MAXIMAL SUBGROUPS AND AUTOMORPHISMS OF CHEVALLEY GROUPS

N. BURGOYNE, R. GRIESS AND R. LYONS

We study outer automorphisms α of a finite Chevalley type group K and show that under certain conditions $C_K(\alpha)$ is a maximal subgroup of K.

1. Introduction.

(1.1) In classification problems for finite simple groups there is often the need for detailed information about known families of groups. A particular question, that can arise in proving generation lemmas, is this:

If K is a known finite simple group, and α is an automorphism of K of prime order, is $C_K(\alpha)$ a maximal subgroup of K?

The results in this article were motivated mainly by this question.

We consider the case when K is a Chevalley type group. Simple examples show that if α is inner or diagonal, then, in general, $C_K(\alpha)$ is not maximal. However, we find that if α is a field or graph type automorphism then, in general, $C_K(\alpha)$ is maximal. There are exceptions, and we also emphasize that our results are not complete for the graph type automorphisms for the families of types A, D, E_8 .

In §2 we give a general result about finite subgroups of simple algebraic groups over fields of finite characteristic: let L be a finite Chevalley type group, let $G \supset L$ be a corresponding algebraic group; then, in Theorem 1, we describe all finite groups M such that $L \subseteq M \subset G$. This allows us to answer the above question in a large number of cases. See 1.3 for details.

In §3, Theorem 2 gives an explicit description of all subgroups lying between $C_K(\alpha)$ and K when K is a twisted Chevalley group and α the automorphism induced by the usual field automorphism of the corresponding algebraic group.

In the remainder of §1 we give notation, some lemmas, and a discussion of automorphisms of Chevalley type groups.

(1.2) Notation. We use the approach of Steinberg [23] to describe the finite Chevalley type groups. We let G be a simple algebraic group over the algebraically closed field k of characteristic $p \neq 0$. In particular we suppose G is connected and its centre Z(G)=1. Let σ be an endomorphism of G onto itself: thus σ is an automorphism

of G as an abstract group and a morphism of G as an algebraic group but, in general, σ^{-1} need not be a morphism. We will be concerned almost exclusively with the case where the group

$$G_{\sigma} = \{ g \in G \, | \, \sigma g = g \}$$

is finite. In this case the possibilities for σ can be explicitly described, see §11 of [23]. Before summarizing these results we need some notation.

Let B be a Borel subgroup of G and H a maximal torus contained in B. Let Σ , Σ^+ and $\Pi = \{\alpha_1, \cdots, \alpha_l\}$ denote the corresponding sets of roots, positive roots, and fundamental (or simple) roots. Here l = rank of G. We use lower case Greek letters for roots (and also for endomorphisms) and reserve θ for the unique highest root in Σ^+ and θ_s for the unique highest short root in Σ^+ (in case there are short roots). We let Σ^* denote the dual root system to Σ . Let V be the real vector space spanned by Π and (α, β) the usual Euclidean inner product on V and put $\langle \alpha, \beta \rangle = 2(\alpha, \beta)/(\beta, \beta)$.

As usual, for each $\alpha \in \Sigma$, let x_{α} denote a fixed homomorphisms of k_{+} into G satisfying $hx_{\alpha}(t)h^{-1} = x_{\alpha}(t\alpha(h))$ for $h \in H$. For convenience we often identify H with $\operatorname{Hom}_{Z}(\Gamma, k^{*})$ via $h(\alpha) = \alpha(h)$ where Γ denotes the lattice spanned by Σ in V. Let $X_{\alpha} = \langle x_{\alpha}(t) | t \in k \rangle$; then $U = \langle X_{\alpha} | \alpha \in \Pi \rangle$ is the unipotent radical of B and $G = \langle X_{\alpha} | \pm \alpha \in \Pi \rangle$.

If $N=N_G(H)$ then W=N/H is the Weyl group. W acts naturally on V and if $n_wH=w\in W$ for some $n_w\in N$ we have $(n_whn_w^{-1})(\alpha)=h(w^{-1}\alpha)$. For $\alpha\in \Sigma$ and $0\neq t\in k$ let $n_\alpha(t)=x_\alpha(t)x_{-\alpha}(-t^{-1})x_\alpha(t)$ and $n_\alpha=n_\alpha(1)$. Then $n_\alpha(t)\in N$ and $h_\alpha(t)=n_\alpha(t)n_\alpha^{-1}\in H$ and $h_\alpha(t)(\beta)=t^{(\beta,\alpha)}$.

The above facts are all well known and can be found, for example, in [5] and [17].

Now let σ be an endomorphism of G such that G_{σ} is finite. By results in [23] we may suppose that σ normalizes B and H. Hence σ induces a permutation on Π which (by slight abuse of notation) we also denote by σ . From the explicit calculation in §11 of [23] we may suppose that σ is in "standard form," i.e.,

$$\sigma(x_{\alpha}(t)) = x_{\sigma(\alpha)}(t^{q_{\alpha}}) \quad \text{for} \quad \pm \alpha \in \Pi$$

where q_{α} is a power of p. The above formula uniquely determines the action of σ on G. We list the distinct possibilities for the standard form σ in Table 1. In column 1 we give the type of Σ ; in column 2 the Dynkin diagram for Π , here "L" denotes a long root; in column 3 a standard notation for σ , q is always a positive power of p; in column 4 the permutation action of σ on Π ; in column 5 the values of $q_i = q_{\alpha_i}$; and in column 6 any restrictions on l, p or q.

TABLE 1

$oxed{A_l}$	$\bigcirc -\bigcirc -\cdots -\bigcirc l$	σ_q	1	q	$l \geqq 1$
		$^{2}\sigma_{q}$	$(1,l)(2,l-1)\cdots$	q	$l \geqq 2$
B_{l}	$\bigcirc = \bigcirc - \bigcirc \cdots \frac{L}{l}$	σ_q	1	q	$l \geqq 3$
C_{ι}	$egin{array}{c} L & \bigcirc - \bigcirc & \bigcirc \\ 1 & 2 & l \end{array}$	σ_q	1	q	$l \geqq 2$
		$^2\sigma_q$	(1, 2)	$2q_1=q_2$	$l=2, p=2, q=q_1q_2$
	1	σ_q	1	q	7 > 4
D_t	<u> </u>	$^2\sigma_q$	(1, 2)	q	$l \ge 4$
	\bigcirc 3 ι	$^3\sigma_q$	(1, 2, 4)	q	l=4
E_6		σ_q	1	q	
		$^{2}\sigma_{q}$	(1, 5)(2, 4)	q	
E_7	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	σ_q	1	q	
E_8		σ_q	1	q	
F_4	$\bigcirc -\bigcirc = \bigcirc L L \\ 1 2 3 4$	σ_q	1	q	
		$^2\sigma_q$	(1, 4)(2, 3)	$q_1 = q_2 = \ 2q_3 = 2q_4$	$p=2,q=q_1q_4$
$oxed{G_2}$	$\bigcirc =\!$	σ_q	1	q	
		$^{2}\sigma_{q}$	(1, 2)	$q_1=3q_2$	$p=3,q=q_1q_2$

With σ as above, if r is a positive integer then σ^r is also in standard form (except for $({}^3\sigma_q)^2$ in the D_4 case, where the roots must be renumbered). If $\sigma = \sigma_q$ then $\sigma^r = \sigma_{q^r}$. Table 2 gives the connections between σ and σ^r in the twisted cases.

TABLE 2

Type of G	σ	σ^r		
A_l,D_l,E_6	$^2\sigma_q$	σ_{q^r} if $r = \text{even}$ $^2\sigma_{q^r}$ if $r = \text{odd}$		
D_4	$^3\sigma_q$	$\sigma_q r$ if $r \equiv 0(3)$ $\sigma_q r$ if $r \equiv 0(3)^{(*)}$		
C_2,F_4G_2	$^2\sigma_q$	$\sigma_q r/2$ if $r=$ even $^2 \sigma_q r$ if $r=$ odd		

^(*) but if $r \equiv -1(3)$, σ^r acts as (1, 4, 2) on Π .

We put $O^{p'}(G_{\sigma})=G_{\sigma}^{s}$ and use the usual notation to denote these groups. With 8 exceptions, namely $A_{1}(2)$, $A_{1}(3)$, ${}^{2}A_{2}(2)$, $C_{2}(2)$, ${}^{2}C_{2}(2)$, ${}^{2}F_{4}(2)$, $G_{2}(2)$, ${}^{2}G_{2}(3)$, these groups are simple. Also G_{σ} is the product of G_{σ}^{s} and all its diagonal automorphisms. Note that if $r \geq 2$ then $|G_{\sigma^{r}}:G_{\sigma}|_{p}=|G_{\sigma^{r}}^{s}:G_{\sigma}^{s}|_{p}\neq 1$.

Keeping the above notation we give two elementary lemmas.

LEMMA 1.1. $N_G(U_\sigma) \subseteq B$.

Proof. If $g \in N_G(U_\sigma)$ then using the Bruhat normal form $g = bn_w u$. Now $U_\sigma^{bn_w} = U_\sigma^{u^{-1}} \subseteq U$ and also $U_\sigma^b \subseteq U$. For each $i = 1, \dots, l$ an $x_{\alpha_i}(t)$ with $t \neq 0$ occurs in some element of U_σ . Now $x_{\alpha_i}(t)^b = x_{\alpha_i}(t')v$ where $t' \neq 0$ and only x_β with β of height ≥ 2 occur in v. Hence $w(\alpha_i) \in \Sigma^+$ all i. Hence w = 1 and so $g \in B$.

LEMMA 1.2. Let K be a group, $G_{\sigma}^{s} \subseteq K \subseteq G_{\sigma}$. Then $C_{G}(K) = 1$ and $N_{G}(K) = G_{\sigma}$.

Proof. Let $g \in C_G(K)$. By the above lemma, $g \in B$. Now $[g, N_\sigma] = 1$ implies $g \in H$ and identifying H with Hom (Γ, k^*) gives $g(\alpha_i) = 1$ for $i = 1, \dots, l$ and so g = 1.

Next let $g \in N_G(K)$; then for all $k \in K$, $g^{-1}kg = \sigma(g^{-1}kg)$. Thus $g\sigma(g^{-1}) \in C_G(K) = 1$ and so $g \in G_\sigma$. Since G_σ/G_σ^s is abelian we have $N_G(K) = G_\sigma$.

Finally we mention that our notation from finite group theory is standard, see for example [13]. In particular we use $g^x = x^{-1}gx$.

(1.3) Automorphisms of G_{σ} . Let G and σ be as in (1.2). In

G	$\sigma(q=p^f)$	Coset representatives	$\operatorname{Aut}\left(G_{\sigma} ight)/\operatorname{Inn}\left(G_{\sigma} ight)$
$egin{array}{c c} A_l & l \geq 2 \ D_l & l \geq 5 \end{array}$	σ_q	$\sigma_{p^i},^2\sigma_{p^i}$ $1 \leqq i \leqq f$	$Z_2 imes Z_f$
$egin{array}{cccc} E_t & t \leq 3 \ E_6 \end{array}$	$^2\sigma_q$	$o_{p^i}, o_{p^i} 1 \leq i \leq J$	Z_{2f}
	σ_q	$\sigma_{p^i}, \sigma_{p^i}, {}^3\sigma_{p^i} 1 \leqq i \leqq f$	$S_3 imes Z_f$
D_4	$^2\sigma_q$	σ_{p^i} , $^2\sigma_{p^i}$ $1 \leq i \leq f$	Z_{2f}
	$^3\sigma_q$	$\sigma_p i$, ${}^3\sigma_p i$ $1 \leq i \leq f$	Z_{3f}
$egin{array}{ccc} C_2 & p=2 \ F_4 & p=2 \end{array}$	σ_q	$\sigma_p i$, $^2 \sigma_p i - 1$ $1 \leqq i \leqq f$	Z_{2f}
G_2 $p=3$	$^2\sigma_q$	$^2\sigma_p i - 1$ $1 \leq i \leq f$	Z_f
All others	$\sigma_{m{q}}$	$\sigma_p i \qquad 1 \leqq i \leqq f$	Z_f

TABLE 3

particular we suppose σ is in the standard form given in Table 1 for a fixed choice of B, H and x_{α} 's in G. Hence G_{σ} is finite.

Let λ be any endomorphism of G satisfying $\lambda \sigma = \sigma \lambda$, then λ induces an element $\overline{\lambda} \in \text{Aut}(G_a)$. The structure of $\text{Aut}(G_a)/\text{Inn}(G_a)$ is described in [5]. Using these results it is straightforward to check that the endomorphisms λ listed in Table 3 give, via $\overline{\lambda}$, a complete set of coset representatives for Inn (G_{σ}) in Aut (G_{σ}) . Note that G_{σ} is not, in general, simple.

Now suppose $\bar{\lambda}$ is one of the "coset representatives" given above and let α be any element in the coset Inn $(G_a)\overline{\lambda}$. Thus $\alpha=i_a\overline{\lambda}$ where $i_g(x) = gxg^{-1}$ for $g, x \in G_g$.

