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WEAK* GENERATORS OF #°° AND/1

RAYMOND C. ROAN

We prove that a weak* generator of H™ has distinct
radial limits. As a corollary, we show that a weak* genera-
tor of I1 must be univalent on the closed unit disc.

A* Introduction* For each bounded domain E in the plane, let
H^iE) be the Banach algebra of functions that are bounded and
analytic on E with norm \\f\\*, = sup \f(z)\ (z eE). We shall denote
the unit disc {\z\ < 1} by U, and we shall write H°°{U) = H°°.

We identify the space I1 of absolutely convergent sequences
with the set

»" I l l / l l i = Σ
0

The space I1 becomes a Banach algebra under the usual pointwise
operations and the indicated norm.

Definition* An element / of a topological algebra Jz? is said
to generate J^f if the set

P(f) = {p(f) I V is a polynomial}

is dense in jy\
In [6], D. Sarason proved that if / is a weak* generator of if00,

then the radial limits of / are distinct almost everywhere. We use
Sarason's characterization of the weak* generators of H00 [7] to
prove that if / is a weak* generator of H°°9 then the radial limits
of / are distinct everywhere. As a corollary, we will see that
every weak* generator of I1 is univalent on {\z\ ^ 1}. We conclude
by exhibiting a univalent function in H°° with distinct radial limits
which is not a weak* generator of iT°°.

B* Weak* topology* Let & be a Banach space with dual space
^ * . For each vector subspace ^£ ot &*, let ^£x be the subspace
consisting of each point of ^ * that is a weak* limit of a sequence
of points of ^ . Inductively, define ^ a for each countable ordinal
number σ by

^T = [ u ̂ r*I 1 (ξ<σ).

Banach proved that if & is separable, then there exists a
smallest countable ordinal number σ0 such that ^^σ° is the weak*
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closure of ^ . The number σ0 is called the order of ^ (see [1]
p. 213).

Because each of I1 and H°° is the dual of a separable Banach
space, we can apply the construction above to the weak* topology
on each of I1 and H°°. The following two propositions are easy to
verify.

PROPOSITION 1. A sequence {fn} in I1 converges to 0 (weak*) if
and only if there is a number M with | |/J |i ^ M for all n and
lim^co fn(z) = 0 for each ze U.

PROPOSITION 2. A sequence {fn} in iϊ0 0 converges to 0 (weak*)
if and only if there is a number M with ||/Λ||oo^Λf for all n and
lim^oofn(z) = 0 for each ze U.

By observing that ||/||oo ^ H/IL for each / in I1, we obtain the
following corollary to Propositions 1 and 2.

COROLLARY 1. // fn e I1 for n = 1, 2, 3, , and the sequence {/J
converges to 0 in the weak* topology of l\ then it also converges
to 0 in the weak* topology of H°°.

If we use Corollay 1 repeatedly with the construction outlined
at the beginning of this section, we can prove the following pro-
position.

PROPOSITION 3. // a subspace ^/£ of I1 is weak* dense in I1,
then ^/ί is weak* dense in H°°.

COROLLARY 2. If f is a weak* generator of l\ then f is a
weak* generator of if00.

C* Complex function theory* Most of the material in this
section may be found in Sarason's article on weak* generators of
H~ ([7]).

Let G be a bounded domain, and let Goo be the unbounded com-
ponent of the complement of the closure of G.

DEFINITION. The Caratheodory hull of G is the complement of
the closure of (?«>; we shall denote it by G*:

G* = C\(GJ)- .

Analytically,
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G* = Int {z I I p(z) I ̂  sup | p(w) | for all polynomials p] .
we G

The components of G* are simply connected. We let G1 denote
the component of G* that contains G. The notation G1 is sugges-
tive of the fact that a function / in H°° is a sequential weak*
generator of H™ (that is, P(Z)1 = H~) if and only if G = G1, where
G = /([/) (see Theorem 2 below).

DEFINITION. Let ί1 be a simply connected domain containing
G. The relative hull of G in E, or the E-hull of G, is the interior
of the set

{z e E I I /(z) I ̂  sup I f(w) | for all / e H°°(E)} .
weG

DEFINITION. For each countable ordinal number σ, define a
simply connected domain Gσ as follows:

(a) if σ has an immediate predecessor σ — 1, then Ga is the
component of the Gσ~1-hull of G that contains G;

(b) if σ has no immediate predecessor, then Gσ is the compo-
nent of the interior of Π Gζ(ξ < σ) that contains G.

We shall need the following theorems.

THEOREM 1 (Sarason [6]). If f is a weak* generator of H™, it
is univalent on U, and its radial limits l i m ^ f(reiθ) are distinct
almost everywhere.

