l-or)V giving
coset representatives 1, Πi, where i^ = wtyx). Hence [η3] splits into the
two classes [173, σ] and [η3, σ j where σλ = iniσ.

Since |(σ - l)η3 G Γ5C prop. H gives τj3(- 1)E G(σ)", however
i(σ! - 1)973 = -qηi + ((q - l)/2)rj3 = r/^mod Γsc) and, since r/! £
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(σ,-l)Γ, η3(-l)£ G(σ,)u. Thus the class [η3,<r] is "inner" (in fact
central) while [173, σγ| is outer-diagonal.

We now describe the structure of C(σ) and C(σι) where C is given
in 4.5. We use the methods of 5.2. From the permutations induced on
{aua29sθt49 α*} by σ and σx we have LIZ — Aλ(q2)x> Λι(q)x Aλ(q) for σ
and L/Z^A^q4) for σλ. Next let Δ s c = ( € b 6 2 , e 4 , € ^
Z2^ Z2^< Z2x Z2 where e, is the image of the fundamental weight
aJ2. Thus Δ = Δe =(e1 + €2+e4+e*) and (see 5.4) Δ(sc) = Δe(sc) =
(βi + €2, e2 + e4, €4 + e *). We now calculate in Δ5C

σ

Kerτ +

(e1 + e2,e4+€!)c)

Δ

(d + €2>

Δ(sc)

τ + Δ

0

0

0

Δ

Using proposition G and 5.4 we thus have:

z

σ Z 2

a, 1

z2

z2

D

z^z,

1

J"

z2

1

D "

z2

1

So, for example, C°(cn) ~ ^ J ( ? 4 )
 x ^2 while C° Π q)

The only coset of C/C° fixed by σ (or σx) is n4C°. From the
standard form of n4 we have [rc4, σ ] = [n4, σλ] = 1 and so the structure of
C(σ), C((Ti) is easily computed. For example, put x+(ζ) =
XaXζ)x*Xζq3)xMq2)*«.(ζq4) and define x_ similarly, then C°(σι) =
(x±(ζ): ζ G F(^4)) x <r?3( - 1)). Since n.x^ζ)^1 = x±{ζ^) we have
C(σx) — FL2(^4) x Z2 (see the first paragraph of Appendix 1 for notation).

APPENDIX 1. We list the pairs (L, t) where L is a finite simple
Chevalley type group over a field of odd characteristic and t is an
involution in AutL such that the layer of CL(t) consists of a single
PSL2-grouρ. We also describe CL(t). The classes are those occurring
under conjugation by G(σ) where L = G(σ)u. The results are given in
the table below. The notation is as follows: q = pm, p some odd prime;
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PGL2(q) is L2(q) extended by diagonal automorphism
FL2(q2) is L2(q2) extended by field aut. (of order 2)
PFL2(g2) is L2(q2) extended by (field) x (diagonal) aut.

For example, if q = 3, FL2(9) - Σ 6 and PFL2(9) - M10. Zπ and Dn are
respectively the cyclic and dihedral group of order n. In the entry for
2D4(3) f ί is a four-dimensional orthogonal group; it has a subgroup Ho of
index 2 with Ho — SL2(3) * SL2(3) (a central product) and s flips these
factors.

We sketch the calculations: Let G be a simple algebraic group with
X = Xad and σ a morphism so that L = G(σ)u. We consider the
various involutions t in A u t L ; (i) t a field automorphism, then G is
either of type Λj or we have the exceptional case G2 as given in the table,

cL(t)

AM2)

2GM)

AM)

2 AM)

CM)

2DM)

AM)

G2(3)

£3(3)
2D4(3)

field

inner

graph

graph

inner

diagonal

diagonal

diagonal

diagonal

inner

graph

inner

diagonal

graph

graph

diagonal

inner

, -3~\«Sl

« * 3

^=6(4), qμ 3

<?-l(4)

<? = - 1(4)

J q =3,7(8)

4 Ξ " 1(4)
Γ 4-1,5(8)

J 4-3(8)
[4-7(8)

PGL2(4)

L2{q)xZ2

PGL2(4)

PGL2(4)

<L2(4) x D,_«, τ ) | τ 2 = 1, ( M 4 ) , τ> - PGL2(4)

(£,(4) X D q + £ , r> J ( D ^ e , τ> - D 2 ( q . o

FL2(42)

FL2(44)

<L2(42) x Z ( q + 1 ) / 2 , Θ)) Θ2 = 1, <L2(42), β> - FL2(42)

(L2(q2)x 2(q+D, ^) J ^ inverts cyclic factor.

PGL2(42)

PFL2(42)

2,
 q > θ as for A 3(4).

PGL2(42)

PFL2(42)

FL2(42)

2 G 2 ( 3 ) - < L 2 ( 2 3 ) , / > , f = 1, field aut.

PGL 2 (3)xFL 2 (4).

(H x LM), s)s2=l, <L2(9), 5) = FL2(9)

(see text for H and action of 5)
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(ii) t is a graph automorphism, then Table 4.3 shows that G is of type A2

or A3, (iii) t is inner (in G), i.e., the case ψ = 1 in §3, 4, then it is easily
seen that G has rank ^ 4. At this stage it is necessary to list the various
cases, compute C° = CG(tf and Op(C°(cr)), and see when the layer is an
L2-group. The calculations given in 5.6 are typical.

The authors wish to kindly thank M. Harris and L. Finkelstein for
pointing out errors in the original version of this table.

APPENDIX 2. We use the notation of §2, especially 2.4. For a
given ftGΓwe describe an algorithm which finds the unique AGf^ such
that μ and A lie in the same ^ f-orbit in Γ. This algorithm is an
essential tool in practical calculations (especially if d > 3).

Without restriction we may suppose that the Dynkin diagram for X is
connected. Let Π = {ax , , aτ) and let {Ύ]X , , ηr} be the dual basis for
Γad, i.e. ηt (a}) = δ ιr There is a natural inclusion Γ C Γad and if I V Tad an
element 17 = Σe.r/, (et E Z) lies in Γ if and only if certain (easily found)
congruences hold. Let α* = - (mιaι + + mrar) where the mι are
(known) positive integers then fd(Γ) = { η 6 Γ : 0 ^ e l all / and
(mλeι+ 4- mrer)= d).

Now suppose μ = Σα,^ 6 Γ ( α , G Z) the algorithm goes as follows
(let Wi = wa, and w* = w a)\

(1) if some at < 0 replace μ by w^,
(2) if all at ^Obut mλaι+ + mΓαr > d replace μ by w*μ - da*.
By repeating these two steps we eventually obtain an element of

9*d. Note that (i) w,τ/y = τ/; if iV / while w^,-= η. - ά, > (ii) w^μ =
μ + (m^i + + mrar)ά* and (iii) the expressions for άh ά* in terms of
the ηy's can be read off from the extended Dynkin diagram.

The operation in steps (1), (2) are just reflections on the bounding
hyperplanes of 3Fd. Using result 1.16 of [14] it may be shown that we
have the best possible algorithm.
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