LEMMA 1.3. Let λ , $\alpha = i_a \overline{\lambda}$ be as above. Suppose $\overline{\lambda}$ and α both have order r and $\lambda^r = \sigma$. Then $\bar{\lambda}$ and α are conjugate under Inn (G_{σ}) .

Proof. Using $\bar{\lambda}i_g = i_{\lambda(g)}\bar{\lambda}$, and $Z(G_g) = 1$, $\alpha^r = \bar{\lambda}^r = 1$ gives $g\lambda(g) \cdots$ $\lambda^{r-1}(g)=1$. By Lang's theorem [20] there exists $k\in G$ such that $g=k^{-1}\lambda(k)$. Hence $k=\lambda^r(k)=\sigma(k)$ and so $k\in G_\sigma$ and $\alpha=i_k^{-1}\overline{\lambda}i_k$.

LEMMA 1.4. Let $\bar{\lambda}$, $\alpha = i_g \bar{\lambda}$ be as above. Suppose $\bar{\lambda}$, α both have order r. Suppose $\lambda^r \neq \sigma$ but that $\lambda_1^r = \sigma$ for some λ_1 such that $\langle \overline{\lambda}, \rangle = \langle \overline{\lambda} \rangle$. Then $\overline{\lambda}$ and α are conjugate under Inn $(G_{\mathfrak{o}})$.

Proof. Suppose $\bar{\lambda}_1 = \bar{\lambda}^m$ for some integer m. Let $\beta = \alpha^m$ then $\beta=i_k\overline{\lambda}_1$ for some $k\in G_{\sigma}$. Since $\overline{\lambda}_1$ and β both have order r, Lemma 1.3 implies that $\overline{\lambda}_1$ and β are conjugate under Inn (G_{σ}) . Suppose $\overline{\lambda} = \overline{\lambda}_1^d$ for some integer d then, since $\overline{\lambda}$ and α have the same order, we have $\alpha = \beta^d$. Hence $\overline{\lambda}$ and α are conjugate under Inn (G_{σ}) .

Using these two results an inspection of Table 3 immediately yields

Proposition 1.1. Let λ be as above and suppose $\bar{\lambda}^r = 1$, where r is a prime number. Then, apart from the possible exceptions (i), (ii) given below, the coset Inn $(G_o)\overline{\lambda}$ contains a unique class of elements of order r, under conjugation by $Inn(G_a)$, and furthermore there exists an endomorphism λ_1 such that $\lambda_1^r = \sigma$ and $\langle \overline{\lambda}_1 \rangle = \langle \overline{\lambda} \rangle$. The possible exceptions are:

$$(\ i\)\quad G=A_l(l\geqq 2),\, D_l(l\geqq 4),\, E_6\ \ with\ egin{cases} \sigma=\sigma_q \ \ with\ \lambda={}^2\sigma_q\ \sigma={}^2\sigma_q\ \ with\ \lambda=\sigma_q\ . \end{cases}$$

(ii)
$$G = D_4 \ \ with \ \begin{cases} \sigma = \sigma_q \ \ with \ \lambda = {}^3\sigma_q \ \ \sigma = {}^3\sigma_q \ \ with \ \lambda = \sigma_q \ . \end{cases}$$

Note that r=2 in (i) and r=3 in (ii). These exceptions do occur; in fact only for $G=A_l$ with l= even is there a single class for the given λ . For $G=D_l$ the number of classes increases as l/2.

We now consider when $C=C_{\sigma_{\sigma}^s}(\alpha)$ is a maximal sugroup of G_{σ}^s . Apart from the exceptions (i), (ii) Proposition 1.1 implies first that we may suppose $\alpha=\overline{\lambda}$, and next, since $C_{\sigma_{\sigma}^s}(\overline{\lambda})=C_{\sigma_{\sigma}^s}(\overline{\lambda}_1)$, we may suppose that $\lambda^r=\sigma$. Now an immediate consequence of Theorem 1 is that, if C is nonsolvable, then it is always maximal in G_{σ}^s .

In the exceptions (i), (ii) we have a more complicated problem, especially when r = p. Theorem 2 is one step towards a solution.

2. Theorem 1.

(2.1) Statement of results. Let G be a simple algebraic group over an algebraically closed field k of characteristic $p \neq 0$. Let λ be an endomorphism of G onto itself such that the subgroup G_{λ} of fixed points is finite. As discussed in (1.2) we may suppose λ is in standard form. If r is any positive integer the endomorphism λ^r is also in standard form. The possibilities for λ and the corresponding λ^r are listed in the tables in §1.

Recall that $G_{\lambda}^{s} = O^{p'}(G_{\lambda})$ and, with eight exceptions, is a simple group. G_{λ} is the product of G_{λ}^{s} and all its diagonal-type outer automorphisms.

If G, λ are such that G_{λ}^{s} is one of the three groups $A_{1}(2)$, $A_{1}(3)$, ${}^{2}C_{2}(2)$ we call this an exceptional case.

THEOREM 1. Let G, λ be as above and not an exceptional case. Let M be a finite subgroups of G containing G^s_{λ} . Then there exists a positive integer r such that (with $\mu = \lambda^r$)

$$G_u^s \subseteq M \subseteq G_u$$
.

An immediate consequence is that if G, λ are as in the statement of the theorem and $\mu = \lambda^r$ where r is a prime number then $G_{\lambda} \cap G_{\mu}^s$ is a proper maximal subgroup of G_{μ}^s .

The proof of the theorem is given in (2.3)–(2.5). It was necessary to handle the case $G_{\lambda}={}^{2}G_{2}(q)$ separately and this occupies (2.5). In the general case the proof falls into two parts. In (2.3) we first describe $N_{G}(U_{\lambda})$ (see Lemma 2.3) then use this to show there exists a (unique) integer r such that, if $\mu=\lambda^{r}$, $U_{\mu}\in \mathrm{Syl}_{p}(M)$. In (2.4) we combine this result with induction on the rank of G and show that either (a) the theorem holds, or (b) M contains a proper strongly 2-embedded subgroup. Using results of H. Bender [2] we easily rule out (b).

If $G_{\lambda}^{s} = A_{1}(2)$ or $A_{1}(3)$ we use results of Dickson, see [6]. If $G_{\lambda}^{s} = {}^{2}C_{2}(2)$ we use Suzuki [25] and the recent work of Flesner [11].

 $A_1(2)$: M is a subgroup of a dihedral group of order $2(q\pm 1)$ in $G_{2r}=A_1(q)$ where $q=2^r$ and $q\pm 1\equiv 0\pmod 3$.

 $A_1(3)$: M is a subgroup of $G_{2}^{\circ} = A_1(9)$ and is isomorphic to the alternating group on 5 letters.

 $^2C_2(2)$: M is either a subgroup of a group of order $4(q\pm\sqrt{2q}+1)$ in $G_{\lambda^r}={}^2C_2(q)$ where $q=2^r$ and r is odd, or else M is a subgroup of $G_{\lambda^{2r}}=C_2(2^r)$ and is isomorphic to a subgroup of the four dimensional orthogonal group of index one over F_{2r} .

(2.3) Proof. First part. We assume throughout this subsection that G, λ satisfy the hypothesis of the theorem and also that $G_{\lambda} \neq {}^{2}G_{2}(q)$. The main technique in proving the following lemmas is the Chevalley commutator relations together with the known embedding of U_{λ} in U.

The subgroups B, U, H and sets of roots Σ , Π , etc. are as described in (1.2).

LEMMA 2.1.
$$C_U(U_{\lambda}) = Z(U)$$
.

Hence:

Proof. We call two roots ρ , $\sigma \in \Sigma$ fundamentally independent if $\rho + \sigma \in \Sigma$ and $\{\rho, \sigma\}$ is a fundamental system in the rank 2 system $(\mathbf{Z}\rho + \mathbf{Z}\sigma) \cap \Sigma$. If ρ and σ are fundamentally independent, then in G we have a commutator relation $[x_{\rho}(t), x_{\sigma}(u)] = x_{\rho+\sigma}(\pm tu) \cdots$. Note that ρ , $\sigma \in \Sigma$ and $(\rho, \sigma) < 0$, then ρ and σ are fundamentally independent unless $\Sigma = G_2$ and ρ and σ are short roots inclined at 120°.

Recall that θ is the highest root in Σ^+ , and θ_s is the highest short root (in the case of two root lengths). Let $D = \{x \in R\Sigma \mid (x,\sigma) \geq 0 \}$ for all $\sigma \in \Sigma^+$ be the usual fundamental domain for the action of W on $R\Sigma$. Since W is transitive on roots of a given length, D contains exactly one root of each length. Clearly $\theta \in D$; otherwise for some $\sigma \in \Sigma^+$, we would have $(\theta,\sigma) < 0$ and so $\theta + \sigma \in \Sigma$. Since D is also a fundamental domain for the dual root system Σ^* , D contains the highest root of Σ^* , whose dual—which is θ_s -therefore lies in D. Thus, for any $\rho \in \Sigma - \{\theta, \theta_s\}$, there is $\sigma \in \Sigma^+$ such that $(\rho, \sigma) < 0$.

(*) If $\rho \in \Sigma^+ - \{\theta, \theta_s\}$, then there exist $\sigma \in \Sigma^+$ such that ρ and

 σ are fundamentally independent, unless $\Sigma = G_2$ and ρ is the sum of the fundamental roots.

We also need:

(**) Suppose Σ has two root lengths, $\rho \in \Sigma^+$, and $\theta_s < \rho < \theta$. Then $\theta_s + \rho \notin \Sigma$, and there exists $\sigma \in \Sigma^+$ such that ρ and σ are fundamentally independent and $\theta_s + \sigma \notin \Sigma$.

To prove this, note that if σ is any long root in Σ^+ , then $\theta_s + \sigma \notin \Sigma$, since otherwise $\theta_s + \sigma$ would be a short root. In particular, $\theta_s + \rho \notin \Sigma$ since $\rho(>\theta_s)$ is long. Now, using (*), choose $\sigma \in \Sigma^+$ such that ρ and σ are fundamentally independent. Since $\rho + \sigma(>\theta_s)$ is long, σ is long, so $\theta_s + \sigma \notin \Sigma$, as required.

For any $u \in U$, we have $u = \prod_{\rho \in \Sigma^+} x_{\rho}(t_{\rho})$, $t_{\rho} \in k$. We take all products over Σ^+ to be in increasing order with respect to Σ^+ . We set $\sup (u) = \{\rho \in \Sigma^+ | t_{\rho} \neq 0\}$ for $u \in U$.

Now consider the case $\lambda = \sigma_q$, where q is some power of p, so $U_{\lambda} = \{\prod_{\rho} x_{\rho}(t_{\rho}) | t_{\rho} \in GF(q)\}$. Let $u \in C_{U}(U_{\lambda})$. We shall show supp $(u) \subseteq \{\theta_s, \theta\}$. Let ρ_0 be the least element of supp (u), so

$$u=x_{
ho_0}(t_{
ho_0})\prod_{
ho>
ho_0}x_{
ho}(t_{
ho})$$
, $t_{
ho_0}
eq 0$.

If there exists $\sigma \in \Sigma^+$ such that ρ_0 and σ are fundamentally independent, then we get $1 = [u, x_o(1)] = x_{\rho_0 + o}(\pm t_{\rho_0}) \cdots$, contradiction. Thus no such σ is available. By (*), either $\rho_0 \in \{\theta_s, \theta\}$, or $\Sigma = G_2$ and $\rho_0 =$ $\alpha + \beta$, where $\Pi = {\alpha, \beta}$, with, say, α long and β short. In this last case, $1 = [u, x_{\alpha+2\beta}(1)] = x_{2\alpha+3\beta}(\pm 3t_{\rho_0})$ and $1 = [u, x_{\beta}(1)] = x_{\alpha+2\beta}(\pm 2t_{\rho_0})$, so $3t_{\rho_0}=2t_{\rho_0}=0$, contradiction. Hence, $\rho_0\in\{\theta_s,\,\theta\}$. Suppose $\rho_0=\theta_s$ and let ρ_1 be the least element of supp (u) greater than ρ_0 (if supp (u) \neq $\{\rho_0\}$). If $\rho_1 \neq \theta$, choose σ so that ρ_1 and σ are fundamentally independent and $\rho_0 + \sigma \notin \Sigma$ (by (**)). Then $1 = [u, x_{\sigma}(1)] = x_{\rho_1 + \sigma}(\pm t_{\rho_1}) \cdots$ contradicting $t_{\rho_1} \neq 0$. Therefore $\rho_1 = \theta$, so supp $(u) \subseteq \{\theta_s, \theta\}$. If actually supp $(u) \subseteq \{\theta\}$ for all $u \in C_U(U_{\lambda})$, then $C_U(U_{\lambda}) \subseteq X_{\theta} \subseteq Z(U)$, as required. So we may assume $\theta_s \in \text{supp}(u)$, i.e., $u = x_{\theta_s}(t)x_{\theta_s}(t')$ with $t \neq 0$. There exist a (short) $\sigma \in \Sigma^+$ such that $\theta_s + \sigma \in \Sigma$. We get $1=[u,x_{\theta}(1)]=x_{\theta}(\pm mt)\cdots$, where m=2 if G is of type B, C or F_4 and m=3 if of type G_2 . Hence m=p and in precisely these case $Z(U) = X_{\theta} X_{\theta} \supseteq C_{U}(U_{\lambda})$, as required.

