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A GENERALIZATION OF THE
CHINESE REMAINDER THEOREM

B. ARAZI

Let X be a set of r nonnegative integers, and let B»
i = 1,2,3, , t be the unordered sets of residues of the elements
of X modulo m,, where it is not known which element in X
produces a given element inJ3«.

For the case where r = 1, the Chinese Remainder Theorem
introduces necessary and sufficient conditions on the values of m,
in order that X may have a unique solution modΠ! , m(.

This paper introduces such conditions for the case where

Introduction. The Chinese Remainder Theorem states that the
system of congruences x = £?, (modm,), i = 1,2,3, , t has a unique
solution modΠJ^m,, iff (mhmj) = 1 for iφ ).

This leads to the folloing question: Let X = {Xu X2, *, Xr) be a set
of nonnegative integers (not necessarily distinct) and let Bh i =
1,2,3,-- ,ί, be the sets of residues of the elements of X modulo m,,
where it is not known which element in X produces a given element in
Bx. If 0 ^ X i < Π J β l m l for 1^/^r, and (m l ,m / )=l for iV/, is it
possible to determine the elements of X uniquely, knowing the β,'s?

If a certain value C appears in X for n times then C (mod i) appears
n times in Bt. If there is only one value which appears in X for n times
then in view of the Chinese Remainder Theorem it is possible to
determine it uniquely and from it, the whole set X. This paper will
therefore treat the most general case where every value appears for the
same number of times and without loss of generality it can be assumed
that all the elements of X are distinct.

Before any attempt is made at answering the question which was
posed, there are two facts which have to be taken into account.

(a) If for some mh Xi=Xj (mod rrii) then there is no sufficient
information for determining Xt and X} uniquely.

(b) If for some mh the set X contains mt successive integers, which
are the only elements in the set, then the set Bt contains all integers from
0 to rrii - 1, and X cannot be determined uniquely.

Let Xr and Xx be the largest and smallest elements of X respective-
ly, and let ntι< mι for i > 1 . In order to take into account the two
above-mentioned facts when finding an answer to our question, it is
enough to require that Xr- Xλ<mλ and that the number of distinct
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elements in X will not exceed mx-l. With these restrictions, the
answer to our question is negative (X cannot be determined
uniquely). This can be demonstrated as follows:

Let Xr > Xr-X > > Xx. Let p be a divisor of some mk, 1 g k ^ ί,

and let X, - Xt-X - p for i = 2,3, , r. Let 5 = Πy^k m;, and let g =

s - p. It can be shown that the set Y = {Xx + q, X2 + g, , Xf + <?} and

the set X have the same Bh i = 1,2, , ί.
In fact, it is always possible to construct such a set Y, if X has a

periodic structure with periodicity p.
A necessary and sufficient condition that there should be no periodic

set Y, is that (r, m,) = 1 for / = 1,2,3, , t. (In the original form of the
Chinese Remainder Theorem this condition is always fulfilled, since
r = ί.)

Interestingly enough, even this condition is not sufficient to deter-
mine X uniquely. The following demonstrates a case where two
different sets X and Y have the same residue sets Bx and B2 (t = 2)
although mi and m2 are both primes.

X = {11,12,14,15,19,20}

Y = {58,59,63,64,66,67}

mj = 11, ra2 = 13. (r = 6 < mx< m2)

^ = {1,3,4,8,9,11}

B 2 = {1,2,6,7,11,12}.

This paper shows which are the conditions imposed on the values of
mt and r, under which X is determined uniquely.

THEORY.

THEOREM. Let X - {Xu X2, , Xτ) be a set of distinct nonnegative
integers. Let Xr and Xλ be the largest and smallest elements of X
respectively, and let mλ be an integer such that r ^ Xr - X, < mx.

Let mk, k = 2,3, , t be integers such that mt > mt-x > > m2 > mx

and (mh my) = 1 for ιV /, and let Xr < Π =i m,
Let Bi be the sets of residues of the elements of X modulo m, for

i = 1,2,3, , t, where it is not known which element in Xproduces a given

element in B. Let 5ί; = m, - my.

