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ON w4-SPACES, wo-SPACES AND X#-SPACES

PETER FLETCHER AND WILLIAM F. LINDGREN

One of the reasons that paracompactness plays a central
réle in general topology is that it is a property shared by
compact spaces and metric spaces. Recently there has been
considerable interest in topological properties shared by
countably compact spaces and metric spaces. R. W. Heath
has introduced a method of describing a generalized metric
property of a topological space (X, ) by means of a func-
tion g: NXX—r and R. E. Hodel has modified this method
to obtain important new classes of spaces. Subsequently, J.
Nagata obtained a similar characterization of X*spaces, and
it now appears that the method of Heath and Hodel provi-
des an opportunity to clarify the relationships among those
properties that are shared by countably compact spaces and
metric spaces. This note seeks to establish some relation-
ships among these properties.

1. Introduction. Section 3 concerns wd-spaces. We show that
every o-orthocompact wdi-space is a X*space and that every o-refi-
nable quasi-complete space is a wv-space. It follows that every
regular o-refinable space with a G;-diagonal that is a w7v-space (or
a quasi-complete space) is a 7-space and that every o-orthocompact
quasi-complete B-space is a 3*space. In §2 and 4, respectively, we
introduce wo-spaces and @-spaces. We provide support for the con-
jecture that wo-spaces are exactly the X*spaces and characterize
the O-spaces as the c-semistratifiable #-spaces.

Throughout this paper we use the following notational conven-
tions. N denotes the set of all natural numbers and if & is a
cover of a space (X,7) and z€ X, then AY = N{CeZ& |xeC}. As
is customary, {z,> denotes the sequence whose nth term is z,.

2. wo-spaces. An ingenious approach to the study of generaliz-
ed metric spaces, introduced by R. W. Heath in [7] and pursued
by R. E. Hodel [9], [10], is to describe a generalized metric pro-
perty of a topological space (X, z) by means of a function g: N X
X — 7. An extension of this approach, which the authors first used
as a mnemonic device, now appears to be useful in further unifying
and organizing the study of generalized metric spaces. In particular
the extension suggests a natural conjecture that bears upon a pro-
blem to be discussed subsequently.

Let (X, 7) be a topological space, let g: N x X — 7 be a function
such that for each xe X and ne N, zcg(n + 1, ) C g(n, ) and con-
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sider the following further conditions on g:

(a) If for each neN, {p, z,} Cg(n,y,), then (x,> has a cluster
point.

(b) If for each me N, peg(n,y, and y,cg(n,x,), then (x>
has a cluster point.

(¢) If for each ne N, peg(n,x,), then {x,> has a cluster point.
Let s be any of the conditions (a), (b) or (c) and s™* be the state-
ment obtained by formally interchanging all memberships (e.g., a™*
is the condition: If for each ne N, v, <cg(xn, p) N g(n, z,), then {(x,>
has a cluster point). If ¢g: N x X-— ¢ satisfies condition s (respec-
tively s') for s = a, b, or ¢, we say that g is a wS-function (res-
pectively wS~'-function) and that (X, 7) is a wS-space (respectively
wS'-space). Corresponding to each of the above conditions s is the
stronger condition, denoted S, in which “then (#,> has a cluster
point” is replaced by “then p is a cluster point of (z,>.” If ¢
satisfies S, we say that g is an S-function and that (X, 7) is an
S-space. S7'-fumctions, and S '-spaces are defined analogously. The
following are known,

A = developable space B = o-space C = semistratifiable
space

A = Nagata space B~ = v-space C*=first countable
space

wA = wd-space wC = ([-space

wA™ = wN-space wB™' = wy-space  wC™! = g-space.

We dub the wB-spaces, for obvious reasons, wo-spaces.

DEFINITION [16]. A space (X, 7) is a S*space if there is a
sequence (#,» of closure preserving closed covers of X such that
if e X and 2,€ A n for each ne N, then (x,> has a cluster point.

PROPOSITION 2.1. FEwery Z*-space is a wo-space.
Proof. An immediate consequence of a result of J. Nagata [18].
PROPOSITION 2.2. Ewery wN-space is a wo-space.