Next, suppose Σ has one root length, $\lambda = {}^2\sigma_q$ or ${}^3\sigma_q$, and $\Sigma \neq A_{2n}$. Let $u \in C_U(U_{\lambda})$, let ρ_0 be the least element of supp (u), so

$$u=x_{
ho_0}\!(t_{
ho_0})\!\prod_{
ho>
ho_0}\!x_{
ho}\!(t_{
ho})$$

with $t_{\rho_0} \neq 0$. Suppose $\rho_0 \neq \theta$, and choose $\sigma \in \Sigma^+$ such that σ and ρ_0 are fundamentally independent. Let \overline{x}_{σ} be the product of the distinct images of $x_{\sigma}(1)$ under the powers of λ , so that $\overline{x}_{\sigma} \in U_{\lambda}$ and $\overline{x}_{\sigma} = x_{\sigma}(1)x_{\lambda(\sigma)}(1)\cdots$. The roots $s, \lambda(s), \cdots$ have the same height, so 1 = 1

 $[u, \overline{x}_{\sigma}] = x_{\rho_0+\sigma}(\pm t_{\rho_0}) \cdots$, contradiction. Thus $\rho_0 = \theta$, so $u \in X_{\theta} \subseteq Z(U)$. If $\Sigma = A_{2n}$ and $\lambda = {}^2\sigma_q$, essentially the same argument works, except that if $\sigma + \lambda(\sigma) \in \Sigma$, we define $\overline{x}_{\sigma} = x_{\sigma}(1)x_{\lambda(\sigma)}(1)x_{\sigma+\lambda(\sigma)}(b)$, with $b \in GF(q^2)$ chosen to satisfy $b + b^q = 1$; if $\sigma = \lambda(\sigma)$, we define $\overline{x}_{\sigma} = x_{\sigma}(b)$ with b chosen to satisfy $b + b^q = 0$. Then $1 = [u, \overline{x}_{\sigma}] = x_{\rho_0+\sigma}(\pm t_{\rho_0}) \cdots$ or $x_{\rho_0+\sigma}(\pm bt_{\rho_0}) \cdots$, contradiction, unless $\rho_0 = \theta$.

Suppose $\Sigma=C_2$ and $\lambda={}^2\sigma_q$. Then $q=2n^2,\,n=2^f>1$, by assumption. Let $H=\{\alpha,\,\beta\}$, with α long. For every $t\in GF(q)$, let $\overline{x}(t)=x_{\alpha}(t)x_{\beta}(t^n)x_{\alpha+\beta}(t^{1+n})\in U_{\lambda}$. Suppose $u=\prod_{\rho}x_{\rho}(t_{\rho})\in C_U(U_{\lambda})$. Then $1=[u,\,\overline{x}(t)]=x_{\alpha+\beta}(tt_{\beta}+t^nt_{\alpha})x_{\alpha+2\beta}(tt_{\beta}^2+t^{2n}t_{\alpha})$ for all $t\in GF(q)$. Hence $tt_{\beta}+t^nt_{\alpha}=tt_{\beta}^2+t^{2n}t_{\alpha}=0$. With t=1, we conclude $t_{\alpha}=t_{\beta}=t_{\beta}^2$. Now if $t_{\alpha}=t_{\beta}=1$, we get $t^n=t^{2n}$ for all $t\in GF(q)$, so q=2, contradiction. Hence $t_{\alpha}=t_{\beta}=0$, so $u\in X_{\alpha+\beta}X_{\alpha+2\beta}\in Z(U)$.

Suppose $\Sigma = F_4$ and $\lambda = {}^2\sigma_q$. We need:

(***) if $\rho_0 \in \Sigma^+ - \{\theta_s, \theta\}$, then there exist σ , $\sigma' \in \Sigma^+$ and an element $\overline{x}_{\sigma} = x_{\sigma}(1)x_{\sigma'}(1) \prod_{\rho} x_{\rho}(t_{\rho})$ of U_{λ} such that (i) $ht(\sigma) = ht(\sigma')$, and $t_{\rho} = 0$ unless $ht(\rho) > ht(\sigma)$, (ii) ρ_0 and σ are fundamentally independent, and $\rho_0 + \sigma - \sigma' \notin \Sigma$.

Assuming this, let $u \in C_U(U_\lambda)$ and let ρ_0 be the least element of $\mathrm{supp}\,(u),\, u = x_{\rho_0}(t_{\rho_0}) \cdots$. If $\rho_0 \neq \theta_s$ or θ , choose σ,σ' , and \overline{x}_σ as in (***). Then $1 = [u,\overline{x}_\sigma] = x_{\rho_0+\sigma}(t_{\rho_0}) \cdots$ because the condition $\rho_0 + \sigma - \sigma' \notin \Sigma$ guarantees that the only way to express $\rho_0 + \sigma$ as the sum of an element of $\mathrm{supp}\,(u)$ and an element of $\mathrm{supp}\,(\overline{x}_\sigma)$ is as $\rho_0 + \sigma$. But $t_{\rho_0} \neq 0$, so $\rho_0 \in \{\theta_s, \theta\}$. Hence θ_s is the only possible short root in $\mathrm{supp}\,(u)$. Since $\lambda(u) \in C_U(U_\lambda)$, and $\lambda(\theta_s) = \theta$, the same argument applied to $\lambda(u)$ implies that the only possible long root in $\mathrm{supp}\,(u)$ is θ . Hence $u \in X_{\theta_\sigma} X_\theta = Z(U)$, and we are done.

To prove (***) we examine Σ in detail. Let $\Pi = \{\alpha_1, \alpha_2, \alpha_3, \alpha_4\}$, read from one end of the Dynkin diagram to the other, with α_1 short. We write the root $\sum_{i=1}^4 n_i \alpha_i$ as $n_1 n_2 n_3 n_4$. Thus $\theta_s = 2321$ and $\theta = 2432$. If $\rho_0 \in \{0100, 0110, 0221, 1221, 1321\}$, take $\sigma = 1000, \sigma' = 0001, \overline{x}_\sigma = x_\sigma(1)x_{\sigma'}(1)$. If $\rho_0 \in \{0010, 0210, 2431\}$, take $\sigma = 0001, \sigma' = 1000, \overline{x}_\sigma = x_\sigma(1)x_{\sigma'}(1)$. In the remaining cases, take $\overline{x}_\sigma = x_\sigma(1)x_{\sigma'}(1)x_{\sigma+\sigma'}(1)$. If $\rho_0 \in \{1000, 0011, 1110, 1111, 2221\}$, take $\sigma = 0100, \sigma' = 0010$. If $\rho_0 \in \{0001, 1100, 0211, 1211, 2211\}$, take $\sigma = 0010, \sigma' = 0100$. If $\rho_0 \in \{1210, 2210, 2421\}$, take $\sigma = 0011, \sigma' = 1100$. If $\rho_0 = 0111$, take $\sigma = 1100, \sigma' = 0011$. Then (***) is easily verified.

LEMMA 2.2. $C_{\sigma}(U_{\lambda}) = Z(U)$.

Proof. By Lemma 1.1, $C_G(U_{\lambda}) \subseteq B$, so by Lemma 2.1, it suffices to show $C_B(U_{\lambda}) \subseteq U$. Let $U' = \langle X_{\rho} | \rho \in \Sigma^+ - \Pi \rangle$, define $\bar{B} = B/U'$, and for any $A \subseteq B$ write \bar{A} for AU'/U'. It suffices to show $C_{\bar{B}}(\bar{U}_{\lambda}) \subseteq \bar{U}$. Now \bar{U} is the direct product of \bar{X}_{ρ} over all $\rho \in \Pi$, and $\bar{X}_{\rho} \cong X_{\rho}$ for

 $ho\in\Pi$. In particular ar U is abelian, so $C_{ar E}(ar U_\lambda)=ar UC_{ar H}(ar U_\lambda)$, as ar B=ar Uar H. Thus it suffices to show $C_{ar H}(ar U_\lambda)=1$. Suppose $h\in H$ and $ar h\in C_{ar H}(ar U_\lambda)$. For any $ho\in\Pi$, there exists $u\in U_\lambda$ such that $ho\in \mathrm{supp}\;(u)$, say $u=x_
ho(t_
ho)\cdot\dots$, $t_
ho\ne0$. Then, identifying H with $\mathrm{Hom}\;(\Gamma,\,k^*)$, $ar 1=[ar h,\,ar u]=x_
ho(t_
ho(h(
ho)-1))\cdot\dots$, so h(
ho)=1. Thus h=1, as required.

LEMMA 2.3. $N_G(U_{\lambda}) = \langle B_{\lambda}, Z(U) \rangle$.

Proof. Let $g \in N_G(U_{\lambda})$. Then $g^{-1}\lambda(g) \in C_G(U_{\lambda})$. By Lemma 2.2, $g^{-1}\lambda(g) \in Z(U)$. Since $Z(U)(=X_{\theta} \text{ or } X_{\theta_s}X_{\theta})$ is connected, an elementary version of Lang's theorem [20] implies the existence of $z \in Z(U)$ such that $g^{-1}\lambda(g) = z^{-1}\lambda(z)$. Then $gz^{-1} = \lambda(gz^{-1})$, so $gz^{-1} \in G_{\lambda}$. By Lemma 1.1, $g \in B$, so $gz^{-1} \in G_{\lambda} \cap B = B_{\lambda}$. Hence $g = gz^{-1}z \in \langle B_{\lambda}, Z(U) \rangle$, so $N_G(U_{\lambda}) \subseteq \langle B_{\lambda}, Z(U) \rangle$. The other inclusion is obvious.

LEMMA 2.4 Let $z \in Z(U)$ and suppose $\langle G_{\lambda}^{s}, z \rangle$ is a finite group. Then there exists a positive integer r such that $\langle G_{\lambda}^{s}, z \rangle \subseteq G_{\lambda^{r}}$.

Proof. First suppose Z(U) is one-dimensional. Thus $Z(U) = \langle x_{\theta}(t) | t \in k \rangle$ where θ is the root of maximal height in Σ^+ . Choose $n \in N \cap \langle X_{\theta}, X_{-\theta} \rangle$ so that $nx_{\theta}(t)n^{-1} = x_{-\theta}(-t)$. Suppose $z = x_{\theta}(t)$ for some fixed, nonzero, $t \in k$ and put g = nz. On the 3-dimensional adjoint module for $\langle X_{\theta}, X_{-\theta} \rangle$ g is represented by a matrix whose trace is $t^2 - 1$. Since g has finite order this implies that t is algebraic over GF(p). Suppose $t \in GF(p^r)$ then, since we may suppose that $\lambda(x_{\theta}(t)) = x_{\theta}(t^q)$, we have $\langle G_{i}^{x}, z \rangle \subseteq G_{i}^{x}$.

Now suppose Z(U) is two-dimensional. First suppose G is of type C_1 or F_4 . Hence k has characteristic 2 and there exist roots $\{\delta_1, \delta_2, \delta_1 + \delta_2, \delta_1 + 2\delta_2\} \subseteq \Sigma^+$ such that $Z(U) = \langle x_{\delta_1 + \delta_2}(t), x_{\delta_1 + 2\delta_2}(t) | t \in k \rangle$ (in fact $\delta_1 + \delta_2 = \theta_s$ and $\delta_1 + 2\delta_2 = \theta$). We suppose $z = x_{\delta_1 + \delta_2}(t_1)x_{\delta_1 + 2\delta_2}(t_2)$ for some fixed $t_1, t_2 \in k$. Put $G_1 = \langle x_r(t) | \pm \gamma \in \{\delta_1, \delta_2\}, t \in k \rangle$ thus G_1 is of type C_2 and λ fixes G_1 . Choose $n \in (G_1)_{\delta}$ such that $nx_{\delta_4}(t)n^{-1} = x_{-\delta_4}(t)$ and put g = nz. There is a natural 4-dimensional module for G_1 on which

$$n \longrightarrow \begin{pmatrix} 1 & 1 & 1 \end{pmatrix}$$
 and $z \longrightarrow \begin{pmatrix} 1 & 0 & t_1 & t_2 \\ & 1 & 0 & t_1 \\ & & 1 & 0 \\ & & & 1 \end{pmatrix}$

This gives t_1^2 and t_2 as coefficients in the characteristic polynomial of g. Since g has finite order t_1 , t_2 are algebraic over GF(Z) and we are done.