THEOREM 2 (Sarason [7]). If feH°° is univalent on U, with
G = f(U), then f is a weak* generator of H°° of order σ if and
only if Gσ = G and Gξ Φ G for ξ < σ.

THEOREM 3 (Phragmen-Lindelof). Suppose Ω is a Jordan
domain and h e H°°(Ω). Suppose further that h is continuous on
dΩ\{/ή, where /* e dΩ, and that \ h{w) \ <Ξ; m for each w e dΩ\{/'). Then

I h(w) I ̂  m for all w in Ω.

THEOREM 4 (Lindelof). Let Ω be a domain whose boundary dΩ
is a Jordan curve Γ, and let /* be a point on Γ. Suppose that
F e H™(Ω), that F is continuous at all points of Γ except possibly
at />, and that F(w) approaches limits L1 and L2 as w approaches
the point p along Γ from two sides. Then L1 = L2, and F is con-
tinuous at />.

D* Main result*
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THEOREM 5. Let f be a weak* generator of H°°, and suppose
liπw f(reia) == l im^ f(reίβ). Then eia = eίβ.

*Proof. Let G = f(U), let σ0 be the order of / as a weak
generator of H°°, and suppose that

lim f{reia) = lim f(reiβ) = ^
r-»l r-*l

but eίa Φ eiβ.

Let Γa = {/(reία) | 0 ^ r ^ 1} and Γ, = {/(r«<>) | 0 £ r £ 1}. Be-
cause the function / is univalent on U (Theorem 1), the sets Γa

and Γβ are Jordan arcs in G~ with only the points /(0) and /* in
common. Thus, the set Γ = Γa U Γβ is a closed Jordan cnrve; and
Γ\{/}£G. Let Ω be the bounded component of the complement of
Γ. Our goal is to show that ΩQG.

(a) ΩQG1.
Let Goo be the unbounded component of the complement of the

closure of G. The curve Γ is contained in the set G~; therefore
Γf] Goo = 0 , and hence Goo is contained in the unbounded component
of the complement of Γ. But then Ω Π Goo = 0 . Because the set Ω
is open, Ω Π (G^)~ = 0 ; but then ΩζZC\(Gco)~, which is the Caratheodory
hull G* of G. The set Ω is connected, G Γ) Ω Φ 0 , and ΩQG*;
therefore 42 is contained in the component of G* that contains G;
therefore £ £ G1.

(b) ΩQG'-1 implies β £ G σ .
Suppose h e iϊoo(G<7~1); then & e H°°(Ω) and A is continuous on

Let m = sup^α |/Kw)|. Since 3i2\{/4SG, we see that

I h{w) I ̂  m for each w e <

The Phragmen-Lindelof Theorem, Theorem, 3, implies that

I h(w) I ̂  m for each w 6 Ω .

Thus

42 £ {z e G""11 I h(z) | ^ sup | h(w) \ for all h e H^G"'1)},

so that i2 c G^-hull of G. As before, the hypotheses that Ω is
connected, G Π Ω Φ 0 , and 42 £ Gσ~1-hull of G imply that Ω is con-
tained in the component of the G^'-hull of G which contains G, in
other words they imply that ΩζzGσ.

(c) ΩQGσ if σ has no immediate predecessor.
Suppose σ has no immediate predecessor, and suppose that

Ω £ Gξ for all ξ < σ. Let if = Π Gf(f < <τ). Then Ω £ if, so that
42£lnt(if), since i2 is an open set. The set Gσ is the component
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of Int (H) that contains G. Finally, Ω is connected, G Π Ω Φ 0 , and
Ω C Int (H), so that ώ Q G%

Consequently, ΩζZGσ for each countable ordinal number σ. In
particular, ΩQGσ°. By Theorem 2, Gσ° = G, and therefore ΩQG.

To complete the proof, we consider the function F = f'1 restri-
cted to G Π Ω~. The function F is bounded and analytic on Ω and
continuous on dΩ = Γ except at the one point /*. Also,

lim JP(H;) = lim f"ι(w) = eiα

or or

and

lim JF(W) = lim f~\w) = β" .

By the Lindelof theorem, Theorem 4, eia = β .̂

E* Application to weak* generators of i1. By using the fact
that evaluation at a point of {|«|^1} is a bounded linear functional
on I1, one can easily verify that if a function / generates l\ then /
must be univalent on {\z\<Z 1}. D. J. Newman and L. I. Hedberg
have each established a sufficient condition for a function to generate
i1. Their results are as follows.

THEOREM (Newman [5]). If f is univalent on {\z\ ^ 1} and f

is in H\ then f generates I1.

THEOREM (Hedberg [3]). If the function f(z) = Σo° a>nZn is

univalent on {\z\ ^ 1} and ^ n(\og n)a \an\
2 < oo for some a > 1,

then f generates I1.