ProorF. Let g be a wN-function. Suppose that for each n € N,
peg(n, ¥, and y, € g(n, z,). There is a ¢ € X such that ¢ is a cluster
point of <y,>. Thus for each n €N, there is a j, > n such that
Y, €9(n, @). Now y;, €g(j., »;,) C9g(n, z;) so that for each neN,
g(n, ¢)Ng(n, ;) # @. Since g is a wN-function (x;,> has a cluster
point. It follows that <{«,> has a cluster point.
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DEFINITION [20]. A space (X,7) is a o*space if there is a
sequence {#,) of closure preserving closed collections such that if
x # y, then there is an FeJ;., %, such that x€ F and y ¢ F.

DEFINITION [15]. A space (X, 7) is c-semistratifiable if for each
2 € X there is a sequence {g(n, 2)> of open neighborhoods of 2 such
that for each compact set Kc X, if g(n, K) = U{g(n, x) |z K},
then N{g(n, K)|n =1} = K. The function g: N x X— 7 is called
a c-semi-stratification of X.

Every o*space is c-semistratifiable, but the existence of a ¢-
semistratifiable space that is not a o*space has not been established.

A comparison of the characterization of X*spaces given by J.
Nagata [18] to the characterization of o-spaces given by R. W.
Heath and R. E. Hodel [8, Theorem 1.4] suggests the conjecture that
every wo-space is a X*space. The following proposition is further
evidence in support of this conjecture, because it is known that
every regular o*space that is a Y*-space is a o-space.

ProrosiTION 2.3. Let (X, 7) be a regular o*-space that is a wo-
space. Then (X, 7) is a o-space.

Proof. Since (X, 7) is a o*space, there is a function r: NX X—7
such that if yer(n, z), then »(n, y) C r{n, ) and such that N;-, r(=n,
2) = {z}. Since (X, 7) is a wo-space, there is a function s: Nx X—7
such that if pes(n,y, and ¥,cs(n,x,), then {z,> has a cluster
point. For each ne N, let g(n, ) = r{n, x) N s(n, ). Suppose that
peg(n,y,) and y, €g(n, x,). Then there is a ¢ € X such that ¢ is a
cluster point of <(x,>. It suffices to prove that p =¢q. If p#gq,
then there exists k¥ € N such that p ¢ »(k, ¢). Choose » = k such that
z,€r(k,g). Then per(n,y,)crn,s,) crk, z,) Crik, q) so that
perk,q). This is a contradiction. It follows that (X, 7) is a o-
space [8].

3. wd-spaces. In this section we investigate two covering pro-
perties and their connection with wd4-spaces.

DEFINITION [5]. A topological space (X, 7) is o-orthocompact
provided that every open cover of X has an open refinement <2 =
Uz, &2 such that for each z€ X and each 1€ N, A7er.

ProrosITION 3.1. Let (X, 7) be a g-orthocompact wd-space. Then
(X, 7) 18 a Z*space.

Proof. Let h be a wd-function and for each ne N, let 57, =
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{h(n, x): x€ X}. By [10, Remark 8.3] (X, 7) is countably metacom-
pact so that by [5, Proposition 3.1] for each » € IV, there is an open
refinement <2, of 5#, such that for each ze X, AF~et. Define
g:Nx X—7 by g(n,z) = AZ». We note that if ye€g(n,x), then
9(n, y) C g(n, ). Moreover, if pe€g(n, x,) for each n € N, then there
is a y,eX such that {p, z,} Cg(n, 2,) Ch(n,y,) and since h is a
w4-function <{z,> has a cluster point. It follows that (X, 7) is a
Xtspace [18].

DEFINITION [14]. A topological space (X, 7) is a o-refinable pro-
vided that for each open cover & of X there is a sequence (V)
of reflexive relations on X such that for each neN and ze€ X,
V.() et and such that for each x € X there exists an ne N and a
Ce% such that VXx)cC. The sequence (V,) is called o-refine-
ment.