If G is of type G_2 , $z=x_{2\alpha_1+\alpha_2}(t_1)x_{3\alpha_1+2\alpha_2}(t_2)$ and choosing $n\in N_\lambda$ such

that $nx_{\alpha_i}(t)n^{-1} = x_{-\alpha_i}(-t)$ put g = nz. Compute the characteristic polynomial for g as represented in the 7-dimensional module for G. Its coefficients are $(t_1^2 - 1)$ and $(t_2^2 - t_1^2 + 1)$. Hence, as before, we are done.

LEMMA 2.5. There exists a positive integer r such that, with $\mu = \lambda^r$, we have $G^*_{\mu} \subseteq M$ and $U_{\mu} \in \operatorname{Syl}_p(M)$.

Proof. Choose the positive integer r to be maximal subject to $G_{r}^{*} \subseteq M$. Without loss, we may assume r = 1, and shall show that $U_{\lambda} \in \operatorname{Syl}_{p}(M)$. Suppose $U_{\lambda} \notin \operatorname{Syl}_{p}(M)$. By Lemma 2.3 and Sylow's theorem, there exists $z \in Z(U) - U_{\lambda}$ such that $\langle G_{\lambda}^{*}, z \rangle \subseteq M$. By Lemma 2.4, $\langle G_{\lambda}^{*}, z \rangle \subseteq G_{\lambda^{n}}$ for some n. Hence the lemma follows from the following statement, which contradicts the maximality of r:

(†) If $z \in Z(U)_{\lambda^n \lambda^n} - U_{\lambda}$ for some n, then $\langle G_{\lambda}^s, z \rangle \supseteq G_{\lambda^m}^s$ for some m > 1.

We now establish (†). Let $K = \langle G_{\lambda}^s, z \rangle$.

Our method is to first study the case A_1 and use this result along with the action of N_{λ} on the root subgroups of G_{λ} .

Case 0. $\Sigma=A_1$: If p is odd, (†) is an immediate consequence of a result of Dickson [7]. Suppose p=2. Then $G_{\lambda}^{(s)}=\langle x_{\rho}(t), x_{-\rho}(t)|t\in GF(q)\rangle$ and $z=x_{\rho}(t_1)$ for some $t_1\in GF(q^n)-GF(q)$, where $\Sigma^+=\{\rho\}$. Define m by $GF(q)(t_1)=GF(q^m)$, so that $K\subseteq G_{\lambda}m$ and m>1. Now distinct Sylow 2-subgroups in $G_{\lambda}m$ intersect trivially, so distinct Sylow 2-subgroups in K intersect trivially. Since $G_{\lambda}\subseteq K$ and G_{λ} has more than one Sylow 2-subgroup, so does K. It follows that any two involutions in K are conjugate in K, [13]. In particular, $x_{\rho}(t_1)$ and $x_{\rho}(1)$ are conjugate in K, hence conjugate in $N_K(U\cap K)$. Hence there are $u\in U$, $h_1\in H$ such that $uh_1\in K$ and $x_{\rho}(1)^{uh_1}=x_{\rho}(t_1)$. Identifying H with $Hom(\Gamma, k^*)$, we see that $h_1(\rho)=t_1^{1/2}$. Hence for any positive integer l, and any $t\in GF(q)$, we may choose $h\in K$ such that $x_{\rho}(1)^h=x_{\rho}(t)$, and conclude that $x_{\rho}(tt_1^l)=x_{\rho}(1)^{h(uh_1)^l}\in K$. Thus $x_{\rho}(f(t_1))\in K$ for all $f[X]\in GF(q)[X]$. Hence $x_{\rho}(t)\in K$ for all $t\in GF(q^m)$, i.e., $U_{\lambda^m}\subseteq K$. Then $K\supseteq \langle U_{\lambda^m}, N_{\lambda}\rangle \supseteq G_{\lambda^m}^s$ as required.

Case 1. Σ arbitrary, $\lambda = \sigma_q$, and $Z(U) = X_{\theta}$: Let $G_{\theta} = \langle X_{\theta}, X_{-\theta} \rangle$ and $K_{\theta} = K \cap G_{\theta}$. Then λ is an endomorphism of G_{θ} , and $\langle (G_{\theta})_{\lambda}, z \rangle \subseteq K_{\theta} \subseteq (G_{\theta})_{\lambda^n}$ since $z \in Z(U) = X_{\theta}$. By Case 0, $(G_{\theta})_{\lambda^m} \subseteq K_{\theta}$ for some m > 1, so $(X_{\theta})_{\lambda^m} \subseteq K$. Conjugating by elements of N_{λ} , we get $(X_{\theta})_{\lambda^m} \subseteq K$ for all $\rho \in \Sigma$ of the same length as θ . If there is one root length, this gives immediately $G_{\lambda^m}^s \subseteq K$. If there are two root

lengths, let $\rho \in \Sigma$ be short and choose $\sigma \in \Sigma$ long such that $\rho + \sigma \in \Sigma$. For any $t \in GF(q^m)$, $t \neq 0$, $h_{\sigma}(t) \in K$, so $x_{\rho}(t^{-1}) = x_{\rho}(1)^{h_{\sigma}(t)} \in K$. Thus $(X_{\rho})_{\lambda^m} \subseteq K$, so $K \supseteq \langle (X_{\rho})_{\lambda^m} | \rho \in \Sigma \rangle = G^s_{\lambda^m}$.

Case 2. $\lambda = \sigma_q$, $Z(U) \neq X_\theta$: We have two root length, $Z(U) = \langle X_{\theta_s}, X_{\theta} \rangle$, and the characteristic of k is the strength of the multiple bond in the Dynkin diagram of Σ . Let $\Sigma^0 = (Z\theta_s + Z\theta) \cap \Sigma$, $G^0 = \langle X_{\theta} | \rho \in \Sigma^0 \rangle$, $K^0 = G^0 \cap K$. Then λ is an endomorphism of G^0 , $\langle (G^0)_s^s, z \rangle \subseteq K^0$. If (†) holds for G^0 , then $\langle (G^0)_s^s, z \rangle \supseteq (G^0)_s^s = 0$ for some m > 1. In particular, $(X_{\theta})_{\lambda^m} \subseteq K$ for $\rho = \theta_s$ and θ , and then for all $\rho \in \Sigma$, by conjugation by elements of N_{λ} . Hence in proving (†) we may assume $\Sigma = \Sigma^0$. Thus $\Sigma = C_2$ or C_2 , with $D_0 = 0$ or 3 respectively.

We take $\Pi = \{\alpha, \beta\}$, with α long and β short. Suppose $\Sigma = C_2$, so p = 2. For every $y = x_{\alpha+\beta}(t_1)x_{\alpha+2\beta}(t_2) \in Z(U)$, set $\pi_{\alpha+\beta}(y) = t_1$, $\pi_{\alpha+2\beta}(y) = t_2$. Let $k_1 = \pi_{\alpha+\beta}(K \cap Z(U))$, $k_2 = \pi_{\alpha+2\beta}(K \cap Z(U))$. Thus k_i is an additive group, $GF(q) \subseteq k_i \subseteq GF(q^n)$, i = 1, 2, and $k_1 \cup k_2 \neq GF(q)$ as $z \notin U_{\lambda}$. Let $t_1 \in k_1$, $t_2 \in k_2$, and choose $u_1 = x_{\alpha+\beta}(t_1)x_{\alpha+2\beta}(t_1') \in K$ and $u_2 = x_{\alpha+\beta}(t_2')x_{\alpha+2\beta}(t_2) \in K$. Now $n_{\alpha}(1)$, $n_{\beta}(1) \in G_2^s \subseteq K$, so

$$(1) x_{\alpha+\beta}(t_1t_2)x_{\alpha+2\beta}(t_1^2t_2) = [u_1^{n_{\alpha}(1)}, u_1^{n_{\beta}(1)}] \in K.$$

Thus $t_1t_2 \in k_1$, $t_1^2t_2 \in k_2$, so $\{t^2 \mid t \in k_1\} \subseteq k_2 \subseteq k_1$, from the special cases $t_2 = 1$ and $t_1 = 1$. But the map $t \to t^2$ is injective on $GF(q^n)$, so $k_1 = k_2$. From (1), $k_1 \cdot k_2 \subseteq k_1$, so k_1 is a field. Thus for some m > 1, $k_1 = k_2 = GF(q^m)$. For any $t \in GF(q^m)$, we take $t_1 = t$ and $t_2 = t^{-1}$ and t^{-2} in (1) and conclude $\langle (X_{\alpha+\beta})_{\lambda^m}, (X_{\alpha+2\beta})_{\lambda^m} \rangle \subseteq K$. As usual this gives $G_{\lambda^m}^* \subseteq K$.

Suppose $\Sigma=G_2$ so p=3. Write $z=u_1u_2$, with $u_1\in X_{\alpha+2\beta}$ and $u_2\in X_{2\alpha+3\beta}$. Then $u_2=[z^{n_{\alpha}(1)},\,x_{\alpha}(1)]^{\pm 1}\in K$, so $u_1=zu_2^{-1}\in K$. Since $z\notin G_{\lambda}$, either u_1 or $u_2\notin G_{\lambda}$, so without loss we may assume $z=u_1$ or $z=u_2$.

Since G has a graph automorphism commuting with λ and interchanging θ_s and θ we may assume that $z \in X_{2\alpha+3\beta}$. By Case 0 applied to $\langle X_{2\alpha+3\beta}, X_{-2\alpha-3\beta} \rangle$, there is m>1 such that $(X_{\rho})_{\lambda^m} \subseteq K$ for $\rho=2\alpha+3\beta$, and then for all long $\rho \in \Sigma$. For any $t \in GF(q^m)$, K contains $[x_{\alpha}(t), x_{\beta}(1), x_{\beta}(1)] = x_{\alpha+2\beta}(\pm t)x_{\alpha+3\beta}(t')x_{2\alpha+3\beta}(t'')$ with $t', t'' \in GF(q^m)$, so $x_{\alpha+2\beta}(t) \in K$ as $\alpha+3\beta$ and $2\alpha+3\beta$ are long. Thus $(X_{\rho})_{\lambda^m} \subseteq K$ for $\rho=\alpha+2\beta$, hence for all short ρ , whence $G_{\lambda^m}^s \subseteq K$.

Case 3. $\lambda = {}^2\sigma_q$ or ${}^3\sigma_q$, with G_{λ} a Steinberg variation, but $\Sigma \neq A_{2n}$ (the cases of twisted F_4 , G_2 , C_2 are not being considered here): In this case $Z(U) = X_{\theta}$, so by Case 0, $K \supseteq (X_{\theta})_{\lambda^m}$ for some m > 1. Conjugating by N_{λ} , we get $K \supseteq (X_{\theta})_{\lambda^m}$ for all $\rho \in \Sigma$ fixed by the twist defining G. Choose such a ρ and a σ not fixed by the twist,

such that $(\rho, \sigma) < 0$ (these can be found in Π , for example, joined by the multiple bond in the twisted Dynkin diagram). Denote the images of σ under the twist by σ_1 (and also σ_2 if $G_{\lambda} = {}^3D_{\lambda}$). $x_{\sigma}(t)x_{\sigma_1}(t^q)(\cdot x_{\sigma_2}(t^{q^2}))\in K ext{ for all } t\in GF(q^2)(GF(q^3)). ext{ Since } K\supseteq \langle (X_{
ho})_{\lambda^m},$ $(X_{-\rho})_{\lambda^m}$, $h_{\rho}(t) \in K$ for all $t \in GF(q^m)$, $t \neq 0$.

If $G_{\lambda} = {}^{3}D_{\lambda}$ and $m \equiv 1 \pmod{3}$, then for all $t \in GF(q^{3})$ and all $0 \neq 1$ $u \in GF(q^m)$, we have $(x_{\sigma}(t)x_{\sigma_1}(t^q)x_{\sigma_2}(t^{q^2}))^{h_{\rho}(u^{-1})} = x_{\sigma}(tu)x_{\sigma_1}(t^qu)x_{\sigma_2}(t^{q^2}u) =$ $x_{\sigma}(tu)x_{\sigma_1}((tu)^{q^m})x_{\sigma_2}((tu)^{q^{2m}}) \in K$. Hence $x_{\sigma}(v)x_{\sigma_1}(v^{q^m})x_{\sigma_2}(v^{q^{2m}}) \in K$ for all vof the form $\sum_i t_i u_i$ with $t_i \in GF(q^3)$, $u_i \in GF(q^m)$, that is, for all $v \in$ Thus $(X_{\sigma}X_{\sigma_1}X_{\sigma_2})_{\lambda^m}\subseteq K$, so $G_{\lambda^m}^s\subseteq K$. The case $m\equiv -1$ (mod 3) is similar, as is the case $\lambda = {}^{2}\sigma_{q}$ and m odd.