The set X can be determined uniquely knowing the residue sets B, iff
(r, m, ) = 1 and (r, m, - n 5i; ) < n + 1 /or n = 1,2, , h - 1 w/iere /ι is ί/ie
smallest integer such that r>mι-h sΨ This applies to i =

1,2,3, •••,*-!, αnrf all j <i.
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Before proving the theorem it is worth while showing some corol-
laries.

COROLLARY 1. If r is a power of 2, a sufficient condition that X may
be determined uniquely is that m, should be odd for i = 1,2,3, , t.

COROLLARY 2. X can be determined uniquely if (r, w, ) = l for
i = 1,2,3, , ί, and m< > 2m,_! for i = 2,3, * , t.

COROLLARY 3. X can be determined uniquely for all possible values
of r (as long as r < mλ< mn i = 2,3, , t) if mn i = 1,2,3, , t are all
primes and m, > 2m,_j, i = 2,3, , t.

Proof Notations: (1) The number of elements in a sequence A is
denoted by l(A).

(2) Let A and B be sequences of numbers. The sequence A is a
'sub-sequence' of B iff A consists of /(A) elements which appear
successively in B.

Step 1. Interpretation of the theorem in terms of cyclic shifts of
binary sequences.

One way of interpreting the Chinese Remainder Theorem for the
case where only two congruences are considered (t — 2), is as
follows. Let P and Q be binary sequences with only one element of
value 1, which is also the first element in both sequences. Let p = l(P)
and q = 1{Q) (this definition of p and q holds also for the rest of the text)
where (p, q ) = 1. Let P and Q be shifted cyclically through k places
until the sequences P' and Q' respectively are obtained, where the first
element of both Pf and Qf is 1. Then k = n p q for some integer n.

In the same way, the following lemma is an interpretation of the
proposed theorem for the case t = 2.

LEMMA 1. Let P and Q be binary sequences with r elements of value
1, where q > p > r and (p, q) = 1. The first p elements of Q are identical
with the elements of P whose first element is 1. Let P and Q be shifted
cyclically through k places until the sequences P' and Q' respectively are
obtained such that the first p elements of Q' are identical with the elements
of P' and this has 1 as the first element. Then k is only of the form
m p - q for some integer m iff (r,p) = 1 and (r,p - n(q - p))< n + 1 for
n = 1,2, , h - 1 where h is the smallest integer such that r >
p-h(q-p).

Steps 2 to 7 of this proof deal with the proof of Lemma 1, and the
general theorem will be proved only at Step 8.
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Step 2. The case of a periodic P. If P has a periodic structure, i.e.
it consists of repetition of a sub-sequence A, where l(A) = k <p, then P
can repeat itself after m k shifts, where 0 < m k < p, and m is an
integer. Since P contains at least one element of value 0 (this follows
from theΔfact that p > r) it follows that k ^ 2.

If 5 = p/fc (s is the number of sequences A) then 5 must be a divisor
of r (since r elements of value 1 must be equally shared among all
sub-sequences), which means that (p, r )> 1. It follows that the condi-
tion stated in Lemma 1 is sufficient for P to be nonperiodic.

Step 3. The case of a periodic Q. By applying to Q the consider-
ations applied above to P, it can be shown that the periodicity of Q
implies that (q, r ) > l , where Q consists of 5 sub-sequences A, with
/(A) = k. Let b denote the number of elements of value 1 in A, then
this means that A contains k - b elements of value 0. On the other
hand, Q has at least q - p elements of value 0, which appear successively
at its end (this follows from the definition of Q in Lemma 1).

Postulate. If (r,p) = 1 and (r,p - n(q - p))< n + 1 for n =
1,2, , h - 1 then Q is nonperiodic. (/ι was defined in Lemma 1).

Proof. Assume that Q is periodic. Then in view of the preceding
discussion, q = s - k and r = s b.

Let d = q - p. Since (p, r) = 1, this means that (q - d, r) = 1 and it
follows that (d, 5) = 1.

It follows that one of. the elements of the arithmetic progression
p,p-d,p-2d, ',p-(s- ΐ)d is divisible by s. Let this element be
denoted by an. It follows that (r, an)^s. In order to show that the
conditions (r,p) = 1 and (r, p - n(q ~ p))< n + 1 (for n = 1,2, , h - 1)
are sufficient for Q to be nonperiodic it should be shown that s - 1 S
Λ - 1 . Let aλ = p-{h -

q = aλ + hd = a^- d + (h + l)d

but aλ- d <r (follows from the definition of h).