Every 7v-space is o-refinable and every o-refinable Moore space
is a v-space so that the role of 7-spaces in the class of og-refinable
spaces is analogous to the réle of metric spaces in the class of
paracompact spaces. In this respect o-refinability is an appropriate
generalization of paracompactness. Indeed, in regular 7T, spaces
o-refinability may be viewed as the nonsymmetric analogue of para-
compactness in that if in its definition each V, is taken to be a
symmetric relation, then a characterization of paracompactness is
obtained.

ProOPOSITION 3.2. A regular T, space is paracompact if, and
only if, the following condition holds: For each open cover & of
X there is a sequence {V,> of reflexive symmetric relations on X
such that for each ne N and ve X, V,(x) et and such that for each
2 € X there exists an ne N and o Ce % such that Vi(x)CC.

Proof. Since, as is well known, every paracompact regular T,
space admits a uniformity with the Lebesgue property, it is clear
that a paracompact regular 7T, space satisfies the condition. Now
let (X, 7) be a regular T, space that satisfies the condition and let
% be an open cover of X. Let (V,) be a sequence of reflexive,
symmetric relations on X such that for each neN and zeX,
V(@) C V,(x) €7 and such that for each x € X there exists an n, € N
and a Ce% such that V; (x)cC. Let &2 ={V, (v)|vecX}. Let
{U,> be a sequence of reflexive, symmetric relations on X such that
for each ne N and ze¢ X, U,cV,, U,..(x)c U,(x) et and such that
for each z € X there exists an m,eN, a ye X and an n,eN such
that Us,(») CV, (y). For each meN, let C, = {U,(x) [ve X}. Let
x € X; then there exists an m,e N, a y€ X and an n,€ N such that
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U, ()cV,(y)e=z. Let m = max{m, n,}. Then there is a Cc &
such that st (U.(x), £,) = Ui@) C Un(Us, (@) C Un(V,, (1) C Vau(V,,
() c Vi, (y) cC. Therefore by [1, Theorem 1], (X, r) is paracom-
pact.

DEFINITION [4 and 6]. A space (X, 7) is quasi-complete provided
that there exists a mapping ¢g: N X X—7 such that if {z, z,}C
N~ 9(¢, ¥;), then {x,> has a cluster point. The function g is called
a quasi-complete function.

It is well known that quasi-complete spaces form a generaliza-
tion of both w4-spaces and p-spaces.

PRrOPOSITION 3.3. Ewery o-refinable quasi-complete space is a
wY-space.

Proof. Let (X, 7) be a o-refinable quasi-complete space and let
g be a quasi-complete function such that for each ne€ N and ze X,
gn + 1,z)Cg(n, x). Let &7, = {g(n,z)|2zc X} and let (V,,> be a
o-refinement of .97, such that if ¢ =m and j = n, then V,;CV,..
Define f: N— N X N, whose first five terms are f(1) = (1, 1), f(2) =
@Q,2), 38 =(21), f4=A(Q,3), f(6) =(2,2), by the recursive for-
mula f(n +1)=(6+1,t—1)if ¢ =1 and f(n)=(s, t), and fin+1)=
1,s+1) if ¢t=1 and f(n) = (s,t). Define f, = moof, f, = T,of and
define h by h(n, ) = Vi, rm(x). Suppose that x,€h(n,y,) and
Y, € h(n, p) for each neN. Note that x,€ V}u, rw(®). There is
m,€N and 2z, €X such that V, .(p)cg,2). Set k, =1 and k, =
m, + 1. There is m, = m, and z,€ X such that V3, . (p) C gk, 2,).
In general set k, = m,_, + k,_,. Then there is an m, = m,_, and a
2, € X such that V; . (p)Cg(k,, 2,). For each ne N set j, = f"'(m,,
k,). Then <{x; > is a subsequence of <(z,>. Now {p, z; } = V. .. ()=
1 Vo (0) C Nz 9y, 2)) © Nz 9(3, 2,).  Sinee g is a quasi-complete
function, (w; > and therefore (z,> has a cluster point.

COROLLARY. Ewvery o-refinable wa-space is a wvy-space.