If $G_{\lambda} = {}^{3}D_{4}$ and $m \equiv 0 \pmod{3}$, we may assume m = 3, and must prove $x_{\sigma}(t) \in K$ for all $t \in GF(q^3)$. Now

$$x(t, u) \equiv x_{\sigma_1}((u^q - u)t^q)x_{\sigma_2}((u^{q^2} - u)t^{q^2})$$

$$= (x_{\sigma}(tu)x_{\sigma_1}((tu)^q)x_{\sigma_2}((tu)^{q^2}))^{-1}(x_{\sigma}(t)x_{\sigma_1}(t^q)x_{\sigma_2}(t^{q^2}))^{h_{\rho}(u^{-1})} \in K$$

for all $t, u \in GF(q^3)$, so for all $t, u, v \in GF(q^3)$ with $u, v \notin GF(q)$, Kcontains $x(t, u)^{h_{\rho}((v^{q}-v)^{-1}(u^{q}-u))} \cdot x(t, v)^{-1} = x_{\sigma_{0}}(y(u, v)t^{q^{2}})$, where $y(u, v) = x^{q}(u, v)$ $(u^{q^2}-u)(v^q-v)(u^q-u)^{-1}-(v^{q^2}-v).$

Clearly there exist $u, v \in GF(q^3) - GF(q)$ such that $y(u, v) \neq 0$; fixing these and letting t vary, we get $x_{o}(t) \in K$ for all $t \in GF(q^3)$, The case $\lambda = {}^{2}\sigma_{q}$, m even, is similar but simpler: $x_{\sigma_1}((u^q-u)t^q) \in K$ for $t, u \in GF(q^2)$, and u may be chosen so $u^q-u \neq 0$.

Case 4. $\Sigma = A_n^2$, $\lambda = {}^2\sigma_q$: For each $\rho \in \Sigma$, let ρ_1 be the image of ρ under the twist. If $\rho \in \Sigma$ and $\rho + \rho_1 \in \Sigma$, then G_{λ} has a nonabelian "root subgroup" $\{x_{\rho}(t)x_{\rho_1}(t^q)x_{\rho+\rho_2}(u)\,|\,t,\,u\in GF(q^2),\,t^{1+q}+u+u^q=0\}$. If $\rho \in \Sigma$ and $\rho + \rho_1 \notin \Sigma$, then G_{λ} has an abelian root subgroup

$$\{x_{\rho}(t)x_{\rho_1}(t^q) \mid t \in GF(q^2)\}$$
.

There exists $au\in \Sigma^+$ such that $au+ au_1= heta$. Thus $(X_ heta)_\lambda=\{x_ heta(u)\,|\,u\in A_ heta$ $GF(q^2)$, $u+u^q=0$. Choose $0\neq u_0\in GF(q^2)$ such that $u_0+u_0^q=0$. Then for any $u \in GF(q^2)$, $u + u^q = 0$ if and only if $uu_0^{-1} \in GF(q)$, so $f(X_{ heta})_{\lambda} = \{x_{ heta}(u_{ heta}u_{ heta}) | u_{ heta} \in GF(q)\}.$ Let $K_{ heta} = K \cap \langle X, X_{- heta}
angle_{\lambda}$, so that $K_{ heta}$ contains $(X_{\theta})_{\lambda}$, $(X_{-\theta})_{\lambda}$, and z. Let $h = h_{\theta}(u_0) \in H$. Then K_{θ}^h contains $\{x_{\pm \theta}(u_i) | u_i \in GF(q)\}$, canonical generators of $A_i(q)$, and also contains $z^h = x_\theta(t)$ for some $t \notin GF(q)$. By Case 0, there exists m > 1 such that K_{θ}^{h} contains $\{x_{\pm\theta}(u_{1}) | u_{1} \in GF(q^{m})\}$. In particular, K_{θ} contains $x_{\pm \theta}(u_1)^{h^{-1}} = x_{\pm \theta}(u_0u_1) \text{ for all } u_1 \in GF(q^m) \cdot h_{\theta}(u_1) \in K_{\theta}^h \text{ for all } u_1 \in GF(q^m),$ so $h_{\theta}(u_1) = h_{\theta}(u_1)^{h^{-1}} \in K_{\theta}$ for all $u_1 \in GF(q^m)$, $u_1 \neq 0$. For any $t, u \in GF(q^m)$ $GF(q^2)$ satisfying $t^{1+q} + u + u^q = 0$ and any $u_1 \in GF(q^m)^x$, we conjugate $x_{\tau}(t)x_{\tau_1}(t^q)x_{\theta}(u) (\in G_{\lambda})$ by $h_{\theta}(u_1)$ and get

$$x(t, u, u_1) = x_{\tau}(tu_1)x_{\tau_1}(t^qu_1)x_{\theta}(uu_1^2) \in K$$
.

Suppose m is odd. Then $t^q u_1 = (tu_1)^{q^m}$ and $tu_1(tu_1)^{q^m} + uu_1^2 + uu_2^2$ $(uu_1^2)^{q^m} = tu_1t^qu_1 + uu_1^2 + u^qu_1^2 = (t^{1+q} + u + u^q)u_1^2 = 0$, so $x(t, u, u_1) \in$ G_{2^m} . Now every element of $GF(q^{2m})$ is a sum of elements of the form tu_1 with $t \in GF(q^2)$, $u_1 \in GF(q^m)^x$, so for every $t \in GF(q^{2m})$, Kcontains an element of the form $x_r(t)x_{r,i}(t^{q^m})x_{\theta}(u)$ with $t^{1+q^m}+u+u^{q^m}=$ 0. Since K contains $x_{\theta}(u_0u_1)$ for all $u_1 \in GF(q^m)$, it contains $x_{\theta}(v)$ for all $v \in GF(q^{2m})$ satisfying $v + v^{q^m} = 0$. Hence K contains $\{x_{\rho}(t)x_{\rho_1}(t^{q^m})x_{\theta}(u) \mid t, t \in GF(q^{2m})\}$ $u \in GF(q^{2m}), t^{1+q^m}+u+u^{q^m}=0$, a nonabelian root subgroup of G_{λ^m} . Conjugating by N_{λ} , we see that K contains all nonabelian root subgroups of G_{λ^m} . If n=1, we are therefore done. If n>1, there exists $\gamma \in \Sigma$ such that $\gamma + \gamma_1 \notin \Sigma$ while $\gamma + \theta$, $\gamma_1 + \theta \in \Sigma$ (for example, $-\gamma \in \Pi$, with $-\gamma$ at an end of the Dynkin diagram). Then for all $t \in GF(q^2), \ u_1 \in GF(q^m)^x, \ \text{we have} \ x_r(tu_1)x_{r_1}((tu_1)^{q^m}) = x_r(tu_1)x_{r_1}(t^qu_1) =$ $(x_{r}(t)x_{r_1}(t^q))^{h_{\theta}(u_1)} \in K$. It follows that $x_{r}(v)x_{r_1}(v^q)^m \in K$ for all $v \in GF(q^{2m})$, so K contains an abelian root subgroup of G_{λ^m} . Hence $K \supseteq G_{\lambda^m}^s$, as required.

Suppose m is even. We may assume m=2, and shall prove $G_{12}^s \supseteq K$. Let τ, γ be as in the previous paragraph. For any $t \in$ $GF(q^2)$ and $u_1 \in GF(q^2)^x$, we have $x_1 = x_7(tu_1)x_{7_1}(t^qu_1) = (x_7(t)x_{7_1}(t^q))^{h_{\theta}(u_1)} \in$ K, and also $x_2 = x_7(tu_1)x_{r_1}(tu_1)^q \in G_\lambda \subseteq K$. Hence $x_{r_1}(t^q(u_1^q - u_1)) =$ $x_2x_1^{-1} \in K$. Fix u_1 such that $u_1^q \neq u_1$ and let t vary; we get $(X_{\tau_1})_{\lambda^2} \subseteq$ K. Similarly, $(X_{\tau})_{\lambda^2} \subseteq K$, so conjugating by N_{λ} , we get $(X_{\rho})_{\lambda^2} \subseteq K$ for all $\rho \in \Sigma$ such that $\rho + p_1 \notin \Sigma$. Also, we have $x_{\theta}(u_0 u_1) \in K$ for all $u_1 \in GF(q^2)$. Since u_0 was chosen in $GF(q^2)$ and $u_0 \neq 0$, $(X_\theta)_{\lambda^2} \subseteq K$. Hence $(X_{\theta})_{\lambda^2} \subseteq K$ for all $\rho \in \Sigma$ with $\rho = \rho_1$. For any $t \in GF(q^2)$ there is $u \in GF(q^2)$ such that $x_3 = x_\tau(t)x_\tau(t^q)x_\theta(u) \in G_\lambda$. Let $u_1 \in GF(q^2)^x$. Let $x_4 = x_3^{h_{\theta}(u_1)} = x_{\tau}(tu_1)x_{\tau_1}(t^qu_1)x_{\theta}(\) \in K$ and choose $u' \in GF(q^q)$ such that $x_5 = x_r(tu_1)x_{r_1}((tu_1)^q)x_{\theta}(u') \in G_{\lambda}$. Then $x_{r_1}(t^q(u_1^q - u_1)) = x_5x_4^{-1}x_{\theta}(\cdot) \in$ K. As above, we get $(X_{\tau_1})_{\lambda^2} \subseteq K$. Conjugating by N_{λ} , $(X_{\rho})_{\lambda^2} \subseteq K$ for all $\rho \in \Sigma$ such that $\rho + \rho_1 \in \Sigma$. Thus $(X_{\rho})_{\lambda^2} \subseteq K$ for all $\rho \in \Sigma$, as required.

Case 5. $\Sigma = C_2$, $\lambda = {}^2\sigma_q$, q > 2: Thus $q = 2q_0^2$, $q_0 = 2^j > 1$. We take $\Pi = \{\alpha, \beta\}$, with β short. Let $\mathscr S$ be the additive group $k \oplus k$. For $(t_1, t_2) \in \mathscr S$, set $x(t_1, t_2) = x_{\alpha+\beta}(t_1)x_{\alpha+2\beta}(t_2)$. For any subgroup J of G set $\mathscr S_J = \{(t_1, t_2) | x(t_1, t_2) \in J\}$, an additive subgroup of $\mathscr S$. Thus $\mathscr S_{G_\lambda} = \{(t, t^{2q_0}) | t \in GF(q)\}$. Since $z \in Z(U_\lambda) - G_\lambda$, $\mathscr S_{G_\lambda} \subset \mathscr S_K \subseteq \mathscr S_{G_\lambda n}$. Also, let $n_0 = (n_\alpha(1)n_\beta(1))^2 \in G_\lambda$, so that $x_\rho(t)^{n_0} = x_{-\rho}(t)$ for all $\rho \in \Sigma$, $t \in k$, and also $n_0^2 = 1$. Finally, for any t_1 , $t_2 \in k^x$, let $h(t_1, t_2)$ be the element of H which takes α to $t_1^2t_2^{-1}$ and β to $t_1^{-1}t_2$. Thus $x(t_1, t_2)^{h(u_1, u_2)} = x(t_1u_1, t_2u_2)$.

Suppose $(t_1, t_2) \in \mathscr{S}_K$ and $t_1t_2 \neq 0$. We show that $h(t_1, t_2) \in K$. First $C_G(x(t_1, t_2)) \subseteq B$, for if $g \in C_G(x(t_1, t_2))$, we write g = bnu in canonical form and get $x(t_1, t_2)^n \in X_{\alpha+\beta}X_{\alpha+2\beta}$, so $n \in H$ and $g \in B$. On the other

hand, $C_U(n_0) = 1$ as $U \cap U^{n_0} = 1$. Hence $x(t_1, t_2)$ and n_0 do not centralize any involution of G in common. If follows that $x(t_1, t_2)$ and n_0 are conjugate in the (dihedral) group $\langle x(t_1, t_2), n_0 \rangle$, hence also in K. Similarly, x(1, 1) and n_0 are conjugate in K. Thus $x(t_1, t_2) = x(1, 1)^g$ for some $g \in K$. Writing g in canonical form, we see $g = uh(t_1, t_2)$ for some $u \in U$. However, $B \cap K = (U \cap K)(H \cap K)$. To see this, choose $t \in GF(q)$, $t \neq 0$ or 1, and let $h = h(t, t^{2q_0}) \in G_{\lambda} \subseteq K$. $C_{U}(h)=1$, so $C_{B}(h)=H$. By the Schur-Zassenhaus theorem, $B\cap K$ has a subgroup H_0 such that $B \cap K = (U \cap K)H_0$, $U \cap K \cap H_0 = 1$, and $h \in H_0$. Then H_0 is abelian, so $H_0 \subseteq C_B(h) = H$, so $H_0 = H \cap K$. Since $g \in B \cap K$, $h(t_1, t_2) \in H \cap K \subseteq K$, as claimed.