Φ q < r + (/ι + 1)4

but q = s - k, r = s - b

=> 5(fc - 6) < (Λ + l)d = (Λ + 1)(<7 - p).

It was shown before that the sub-sequence A contains fc - b elements of
value 0, where the minimum number of these elements is q - p. Since
k - b ^ q - p it follows that s < h + 1, which means that s - 1 ̂  h - 1.
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This completes the proof of the postulate and it can be concluded
that the conditions stated in Lemma 1 are sufficient for Q to be
nonperiodic.

However, even for nonperiodic P and Q, it is possible to find the
sequences P' and Qf described in Lemma 1 where 0 < k < p q, as shown
by the following example.

P = 1100001, Q = 11000010000 (p = 7, q = 11). If both P and Q
are shifted cyclically to the left for 50 places, the following sequences are
obtained, P ' = 1000011, Q' = 10000110000.

Step 4. Analysing P, P', Q and Q' assuming their existence for
0< k < p q. Let it be assumed that the sequences P, P\ Q and Q'
introduced in Lemma 1 exist for 0 < k < p q. This Step and the
following one will show that this assumption is not valid under the
conditions introduced later in the Lemma.

Let i = k (modp) and/ = k (modq). It is clear that ιV 0 and V 0,
otherwise P = P' or Q = Q\ The case where i = / is analysed at this
Step.

In order that Q' may be obtained from Q by a cyclic shift, Q must
h$ve somewhere in it q - p successive zeros (which are transferred to its
end by the cyclic shift that produces Q'). These zeros are followed by a
1 (which is transferred to the beginning of Q') and therefore they cannot
be part of the last q - p zeros at the end of Q. It follows that Q has in it
q - p successive zeros confined to the first p places, which consist of the
sequence P.

The sequences Q, P, Q' and P ; thus have the following form.

o Q'

c

where B and C are sequences starting with a 1 (which might be their only
element).

Since Q' is obtained from Q by a cyclic shift for / places this means
that l(B) 4- q- p - j . Since P' is obtained from P by a cyclic shift for /
places and / = / it follows that Pr has the following two representations.

(1) C 00- OOB and
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These two representations cannot exist simultaneously since C is
followed once with a 1 and once with a 0. It follows that the case i = / is
impossible.

Step 5. The case where Ϊ V ; . Let Dx denote the block of q - p
successive zeros starting at the (p + l)th place in Q. This gives rise to a
corresponding block D2 in the (p + 1 - j)modq place in Q'. (Without
loss of generality it can be assumed that Q' is obtained by a left cyclic
shift of Q. The same applies to P' and P respectively.) Since both Q
and Q' start with a 1 and end with q - p successive zeros it follows that
j > q - p and D2 is therefore confined to the first p places of Q'. Since
the first p elements of Q' consist of P' this gives rise to a block D3 in P'
with the same location as D2 in Qr and this gives rise to a block D4 in the
[(p + 1 - j)modq + i]modp place in P. A block D5 therefore exists in
the same place in Q. Starting the same process all over again, another
block Dβ is obtained in Q'. If this block is in the (p + l)th place, the
process terminates. Otherwise it goes on following the above
procedure. Two blocks Ds and Dt located in the same sequence Q, Q',
P or P' do not overlap or abut because they are all followed by a
1. (The first element of a sequence is considered to follow the last
one.) Since q is finite this process must finally terminate by obtaining a
block Dm in the (p + l)th place in Q'.

It is obvious that if Du is in Q, Q', P or P' for some w, then
u = I(mod4), 2 (mod 4), 0 (mod 4) or 3 (mod 4), respectively.

Postulate. Let Dm be the block which terminates the process. Let
the blocks D4V+U V = 0,1, , (m - 2)/4 be deleted from Q. Then the
remaining sequence consists of repetitions of a sub-sequence A, where A
repeats itself at least twice.

Proof. Let all the blocks DM, u = 1,2, , m be deleted from their
corresponding sequences Q, Q\ P and P' and let the remainders of the
sequences be denoted by Q, Q\ P and P', respectively. If the /th
element of an original sequence still remains after the deleting process,
let its new location be denoted by F.