COROLLARY. Ewery o-orthocompact quasi-complete B-space 1s a
Zt-space.

Proof. Let X be a o-orthocompact quasi-complete B-space. It
follows from Proposition 3.3 that X is a w7v-space. Since every S,
w7Y-space is a wd-space [10], the result follows from Proposition 3.1.

DEFINITION [14]. A space (X, 7) satisfies property A’ provided
there is a sequence {V,> of relations on X with the following pro-



424 PETER FLETCHER AND WILLIAM F. LINDGREN

perties.
(i) For each ze X, neN, zeV, (x)CV, (x)eT
(ii) For each ze X, N{Vix) | ne N} = {z}.

We note that any space whose topology contains a Hausdorff v-space
subtopology satisfies property A’.

PROPOSITION 3.4 [14, Theorem 2.4] Ewvery Hausdorff wY-space
that satisfies property A', is a Y-space.

PROPOSITION 3.5. Let (X, 7) be a regular o-refinable space that
has a Gy;-diagonal. Then (X, 7) satisfies property A'.

Proof. Since (X,7) has a G,-diagonal, there is a sequence
{£.}2_, of open covers of X such that for each ze X, {x} = N,
st(z, &,) [3, Lemma 5.4]. For each me N, let 5% be an open
cover of X such that {H| He 5%} refines &; . For each neN, let
{Vpu. be a o-refinement of 57,. Let xe X. If y +* x, then there
is ne N such that y¢ st(x, &,). But there is me N and He 57,
such that V3 ,.x)c H. Hence V:.lx)Cc HCst(r,Z,). It follows
that MNm,n Va.(®) = {2} for all ze X.

COROLLARY. FEwvery regular o-refinable wvY-space (or quasi-com-
plete space) with a G;-diagonal ©s a Y-space.

The previous propositions may be modified to show that every
o-orthocompact p-space with a G,-diagonal admits a nonarchimedean
quasi-metrie.

The lemmas listed below were announced in [13] where they
were used to establish Proposition 3.6. Although this proposition
has been established by T. Kotake in a totally different manner,
we state the lemmas in the hope that the method of proof that
they imply may find wider applicability.

LEMMA. If (X, 7) ts o-refinable and has o Gi-diagonal, then
(X, 7) satisfies property A'.

LemMA. If (X, 1) s a first countable wN-space that satisfies
property A, then (X, 7) is & Nagata space.

Proof. Let (X, 7) be a first countable wN-space that satisfies
property A’, let h: N x X—7 be a first countable function, let
k: N x X— 7 be a wN-function and let (V,> be a sequence of rela-
tions satisfying the conditions of property A’. Define g: N X X—7
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by g(n, ) = k(n, ) N k(n, ) N V,(x). We show that ¢ is a Nagata
function. Suppose that for each n e N, g(n, z,)Ngn, p) # &. Then
{x,) has a cluster point q. Suppose that ¢ # p. Then there is an
m e N such that p¢ V2(q) and there is an n € N such that g(xn, p) N
Vi(@) = @. Set i = max{m,n}. Then VXq)Ng@, p) = @. There is
a j=+tv such that z;€ V,(q). It follows that g(j, z;) < V,(z;) C
Vi(Vi(q) cVig). Hence g(j, z;) Ng(s, ») CVig)N g(i, p)=2 —a con-
tradiction. Therefore p = q and ¢ is a Nagata function.

PROPOSITION 3.6 [12]. Ewvery regular semi-stratifiable wN-space
is a Nagata space.

4. O-spaces. Let (X, 7) be a topological space and let g: N X
X—7 be a function such that for each ze¢ X and each neN,
zegn +1,x) Cg(n, ). For the sake of comparison we list the
following further conditions on g.

(1) If for each neN, z,€g9(n, ¥, and y,€g(n, p), then <{x,>
has a cluster point.

(2) If for each neN, x,€g(n, ¥, and {y,> has a cluster point,
then (z,> has a cluster point.

(3) If for each meN, {z,, p}<g(n,y, and ¥,€g(n, p), then
{x,> has a cluster point.