Hedberg also showed, by examples, that the conditions / ' e H1

and 2^(log n)a\ an |
2 < oo are independent even when / is univalent

[4]. In light of these two results and Hedberg's examples, one
wonders whether every univalent function in I1 generates I1. No
answer is known.

In this paper, we equip I1 with the weak* topology and consider
the functions / in I1 that generate I1 in the weak* topology. By
using evaluation at points of { |z |<l}, one can show that each
weak* generator of I1 must be univalent on the open unit disc
{\z\ < 1}. Because evaluations at points of the unit circle are not
continuous in the weak* topology, this argument will not show that
each weak* generator of I1 must be univalent on the set {\z\ ^ 1}.
However, the following corollary to Theorem 5 does show that a
weak* generator of I1 must be univalent on the closed unit disc.
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COROLLARY 3. If f is a weak* generator of Z1, then f is univa-
lent on {\z\ <̂  1}.

Proof. Suppose/is a weak* generator of Z1. We have already-
observed that / is univalent on {\z\ < 1}. If / is not univalent on
{|s|<£l}, then there are two distinct points, « and ^, such that
/(«) = / ( ^ ) . If | ~ | < 1, then we must have H = 1 since / is known
to be univalent on {\z < 1}. Since an analytic function is an open
mapping, the image f(V) of the set

= {z\\z-~\ < l / 2 m i n ( μ - - H)}

is a neighborhood of /(«*); hence of f(/ή. The function / is con-
tinuous on {\z\ <̂  1}, so there is a point <>, with H < 1 and ,/g F,
such that / ( " ) e / ( 7 ) . But then there exists a point JeV with
/(*) = /(,/), contradicting the univalence of / on {\z\ < 1}. Conse-
quently, if /(«) = /(^), we must have \*\ = |^ | = 1. By the continuity
of/,

/(«) - lim /(r«) and = lim

By Corollary 2, we know that / is a weak* generator of H°°. By
Theorem 5, /(«) = /(^) implies « = /, contrary to our assumption
that aφb.

Our results suggest the following questions:
(1) Is every univalent function in I1 a weak* generator of Z1?
(2) Is every weak* generator of I1 a norm generator of Z1?
( 3 ) Given a countable ordinal number σ, is there a weak*

generator of Z1 of order σ? In particular, is there a weak* generator
of I1 of any order σ ^ 2?

The first question is the analogue of a question due (according
to the author's sources) to H. S. Shapiro: Does every univalent
function in Z1 generate Z1 (in the norm topology)? By Corollary 3,
a negative answer to question (1) or question (2) or an affirmative
answer to question (3) will provide a negative answer to Shapiro's

1
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question.

F* An example* To conclude the discussion about weak* gener-
ators of H°°, we give an example to show that the converse of
Theorem 5 is false. We describe an iϊ°° function / which is univalent
on U and has distinct radial limits (that is, l i m ^ f(reia) = l im^ f(reiβ)
implies eia = eiβ), yet is not a weak* generator of i2*°°.

The figure above suggests a simply connected domain G. Let
/ be a conformal map of U onto G. The boundary of G contains
the entire boundary of the circumscribing rectangle. Consequently,
G* is the interior of the rectangle; and Gι = G* Φ G. We use a
lemma due to Sarason to prove that / is not a weak* generator of
H°°. Sarason stated and proved the lemma for a disc, but we will
state it for a rectangle; the proof is the same.

LEMMA ([7], Lemma 3). Let the domain G be contained in a
rectangle E. Then the E-hull of G is equal to G*.

We have already noted that G1 = G*, which is the whole rec-
tangle. By Sarason's lemma, the G^hull of G is also G*. There-
fore, G2 = G* Φ G. By induction, Gσ = G* Φ G for each countable
ordinal number σ. By Theorem 2, / cannot be a weak* generator
of H<°.

In order to verify that the radial limits of / are distinct, we
will use the following theorem due to E. Gollingwood and G.
Piranian. We refer the reader to [2] for a more complete discus-
sion of the material and the appropriate definitions.

THEOREM ([2], Theorem 2). Let the function f map the unit
disc conformally onto a simply connected domain G, let L be a
Stolz path in the unit disc, and let {Sn} be a side-chain of a prime
end of G; then the set f(L) meets at most finitely many of the
crosscuts Sn.

Roughly, the conclusion of the theorem says that a Stolz path
(in particular, a radius) does not make infinitely many uniformly
deep excursions into the sidepockets of the domain G. If we apply
this theorem to G and /, we see that the radial limits of / must
be distinct.

Thus, the function / is bounded, analytic, and univalent on U,
has distinct radial limits, yet is not a weak* generator of H°°.

This paper represents part of the author's dissertation at the
University of Michigan. The author wishes to express his gratitude
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