Q' is obtained from Q by a left cyclic shift for / places. For every
deleted D4V+ι in Q which starts at the wth place, there is a deleted D4v+2
in Q' which starts at the (u-j)moάq place. It follows that Qf is
obtained from Q by shifting Q cyclically to the left for / places.

P1 is obtained from P by a left cyclic shift for i places. For every
deleted D4V+3 in Pr which starts at the wth place, there is a deleted D^v+X)

in P which starts at the («-f/)mod/? place. It follows that P' is
obtained from P by shifting P cyclically to the left for i places.
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It is also obvious that P = Q and P'' = Q' and since iV / it follows
that Ϊ V j .

It can be concluded that Q equals some cyclic permutation of itself,
andit therefore consists of repetitions of a sub-sequence A, whose length
is I ί — 7 .

Step 6. The sufficiency of the condition stated in Lemma 1. The
length of Q is/? - n(q - p) for some n. There were n blocks Du deleted
from P with at least one sub-sequence A between any two such
blocks. P also starts and ends_with A which means that there are at
least n + 1 sub-sequences A in Q. Since the r elements of value 1 must
be equally shared among the sub-sequences it follows that P' and Q'
cannot exist for k < p q if (r,p - n(q - p)) < n -f 1 for n =
1,2, s[p/(ί ~p)]> unless they are periodic. It was shown in Steps 2
and 3 that this condition together with ( r , p ) = l are sufficient for
preventing P and Q from being periodic.

If r>p-n(q-p) for some n, the sequence P' cannot exist for
k < p q, since the number of elements of value 1 exceeds the.number of
available places. This means that if h is the smallest integer such that
r > p - h(q - p) it is not necessary to stipulate that (r,p - n(q - p))<
n 4-1 for n ^ h.

Step 7. The necessity of the condition stated in Lemma 1. It
should be shown that if (/?, r) > 1 or (r, p - n(q - p)) ^ n + 1 for any n,
l g n ^ Λ - 1 , then it is always possible to find P' or Q' for k < p g.

If (/?, r) > 1 it was shown in Step 2 that F can be periodic and P' can
be obtained for k < p.

If (r,p - n(q -p))= n + 1 this means that (r, (n 4- l)p - nq)= n 4-1
and it follows that (r? nq) = n + 1. Since (n? n + 1) = 1 it follows that
(r, q) = n + 1 and Q is therefore periodic.

If tn = (r,p - n(q - p ) ) > n + 1, let r = b ίn and p - n(q - p ) =
g ίn. The values of n are always such that g ^ b. Let A be a sequence
of length g starting with a 1 and having b elements of value 1 in it. The
rest of its elements (if exist) are zeros. Let B be a sequence constructed
by attaching consecutively tn- n sequences A, and let D denote a
sequence of q - p zeros.

The sequences Q and Qf are constructed by attaching consecutively
A, B and D in the following way. Q = B, D, A, D, A, D, ,A,£>;
Q' = A, D,A, D, •• , A, D,B,D; where A and D are written n and
n-f 1 times, respectively. It is clear that the sequences P and P'
obtained from Q and Qf by dropping the last D, are also obtained each
from the other by a cyclic shift.

This completes the proof of Lemma 1.
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Step 8. Conclusion. Lemma 1 was identical to the Theorem for
the case t — 2. The following Lemma is identical to the Theorem in its
general form.

LEMMA 2. Let Bh i = 1,2,3, , t, be binary sequences with r ele-

ments of value 1, where l(Bt) = mt. Let mt > mt~λ > > m2 > m, > r,

and (m,, m ;) = 1 /or Ϊ V /. The first m, elements of all Bt consist of the
sequence Bu with their first element 1. Let all Bt be shifted cyclically
through k places, until the sequences B • are obtained, respectively, where
the first m, elements of all sequences consist of the sequence B[, their first
element being 1. Let sl} = m, - ray.

k ϊ*5 only of the form m Π ί β l w w /or 5ome integer m, //f
(r, m, ) = 1 and! (r, m,, — n sly ) < rc + 1 /or n = 1,2, , h ~ 1 where h is the
smallest integer such that r>ml-h-sij. This applies to i =

1,2,3, , t - 1 and a// / < i.

The proof of Lemma 2 follows directly by the application of the
Chinese Remainder Theorem to Lemma 1, and the proof of the Theorem
is thus complete.
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