Thus, if $(t_1, t_2) \in \mathcal{S}_K$, $(u_1, u_2) \in \mathcal{S}_K$, and $u_1u_2 \neq 0$, then $(t_1, u_1, t_2u_2) \in$ $\mathscr{S}_{\mathtt{K}}.$

Suppose now that no element of \mathcal{S}_K has the form (0, t) or (t, 0)with $t \neq 0$. Let $\mathcal{S}_1 = \{t \mid (t, u) \in \mathcal{S}_K \text{ for some } u\}$, and define the function φ on \mathscr{S}_1 by the condition $(t, \varphi(t)) \in \mathscr{S}_K$. Since \mathscr{S}_1 is an additive subgroup of $GF(q^n)$, and $GF(q) \subset \mathcal{S}_1$, the last paragraph implies that \mathcal{S}_1 is a field, so $\mathcal{S}_1 = GF(q^m)$ for some m > 1; also, φ preserves multiplication, so is an automorphism of $GF(q^m)$. Thus for some $d=2^i$, $d \leq q^m$, $\mathscr{S}_{K}=\{(t,\,t^d)\,|\,t\in GF(q^m)\}$. Since $\mathscr{S}_{\mathcal{G}_{\lambda}}\subseteq \mathscr{S}_{K},\,t^d=t^{2q_0}$ for all $t \in GF(q)$. Let $x_0 = x_{\alpha}(1)x_{\beta}(1)x_{\alpha+\beta}(1) (\in G_{\lambda})$. For each $t, u \in$ $GF(q^m)^x$, K contains $[x_0^{h(t,t^d)}, x_0^{h(u,u^d)}] = x(w_1, w_2)$ where $w_1 = t^{2-d}u^{d-1} + t^{2-d}u^{d-1}$ $u^{2-d}t^{d-1}$, $w_2 = t^{2-d}u^{2d-2} + u^{2-d}t^{2d-2}$. By the above $w_2 = w_1^d$. In the special case u = 1 this yields $(t^{-d} + t^{-d^2+2d-2})(t^{d^2} + t^2) = 0$. Fix t. We wish to show $t^{d^2}+t^2=0$. Suppose $t^{d^2}+t^{3d-2}=0$. For any $u\in GF(q)$, $u^d=$ u^{2q_0} ; with the equation $w_2 = w_1^d$, this gives $(t^{2-d} + t^{2d-2})(u^{1-q_0} + u^{2q_0-1})^2 =$ 0 for all $u \in GF(q)^x$. Since q > 2, also $q - 1 > 3q_0 - 2$, so for suitable u, the right hand factor does not vanish. Thus $t^{2-d} = t^{2d-2}$. Hence $t^2 + t^{d^2} = t^2 + t^{3d-2} = 0$ anyway. So $t^2 = t^{d^2}$ for all $t \in GF(q^m)$. Let $d_0=1/2d$; then $t^{2d_0^2}=t$, which implies that m is odd and $H\cap K\supseteq$ $\{h(t, t^{2d_0}) | t \in GF(q^m)\} = H_{\lambda^m}$. Conjugating elements of U_{λ} by those of H_{λ^m} , we find $U_{\lambda^m} \subseteq K$, so $K \supseteq \langle U_{\lambda^m}, n_0 \rangle = G_{\lambda^m}^s$.

Finally, suppose \mathscr{S}_{K} contains an element of the form (t, 0) or (0, t) for some $t \neq 0$. We show that $K \supseteq G_{i^2}$. This is equivalent to $K^{\lambda} \supseteq G_{\lambda^2}$, so without loss we may assume $(0, t) \in \mathcal{S}_K$, i.e., $x_{\alpha+2\beta}(t) \in \mathcal{S}_K$ K. Then $K \supseteq \langle x_{\alpha+2\beta}(t), n_0 \rangle$ so $g = n_0(1)x_{\alpha+2\beta}(t) = n_{\alpha}(1)n_{\alpha+2\beta}(1)x_{\alpha+2\beta}(t) \in$ A 2×2 matrix calculation shows that $n_{\alpha+2\beta}(1)x_{\alpha+2\beta}(t)$ has odd order e. Since it commutes with $n_{\alpha}(1)$, $n_{\alpha}(1) = n_{\alpha}(1)^{e} = g^{e} \in K$. For any $u, v \in GF(q), x(u, u^{2q_0}) \in K$ and $x_0(v) = x_{\alpha}(v)x_{\beta}(v^{q_0})x_{\alpha+\beta}(v^{1+q_0}) \in K$, so $x(uv, u^2v) = [x(u, u^{2q_0})^{n_{\alpha^{(1)}}}, x_0(v)] \in K$. Replacing u by uv and v by 1, we get $x(uv, u^2v^2) \in K$, so $x_{\alpha+2\beta}(u^2(v^2+v)) \in K$. Since q>2, v exists with $v^2 + v \neq 0$; this gives $(X_{\alpha+2\beta})_{\lambda^2} \subseteq K$. It follows easily that $(X_{\alpha+\beta})_{\lambda^2}\subseteq K$. Hence $n_{\alpha+\beta}(1)\in\langle (X_{\alpha+\beta})_{\lambda^2},\ n_0
angle\subseteq K$, so $K\supseteq\langle (X_{\alpha+\beta})_{\lambda^2},$ $n_{\alpha}(1), n_{\alpha+\beta}(1), n_{0}\rangle = G_{\lambda^{2}}.$

Case 6. $\Sigma = F_4$, $\lambda = {}^2\sigma_q$: Here $q = 2q_0^2$, $q_0 = 2^j$. We notate elements of Σ as in Lemma 2.1. Then Σ^+ is partitioned into 4 subsets giving root subgroups of U_λ of type 2C_2 ({0100, 0010, 0110, 0210}, {0011, 1100, 1111, 2211}, {0211, 1110, 1321, 2431}, and {0111, 2210, 2321, 2432}) and 4 subsets giving root subgroups of type A_1 ({1000, 0001}, {1210, 0221}, {1211, 2221}, and {1221, 2421}). $Z(U) = X_{2321}X_{2432}$. Let $\mathscr{S} = k \oplus k$, for each $(t_1, t_2) \in \mathscr{S}$ set $x(t_1, t_2) = x_{2321}(t_1)x_{2432}(t_2)$, and for each subgroup J of G set $\mathscr{S}_J = \{(t_1, t_2) \in \mathscr{S} \mid x(t_1, t_2) \in J\}$. Thus $\mathscr{S}_{G_J} = \{(t, t^{2q_0}) \mid t \in GF(q)\}$, where $q = 2q_0^2$, and $\mathscr{S}_G \subset \mathscr{S}_K \subseteq \mathscr{S}_{G_J n}$.

We show that if (t_1, t_2) , $(u_1, u_2) \in \mathscr{S}_K$, then $(t_2u_1, t_1^2u_2) \in \mathscr{S}_K$. Namely, conjugating $x(t_1, t_2)$ and $x(u_1, u_2)$ by appropriate elements of N_{λ} ($\subseteq K$), we get $x_{0110}(t_1)x_{0210}(t_2)$, $x_{1111}(u_1)x_{2211}(u_2) \in K$, so $x(t_2u_1, t_1^2u_2) = [x_{0110}(t_1)x_{0210}(t_2)$, $x_{1111}(u_1)x_{2211}(u_2)$, $x_{1000}(1)x_{0001}(1)] \in K$. In particular, since $(1, 1) \in \mathscr{S}_K$, the map φ : $(t_1, t_2) \rightarrow (t_2, t_1^2)$ is a permutation of \mathscr{S}_K . For (t_1, t_2) , $(u_1, u_2) \in \mathscr{S}_K$, let $(z_1, z_2) = \varphi^{-1}(t_1, t_2)$. Then $(t_1u_1, t_2u_2) = (z_2u_1, z_1^2u_2) \in \mathscr{S}_K$, so \mathscr{S}_K is closed under multiplication. Since φ maps \mathscr{S}_K to itself, $\mathscr{S}_K \subseteq GF(q^m) \oplus GF(q^m)$ for some m, and \mathscr{S}_K projects onto both summands.

If \mathscr{S}_K contains no element of the form (0, t) or (t, 0) for $t \neq 0$, then the map $\psi \colon GF(q^m) \to GF(q^m)$ defined by $(t, \psi(t)) \in \mathscr{S}_K$ is an automorphism of $GF(q^m)$, so $\mathscr{S}_K = \{(t, t^d) | t \in GF(q^m)\}$ for some $d = 2^i$. Since $\mathscr{S}_{\mathcal{G}_{\lambda}} \subset \mathscr{S}_K$, m > 1. Since $\varphi(t, t^d) = (t^d, t^2) \in \mathscr{S}_K$, we get $t^{d^2} = t^2$ for all $t \in GF(q^m)$. Hence m is odd and K contains $(Z(U))_{\lambda^m}$. Conjugating by N_{λ} , we see that K contains $(Z(U_{\rho}))_{\lambda^m}$ for any nonabelian root subgroup U_{ρ} of U. Hence for all $t \in GF(q^m)$, K contains

$$[x_{0110}(t)x_{0210}(t^d), x_{1111}(1)x_{2211}(1)]$$

which, modulo terms in $(Z(U_{\rho}))_{\lambda^m}$ for various nonabelian U_{ρ} , equals $x_{1221}(t)x_{1421}(t^d)$. Thus K contains $(U_{\rho})_{\lambda^m}$ for all abelian root subgroups U_{ρ} . Hence $K \supseteq \langle (X_{1000}X_{0001})_{\lambda^m}, N_{\lambda} \rangle \supseteq \{h_{1000}(t)h_{0001}(t^d) | t \in GF(q^m)\}$. Conjugating $x_{0100}(1)x_{0110}(1)x_{0110}(1)(\in G_{\lambda})$ by these element yields

$$(X_{0100}X_{0010}X_{0110}X_{0210})_{2m}\subseteq K$$
.

Hence $K \supseteq U_{\lambda^m}$, so $K \supseteq G_{\lambda^m}^s$.

If \mathscr{S}_K contains an element of the form (t,0) or (0,t) with $t\neq 0$, then since φ maps \mathscr{S}_K to \mathscr{S}_K , $\mathscr{S}_K \supseteq GF(q) \oplus GF(q)$. Hence K contains $(Z(U_\rho))_{\lambda^2}$ for all nonabelian root subgroups U_ρ of U. From the commutator $[x_{0110}(t), x_{1111}(1)]$ we see that K contains $(U_\rho)_{\lambda^2}$ for all abelian root subgroups U_ρ of U. If q>2, we apply the argument of case 5 to the group generated by a nonabelian root group and its negative, and conclude that $(U_\rho)_{\lambda^2} \subseteq K$ for all nonabelian root groups U_ρ , whence $G_{\lambda^2}^* \subseteq K$. If q=2, a direct examination of $C_2(2)(\cong S_0$, the symmetric group) shows that ${}^2C_2(2)$ and a Sylow 2-center generate $C_2(2)$, whence $(U_\rho)_{\lambda^2} \subseteq K$ for all nonabelian root groups U_ρ , so again

 $G_{i}^s \subseteq K$. This completes the proof of Lemma 2.5.

(2.4) Proof. Second part. We continue with the assumptions given in (2.3). As a consequence of Lemma 2.5 we have a unique $\mu = \lambda^r$ such that $G^s_{\mu} \subseteq M$ and $U_{\mu} \in \operatorname{Syl}_p(M)$. Put $K = G_{\mu} \cap M$. In this sub-section we will show that K = M. Apart from the ${}^{2}G_{2}$ -case this will complete the proof of the theorem.

We use induction on the rank of G. The first step is when G is of type A_1 . Since $\mu \neq \sigma_2$, σ_3 we see from [6] that in this case K = M.

The induction will be applied to the components of semi-simple groups which occur in parabolic subgroups of G and, when $p \neq 2$, in centralizers of involutions in G. Since such components may have the same rank as G we perform the same rank as G we perform the induction among groups of the same rank in the following order,

$$A < (C, D, G) < (B, E) < F$$
.

This partial ordering insures that the induction procedure is valid when the above described subgroups have the same rank as G.

To begin, we review some elementary facts. Let \widetilde{S} be a connected, semi-simple, algebraic group and μ an endomorphism of \widetilde{S} onto itself with \widetilde{S}_{μ} finite. Since μ must permute the components of \widetilde{S} we have a unique decomposition $\widetilde{S} = \widetilde{F}_1 \widetilde{F}_2 \cdots$ where $\widetilde{F}_i \cap \widetilde{F}_j \subseteq Z(\widetilde{S})$ for $i \neq j$ and each \widetilde{F}_i has the form

$$\widetilde{S} = \widetilde{A}\mu(\widetilde{A}) \cdots \mu^{n-1}(\widetilde{A})$$

with $\mu^n(\tilde{A}) = \tilde{A}$ and \tilde{A} a component of \tilde{S} .

For \widetilde{X} one of \widetilde{S} , \widetilde{F} , \widetilde{A} put $X = \widetilde{X}/Z(\widetilde{X})$ and note that μ is naturally defined on S and F and μ^n on A. It is easily seen that $F^s_{\mu} \cong A^s_{\mu^n}$ and that the images of \widetilde{S}^s_{μ} and $N_{\widetilde{S}}(\widetilde{S}^s_{\mu})$ in S are, using an obvious extension of Lemma 1.2, respectively S^s_{μ} and S_{μ} .