(4) If for each ne N, {z,, p} < g(n, y.) and <{y,> has a cluster
point, then {x,> has a cluster point.

(5) If for each meN, {xz,, p} Cg(n, ¥,) and ¥, € g(n, p), then p
is a cluster point of <{z,).

(6) If for each neN, {=,, p}Cg(n, v, and <{y,> has a cluster
point, then p is a cluster point of <{z,).

Functions satisfying (1) (equivalently (2)) characterize w7v-spaces,
those satisfying (8) characterize w@-spaces and those satisfying (5)
characterize 6-spaces [10]. In this section we consider spaces that
admit a function satisfying conditions (4) (resp. (6)); we call such
spaces wO-spaces (resp. @-spaces). It is obvious that every T,, 7-
space is a ©-space and that every @-space is a 6f-space. Examples
4.12 and 4.13 of [10] show that neither of the implications stated
above is reversible. It is easily verified that a space is developable
if, and only if, it is a 5, #-space.

In [10] R. E. Hodel noted that every wd-space is a wf-space
and asked whether every B, wf-space is a wd-space. It is evident
that every wO-space is a wf-space. Proposition 4.1 shows that the
converse of this result would imply an affirmative answer to Hodel’s
question.

PRrROPOSITION 4.1. A space (X, 7) is a wd-space if and only if
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it 18 a B-space and a wh-space.

Proof. Suppose that (X, ) is a G-space and a w®-space. Let
g be a B-function and let & be a wO-function. Define » by r(n, x) =
g(n, ©) N k(n, ). Suppose that for each neN, {p,x,}Crn,y).
Then <{y,> has a cluster point since 7 is a GS-function, and since 7
is also a w@-function it follows that {x,> has a cluster point.

PROPOSITION 4.2. A Hausdorff space (X, 7) is a O-space if, and
only if, it is a c-semistratifiable 6-space.

Proof. Suppose that (X, 7) is a #-space and that g: N x X —7
is a function satisfying condition (6). Let K be a compact set and
suppose that ge ., g9(n, K). Then for each n €N, there is an
2, € K such that qeg(n, x,). Since K is compact, {x,) has a cluster
point. Since g satisfies (6), ¢ is a cluster point of (z,)>. Therefore
geK.

Now suppose that (X, 7) is a c-semistratifiable f-space and let
g be a c-semistratification that satisfies condition (5). Suppose that
for each neN, {z,, p}Cg(n,y, and <{y,> has a cluster point q.
Since X is first countable, there is a convergent subsequence (y; >
of (y,) such that for each neN, y;, €g(n, q). Then {p, x;}C g9(J.,
¥;,) < g(n, y;,). If p=gq, it follows from condition (5) that p is a
cluster point of {(x,>. Suppose that p = q. Then there is a ke N
such that if n = k then y; # p. Let K = {y; }.2: U{q}). Then pe
Nz.. g(n, K) = K — a contradiction.

DEFINITION [2]. A sequence {Z;) of collections of open subsets
of a topological space is a quasi-development for X provided that
for each p€ X and each open set R containing p there is a natural
number n such that pe U ¥, and such that st(p, &;)CR. A T,
space with a quasi-development is called a quasi-developable space.

PRrOPOSITION 4.3. Every quasi-developable space s a G-space.

Proof. Let (Z,> be a quasi-development for (X, 7). Define
h: N x X— 7 as follows:

X re UZ,

h(n, ) = f .
jsome element of £, containing ¢ xec U Z,

Let g(n, 2) = N k(i, ). We show that ¢ is a &-function for X,
Let {p, z,} C 9(n, y,) and let y, € g(n, ) for each n € N. To establish
that p is a cluster point of <(z,>, let W be an open neighborhood
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of p and let m,c€ N. Choose n,€ N such that pest(p, &,) C W.
If n, = n, then z, ¢ W and if n, < n,, then z, € W.

While we have no need of the result here, the proof of Pro-
position 4.3 shows that quasi-developability may be characterized in
terms of a function g: N x X— 7 (where some g(n, 2)’s may be
empty) satisfying a condition similar to (a).