The purpose of the next lemma is to extend the conclusion of Theorem 1 to the case where G is replaced by a semi-simple group \widetilde{S} . This lemma is used in the proofs of Lemmas 2.8 and 2.9. In the situations there the assumption (i) below will hold because of our induction hypothesis.

LEMMA 2.6. Let \widetilde{S} be a connected, semi-simple, algebraic group and μ an endomorphism of \widetilde{S} onto itself with \widetilde{S}_{μ} finite. For a component \widetilde{A} of \widetilde{S} put $A = \widetilde{A}/Z(\widetilde{A})$. Assume that

(i) For each component \widetilde{A} of \widetilde{S} the conclusion of Theorem 1 holds with G replaced by A and λ replaced by μ^n , where n is the length of the μ -orbit containing \widetilde{A} .

(ii) \tilde{L} is a finite subgroup of \tilde{S} satisfying $\tilde{S}^s_{\mu} \subseteq \tilde{L}$ and $|\tilde{L}: \tilde{S}^s_{\mu}|_p = 1$. Then \tilde{L} normalizes \tilde{S}^s_{μ} .

Proof. Put $S = \widetilde{S}/Z(\widetilde{S})$ and $L = \widetilde{L}Z(\widetilde{S})/Z(\widetilde{S})$ then since $N_{\widetilde{S}}(\widetilde{S}_{\mu}^{*})Z(\widetilde{S})/Z(\widetilde{S}) = S_{\mu}$ it suffices to show that $L \subseteq S_{\mu}$.

Suppose first that the components of S form a single μ -orbit. Thus $S = A \times B$ where A is a component and $B = \mu(A) \times \cdots \times \mu^{n-1}(A)$ and $\mu^n(A) = A$. If n = 1 then B = 1. Now $BL \cap A$ is finite and $BS^s_{\mu} \cap A = A^s_{\mu^n}$ and hence $|BL \cap A: A^s_{\mu^n}|_p = 1$. By assumption (i) we have $BL \cap A \subseteq A_{\mu^n}$. Hence L normalizes S^s_{μ} and so $L \subseteq S_{\mu}$.

We now use induction on the number of μ -orbits of components in S. Suppose $S=E\times F$ where E, F are nontrivial products of μ -orbits. Then $S_{\mu}=E_{\mu}\times F_{\mu}$ and $S_{\mu}^{s}=E_{\mu}^{s}\times F_{\mu}^{s}$. Again we have $EL\cap F$ finite and $ES_{\mu}^{s}\cap F=F_{\mu}^{s}$ and hence $|EL\cap F:F_{\mu}^{s}|_{p}=1$. By induction $EL\cap F\subseteq F_{\mu}$. Similarly $FL\cap E\subseteq E_{\mu}$. Hence $L\subseteq (EL\cap F)\times (FL\cap E)\subseteq F_{\mu}\times F_{\mu}=S_{\mu}$.

NOTE. In the two situations where the above lemma is used assumption (i) fails to hold only if A, μ^n are one of the 3 exceptional cases described in (2.1). Furthermore n=1 except in one special occurrence in Lemma 2.8 with $G_{\mu}^s = {}^2F_4(2)$ and \widetilde{S} of type $A_1 \times A_1$. If \widetilde{S} has an orbit \widetilde{E} containing a component \widetilde{A} such that A, μ^n do not satisfy assumption (i) we call this an exceptional orbit (and $\widetilde{E}=\widetilde{A}$ except for one case). From the last step of the above proof we see that if \widetilde{E} is an exceptional orbit the conclusion of the lemma still holds provided $FL \cap E$ normalizes E_{μ}^s . Now $L \cap E \unlhd FL \cap E$ and by inspection of the cases in (2.2) we conclude that if $L \cap E$ normalizes L_{μ}^s then $L \cap E$ must also normalize L_{μ}^s . We may conclude that if $L \cap E$ is an exceptional orbit of $L \cap E$ normalizes of the conclusion of the lemma still holds provided $L \cap E$ normalizes L_{μ}^s .

LEMMA 2.7. $M \cap B = K \cap B$.

Proof. Since $U_{\mu} \in \operatorname{Syl}_{p}(M)$ we have $M \cap U = K \cap U$ and hence $M \cap B = N_{M}(U_{\mu})$, using Lemma 2.3. Let $g \in M \cap B$, since $B_{\mu} = H_{\mu}U_{\mu}$ we may suppose that g = hz where $h \in H_{\mu}$ and $z \in Z(U)$. If $h \in M$ then $z \in Z(U) \cap M \subseteq U_{\mu}$ and so $g \in K$.

If $h \notin M$ we argue as follows. First suppose Z(U) is 2-dimensional. In such a case it is always true that $G_{\mu} = G_{\mu}^{s}$ and hence $H_{\mu} \subseteq M$. Thus we may suppose that Z(U) is one-dimensional. Thus $Z(U) = \langle x_{\theta}(t) | t \in k \rangle$ where θ is the root of maximal height in Σ^{+} . If G is not of type A_{1} or C_{l} , $l \geq 2$, then θ is either a fundamental weight or for A_{l} , $l \geq 2$, the sum of two distinct fundamental weights. This

implies that there exists $h_1 \in H \cap G^s_{\mu}$ such that $h_1(\theta) = h(\theta)$ and hence $[h_1^{-1}h, z] = 1$ (here we identify H with Hom (Γ, k^*)). Since $H \cap G^s_{\mu} \subseteq$ $H_u \cap M$, $h_1^{-1}hz \in M \cap B$ and since $h_1^{-1}h$ and z have coprime orders $z \in$ $M \cap B$. Hence $z \in U_{\mu}$ and again $g \in K$.

If G is of type A_1 we quote L. Dickson [6].

If G is of type C_l let $z = x_{\theta}(t)$ for some fixed $t \in k$, where $\theta =$ $\alpha_{\scriptscriptstyle 1}+2\alpha_{\scriptscriptstyle 2}+\cdots+2\alpha_{\scriptscriptstyle l}.$ We may choose $h_{\scriptscriptstyle 1}\!\in\! H\cap G^*_{\scriptscriptstyle \mu}$ such that if $h_{\scriptscriptstyle 2}=$ h,h then, for some $s \in k^*$,

$$h_2(\alpha_1) = s$$
 $h_2(\alpha_2) = \cdots = h_2(\alpha_1) = 1$.

Let $w_i \in W$ denote the reflection corresponding to $\alpha_i \in \Pi$. Put $n_i =$ $n_{w_i} \in N$ and $n = n_2 \cdots n_l$. It is easily checked that $nh_2 z n^{-1} =$ $h_2x_{\alpha_1}(\pm t) \in M \cap B$. Now $h_2x_{\alpha_1}(\pm t)h_2x_{\theta}(t) = h_2^2x_{\alpha_1}(\pm s^{-1}t)x_{\theta}(t)$ and since $h_2^2\in M$ therefore $x_{lpha_1}(\pm s^{-1}t)x_{ heta}(t)\in M.$ Since $M\cap U=U_{\mu}$ we have z= $x_{\theta}(t) \in U_{\mu}$ and so $g \in K$.

Let X be a subgroup of the finite group Y. Recall that X is said to be strongly p-embedded in Y if $|X \cap X^y|_p = 1$ for all $y \in Y - X$. Using Sylow's theorems we see that X is strongly p-embedded in Y if and only if $N_r(T) \subseteq X$ for all $1 \neq T \subseteq S$ where $S \in Syl_r(X)$. The 'only if' part is clear. Conversely, take $y \in Y - X$ and assume $p \mid |X \cap X^y|$. Let $P \in \text{Syl}_v(X \cap X^y)$. Then $N_Y(P) \subseteq X$, so that $P \in$ $\operatorname{Syl}_{x}(X^{y})$. Therefore $P, P^{y^{-1}} \in \operatorname{Syl}_{x}(X) \subseteq \operatorname{Syl}_{x}(Y)$ as well. Choose $x \in$ X with $P = P^{yx}$. Thus $yx \in N_Y(P) \subseteq X$, so that $y \in X$, as required.

LEMMA 2.8. K is strongly p-embedded in M.

Proof. Let $1 \neq T_{\mu}$ then a theorem of A. Borel and J. Tits [4] implies the existence of a parabolic subgroup $P \subset G$ such that P is fixed by μ and $N_c(T) \subseteq P$. Without restriction we may suppose $B \subseteq P$. If $P \subseteq B$ by Lemma 2.7 we have $N_{\mu}(T) \subseteq K$. If $P \neq B$ let R= radical of P and put $\widetilde{S}=P/R$. \widetilde{S} is a connected, semi-simple, algebraic group and μ acts naturally on it. Put $\widetilde{M} = (M \cap P)R/R$, $\widetilde{K}=(K\cap P)R/R$ then $\widetilde{S}^s_\mu\subseteq \widetilde{K}\subseteq N_{\widetilde{s}}(\widetilde{S}^s_\mu)$. If \widetilde{S} has no exceptional orbits Lemma 2.6 says that \widetilde{M} normalizes \widetilde{K} . By Lemma 2.7, since $R \subseteq B$, we have $M \cap R = K \cap R$. Hence $M \cap P$ normalizes $K \cap P$ and so, again using Lemma 2.7, $M \cap P = (K \cap P)N_{M \cap P}(U_{\mu}) = K \cap P$. Hence K is strongly p-embedded in M.

Suppose next that \widetilde{A} is an exceptional orbit in \widetilde{S} . By the note following Lemma 2.6 we must show that $M \cap A$ normalizes $K \cap A$.

Let V be the unipotent radical of P and put W = V/V'. Let W_{μ} be the image V_{μ} in W. Since V' is closed and connected an argument similar to that in Lemma 2.3 shows that W_{μ} is just the fixed points of the endomorphism $vV' \rightarrow \mu(v)V'$, $v \in V$, of W.

Now $V_{\mu} = K \cap V = M \cap V$ so $\widetilde{M} \cap \widetilde{A}$ normalizes W_{μ} . Hence for all $k \in \widetilde{M} \cap \widetilde{A}$, $k^{-1}\mu(k)$ centralizes W_{μ} . Our aim is to show that $C_{\widetilde{A}}(W_{\mu}) \subseteq Z(\widetilde{A})$. This will immediately give $\widetilde{M} \cap \widetilde{A} \subseteq N_{\widetilde{A}}(\widetilde{A}_{\mu})$ and since $N_{\widetilde{A}}(\widetilde{A}_{\mu}) = N_{\widetilde{A}}(\widetilde{K} \cap \widetilde{A})$ we are done.

To compute $C_{\widetilde{A}}(W_{\mu})$ we may suppose P is maximal, subject to $\mu(P) = P$. Let Δ be a proper subset of Π such that $\Pi - \Delta$ contains no proper μ -invariant subset (note that μ permutes Π) then

$$P = \langle x_{\gamma}(t) | \gamma \in \Sigma^{+} \text{ or } -\gamma \in \Delta, t \in k \rangle$$

and the choice of Δ is further restricted by requiring \widetilde{A} to be a component of $\widetilde{S} = P/R$. The possible cases are easily listed: except when G^s_{μ} is ${}^2A_l(l=\text{odd})$, 3D_4 , 2F_4 . $\Pi-\Delta$ is a single root, say α , and \widetilde{A} is the image modulo R of $\langle x_{\beta}(t), x_{-\beta}(t)|t \in k \rangle$ some $\beta \in \Delta$. In this case an \widetilde{A} -invariant, μ -invariant submodule W_1 of W has basis

$$\{x_{\tau}(1)|\gamma=\alpha, \alpha+\beta, \alpha+2\beta, \cdots\} \mod V'$$
.

It is easily seen that $C_{\widetilde{A}}((W_1)_{\mu}) \subseteq Z(\widetilde{A})$.

When $|\Pi - \Delta| \ge 2$, \widetilde{A} is again of type A_1 except for the 2F_4 case when \widetilde{A} is either of types $A_1 \times A_1$ or C_2 . Again a suitable \widetilde{A} - and μ -invariant sub-module $W_1 \subseteq W$ is easily found such that $C_{\widetilde{A}}((W_1)_{\mu}) \subseteq Z(\widetilde{A})$. For example in the 2F_4 case with \widetilde{A} the image modulo R of $\langle x_{\beta}(t)|\beta = \pm \alpha_1, \pm \alpha_4, t \in k \rangle$ let W_1 have basis

$$\{x_r(1) \mid \gamma = \alpha_2, \alpha_3, \alpha_1 + \alpha_2, \alpha_3 + \alpha_4\}$$

then $(W_1)_{\mu}$ has basis $\{x_{\alpha_2}(1)x_{\alpha_3}(1), x_{\alpha_1+\alpha_2}(1)x_{\alpha_3+\alpha_4}(1)\}.$

LEMMA 2.9. K is strongly 2-embedded in M.