It is natural to ask whether a quasi-developable space is c-semi-
stratifiable. An affirmative answer to this question would show that
every quasi-developable B-space is developable. The results of this
paper motivate the following additional questions.

QUESTION 1. Is every quasi-complete B-space a wd-space?

QUESTION 2. Is every (o-refinable) w4-space a X*-space?

QUESTION 3. Is every wo-space a X*space?

QUESTION 4. Is every p-space with a G;-diagonal c-semistratifi-
able?

QUESTION 5. Is there a normal w4-space that is not a wY-space?

The second author and R. W. Heath have recently shown that
Martin’s axiom and the negation of the continuum hypothesis imply
the existence of a normal Moore space that is not a w7-space.

We are indebted to the referee, whose suggestions substantially
improved §§ 8 and 4 of this paper.

REFERENCES

1. A. Arhangel’skii, New criteria for paracompactness and metrizability of an arbit-
rary T, space, Dokl. Akad. Nauk SSSR, 141 (1961)=Soviet Math. Dokl., 2 (1961), 1367-
1369.

2. H. R. Bennett, On quasi-developable spaces, General Topology and Appl., 1(1971),
253-262.

3. J. G. Ceder, Some generalizations of metric spaces, Pacific J. Math., 11 (1961),
105-125.

4 G. C. Creede, Concerning semi-stratifiable spaces, Pacific J. Math., 32 (1970), 47-54.
5. P. Fletcher and W. F. Lindgren, Orthocompactness and strong Cech completeness
in Moore spaces, Duke Math. J., 39 (1972), 753-766.

6. R. F. Gittings, Concerning quasi-complete spaces, General Topology and Appl., 6
(1976), 73-89.

7. R. W. Heath, Arc-wise connectedness in semi-metric spaces, Pacific J. Math., 12
(1962) 1301-1319.

8. R. W. Heath and R. E. Hodel, Characterizations of o-spaces, Fund. Math., 77
(1973), 271-275.

9. R. E. Hodel, Moore spaces and wd-spaces, Pacific J. Math., 38 (1971), 641-652.

10. ———, Spaces defined by sequences of open covers which guarantee that certain
sequences have cluster points, Duke Math. J., 39 (1972), 253-263.
11. ———, Some results in metrization theory, 1950-1972, Topology Conference

(Virginia Polytech. Inst. and State Univ., Blacksburg, VA.), (1973) 120-136. Lecture
Notes in Math. Vol. 375, Springer, Berlin, 1974.



428 PETER FLETCHER AND WILLIAM F. LINDGREN

12, Y. Kotake, On Nagata spaces and wN-spaces, Rep. Tokyo Kyoiku Daigaku sect.
A., 12 (1973), 46-48.

18. W. F. Lindgren, Ewvery regular semi-stratifiable wN-space is a Nagata space,
Notices Amer. Math. Soc., 21 (1974), 74-T-G89.

14. W. F. Lindgren and P. Fletcher, Locally quasi-uniform spaces with countable
bases, Duke Math. J., 41 (1974), 231-240.

15. H. W. Martin, Metrizability of M-spaces, Canad. J. Math., 25 (1973), 840-841.

16. E. Michael, On Nagami’s S-spaces and some related matters, Proc. Washington
State University Conference on General Topology 1970, 13-19.

17. K, Nagami, 3-spaces, Fund. Math., 65 (1969), 169-192.

18. J. Nagata, Characterizations of some genmeralized metric spaces, Notices Amer.
Math. Soc., 18 (1971), 71T-G151.

19. T. Shiraki, M-spaces, their generalization and metrization theorems, Sci. Rep.
Tokyo Kyoiku Daigaku sect. A., 11 (1971), 57-67.

20. F. Siwiec and J. Nagata, A note on nets and metrization, Proc. Japan Acad., 44
(1968), 623-627.

Received May 31, 1976 and in revised form August 2, 1976.

VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITY
BLACKSBURG, VA 24061

AND

SLIPPERY ROCK STATE COLLEGE