Proof. By Lemma 2.8 we may suppose $p \neq 2$. If the lemma is false then there exists a $t \in \operatorname{Inv}(K \cap K^m)$ for some $m \in M - K$. Now $C_G(t)$ contains a unique, maximal, semi-simple, connected algebraic \widetilde{S} , [18]. Since we may suppose G is not of type A_1 , $\widetilde{S} \neq 1$. Since $\mu(t) = t$, μ normalizes \widetilde{S} and hence $\widetilde{S}^s_{\mu} \subseteq \widetilde{S} \cap K \subseteq \widetilde{S} \cap M$.

Since all p-elements of $C_g(t)$ lie in \widetilde{S} we have $|\widetilde{S} \cap K^m|_p \neq 1$. By Lemma 2.8 $|K \cap K^m|_p = 1$ and hence $O^{p'}(\widetilde{S} \cap M) \nsubseteq \widetilde{S} \cap K$. However if \widetilde{S} contains no exceptional orbits Lemma 2.6 implies $O^{p'}(\widetilde{S} \cap M) \subseteq \widetilde{S} \cap K$, contradiction.

If \widetilde{A} is an exceptional orbit of \widetilde{S} then \widetilde{A} is of type A_1 and p=3. If $\widetilde{A}\cap M$ does not normalize $\widetilde{A}\cap K$ then from the list of exceptional cases in (2.2) we see that $\widetilde{A}\cap K$ is not strongly 3-embedded in $\widetilde{A}\cap M$. But then K is not strongly 3-embedded in M, contradicting Lemma 2.8.

LEMMA 2.10. K = M.

Proof. Suppose $K \neq M$, by Lemma 2.9 and a theorem of H. Bender [2] either the Sylow 2-subgroup of K is cyclic or quaternion or K is solvable. Using ref. [8], [12] and a theorem of Burnside we see that K has no non-abelian simple subgroups. Since K contains $[G^s_{\mu}, G^s_{\mu}]$ it follows that G_{μ} is ${}^2A_2(2)$.

Let $t \in \text{Inv } K$ then $K = O_{2'}(K)C_K(t)$ and $O_{2'}(C_K(t)) = 1$. By Lemma 2.9 $C_K(t) = C_M(t)$ and so by [12], $M = O_{2'}(M)C_K(t)$. Then $O_{2'}(K) \subseteq$ $O_{2'}(M)$ and $C_{O_{2'}(M)}(t) \subseteq O_{2'}(C_K(t)) = 1$ so $O_{2'}(M)$ is abelian. Hence $M \subseteq C_{2'}(M)$ $N_{G}(O_{2'}(K))$ and now a direct calculation yields $N_{G}(O_{2'}(K)) = G_{\mu}$. So K = M, a contradiction.

(2.5) Proof. ${}^{2}G_{2}$ -case. In this subsection G is of type G_{2} and $\lambda = {}^2\sigma_q$ where $q = 3q_0^2$, $q_0 = 3^f$. For this case we give a direct proof of the theorem by analyzing the structure of $C_{M}(j)$ where j is an involution in G_{2} .

Proof. We let μ be the highest power of λ such that $G_{\mu} \subseteq M$, and show that $M = G_{\mu}$. Without loss, we may assume $\mu = \lambda$, since the various powers of λ are ${}^2\sigma_{qm}$ and σ_{qm} , and the σ_{qm} -case has already been done.

We take $\Pi = \{\alpha, \beta\}$, with α long and choose notation so the commutator formulas are as in [15]. Let j be the element of Hsuch that $j(\alpha)=j(\beta)=-1$ and let $C=C_{\sigma}(j)$. Thus $\ker j\cap \Sigma^+=$ $\{\alpha+\beta, \alpha+3\beta\}$, so $C=L_1L_2$, where $L_1=\langle X_{\alpha+\beta}, X_{-\alpha-\beta}\rangle$, $L_2=\langle X_{\alpha+3\beta}, X_{-\alpha-\beta}\rangle$ $X_{-\alpha-3\beta}
angle$, $[L_{\scriptscriptstyle 1},\,L_{\scriptscriptstyle 2}]=1,\,L_{\scriptscriptstyle 1}\cap L_{\scriptscriptstyle 2}=Z(C)=\langle j
angle$, and each $L_{\scriptscriptstyle i}$ is isomorphic to $SL_2(k)$. Clearly $j \in G_{\lambda}$. For any subgroup J of G let $C_J = C_J(j)$.

Put $x_+^*(t) = x_{\alpha+\beta}(t)x_{\alpha+\beta}(t^{3q_0})$ and define $x_-^*(t)$ similarly, and let L = $\langle x_+^*(t),\, x_-^*(t)\,|\, t\in GF(q)
angle.$ Then $L\cong PSL_2(q)$ and $C_{G_2}=L imes\langle j
angle.$

Suppose $C_M \subseteq N_c(C_{G_2})$. Let T_{G_2} , T_M , and T_N be Sylow 2-subgroups of C_{G_2} , C_M , and $N_C(C_{G_2})$, respectively, such that $T_{G_2} \subseteq T_M \subseteq T_N$. An easy computation shows $N_c(C_{G_2}) = T_N C_{G_2}, T_N$ is nonabelian of order 16, $T_{G_{\lambda}}$ is elementary abelian of order 8, and $|N_{G_{\lambda}}(T_{G_{\lambda}})/C_{G_{\lambda}}(T_{G_{\lambda}})|=21$. If $T_{M}=T_{N}$, then $|N_{M}(T_{G_{\lambda}})/C_{M}(T_{G_{\lambda}})|=42$, which is absurd since GL(3,2)has no subgroups of order 42. Thus $T_{\scriptscriptstyle M} \subset T_{\scriptscriptstyle N}$, so $C_{\scriptscriptstyle M} = T_{\scriptscriptstyle M} C_{\scriptscriptstyle G_{\scriptscriptstyle 2}} = C_{\scriptscriptstyle G_{\scriptscriptstyle 2}}$. By a theorem of Walter [28], $|M| = |G_1|$, so $M = G_1$, as required. Thus, we may assume $C_{\scriptscriptstyle M} \not \subseteq N_{\scriptscriptstyle C}(C_{\scriptscriptstyle G_{\scriptscriptstyle 2}})$.

Let $\bar{C}=C/\langle j \rangle$, and for any $A \subseteq C$ write \bar{A} for $A\langle j \rangle/\langle j \rangle$. $ar{C}=ar{L}_{\scriptscriptstyle 1} imesar{L}_{\scriptscriptstyle 2},\,ar{L}_{\scriptscriptstyle i}$ isomorphic to $PSL_{\scriptscriptstyle 2}(k).$ Let $\pi_{\scriptscriptstyle i},\,i=1,\,2$, be the projection \bar{C} on \bar{L}_i .

Suppose $\pi_1(\bar{L}) \subseteq \bar{C}_M$. Since $\bar{L} \subseteq \bar{C}_M$, also $\pi_2(\bar{L}) \subseteq \bar{C}_M$. Since $j \in$ C_M , we get $x_{\rho}(t) \in M$ for $\rho = \pm (\alpha + \beta)$, $\pm (\alpha + 3\beta)$, and all $t \in GF(q)$. In particular, $n_{\alpha+\beta}(1) \in M$. Now U_{λ} contains an element

$$x = x_{\alpha}(1)x_{\beta}(1) \cdots$$

so M contains $[x, x_{\alpha+3\beta}(t)] = x_{2\alpha+3\beta}(\pm t)$ for all $t \in GF(q)$. Conjugating by N_{λ} , we find $x_{-2\alpha-3\beta}(t) \in M$ for all $t \in GF(q)$. Hence M contains $n_{2\alpha+3\beta}(1)$. Since $W = \langle w_{\alpha+\beta}, w_{2\alpha+3\beta} \rangle$, M covers N/H. As $\langle (X_{\alpha+\beta})_{\lambda^2}, (X_{\alpha+\beta})_{\lambda^2} \rangle \subseteq M$, it follows that $G_{\lambda^2} \subseteq M$. Thus, we may assume $\pi_1(\bar{L}) \nsubseteq \bar{C}_M$, and similarly, $\pi_2(\bar{L}) \nsubseteq \bar{C}_M$.

Suppose next that $\pi_1(\bar{C}_M)$ is not solvable. Now $\pi_1(\bar{L}) = (\bar{L}_1)^s_2 2$, so either $\pi_1(\bar{C}_M)^s = (\bar{L}_1)^s_{2^{2m}}$ for some m, or else q=3 and $\pi_1(\bar{C}_M)\cong A_5$, the alternating group. To see this observe that since $\pi_1(\bar{C}_M)$ is finite its inverse image in L_1 is a finite subgroup of $SL_2(k)$ and so is conjugate in $GL_2(k)$ to a subgroup of $SL_2(3^f)$ for some f. Hence for purposes of identifying $\pi_1(\bar{C}_M)$ up to isomorphism, we may assume it lies in $SL_2(3^f)$. If $3^2 \nmid |\pi_1(\bar{C}_M)|$, the argument of Lemma 2.4 shows that $\pi_1(\bar{C}_M) \subseteq (\bar{L}_1)_{2^{2m}}$ for some n and Dickson's results [6] may be used. While if $3^2 \nmid |\pi_1(\bar{C}_M)|$, these results imply $\pi_1(\bar{C}_M) \cong A_5$.

If $\pi_1(\overline{C}_M)\cong A_5$, then $\overline{C}M\cap \overline{L}_1 \triangleleft \pi_1(\overline{C}_M)$ and $\pi_1(\overline{L}) \not\subseteq \overline{C}_M$ imply $\overline{C}_M\cap \overline{L}_1=1$. Hence π_2 $(\overline{C}_M)/\overline{C}_M\cap \overline{L}_2\cong A_5$, so $\pi_2(\overline{C}_M)$ is nonsolvable. Applying the above argument to $\pi_2(\overline{C}_M)$ yields $\pi_2(\overline{C}_M)\cong A_5$, hence $\overline{C}_M\cong A_5$, so $C_M\cong Z_2\times A_5$. Since M contains $G_\lambda\cong {}^2G_2(3)$, all involutions in C_M are M-conjugate in this case, so by a theorem of Janko [19], $3^2\not\mid M|$, which is absurd as $G_\lambda\subseteq M$.

Hence, $\pi_1(\overline{C}_M)^s = (\overline{L}_1)_{\lambda^2m}^s$. Since we are assuming that $\pi_1(\overline{C}_M)$ is not solvable this group is simple, so as in the A_5 case we get $\pi_2(\overline{C}_M)^s = (\overline{L}_2)_2^s 2m$, $\overline{C}_M^s \cap \overline{L}_1 = \overline{C}_M^s \cap \overline{L}_2 = 1$. If m = 1, then $\overline{L} \subseteq \overline{C}_M$ implies $\overline{L} = \overline{C}_M^s$, so $\overline{C}_M \subseteq N_G(\overline{L})$, contrary to what was shown above. Hence m > 1. Now \overline{C}_M^s is defined by an isomorphism between the $\pi_i(\overline{C}_M)^s$, which restricts on $\pi_i(\overline{L})$ to $x_{\pm(\alpha+\beta)}(t) \longleftrightarrow x_{\pm(\alpha+3\beta)}(t^{2q_0})$. From the well-known classification of automorphisms of PSL_2 there exists $d = 3^i$ such that $\overline{C}_M^s = \langle \overline{x}_\pm^*(t) | t \in GF(q^m) \rangle$, where we define $x_+^*(t) = x_{(\alpha+\beta)}(t)x_{(\alpha+3\beta)}(t^d)$ and x_-^* is defined similarly. (This extends previous notation; $t^d = t^{3q_0}$ for $t \in GF(q)$.) Hence $C_M^s = \langle x_\pm^*(t) | t \in GF(q^m) \rangle$. Set $h^*(t) = h_{\alpha+\beta}(t)h_{\alpha+3\beta}(t^d)$. Since $[L_1, L_2] = 1$, C_M^s contains $h^*(t)$ for all $t \in GF(q^m)$.

Let x, y and z be elements of G_{λ} of the form $x = x_{\alpha}(1)x_{\beta}(1) \cdots$, $y = x_{\alpha+\beta}(1)x_{\alpha+\beta}(1) \cdots$, $z = x_{\alpha+2\beta}(1)x_{2\alpha+\beta}(1)$, then for any t, $u \in GF(q^m)^x$, M contains the following elements:

$$(1) x^{h^{*(t)}} = x_{\alpha}(t^{3-d})x_{\beta}(t^{d-1}) \cdot \cdot \cdot, \ y^{h^{*(u)}} = x_{\alpha+\beta}(u^{2})x_{\alpha+3\beta}(u^{2d}) \cdot \cdot \cdot$$

$$[x^{h^*(t)}, y^{h^*(u)}] = x_{\alpha+2\beta}(t^{d-1}u^2)x_{2\alpha+3\beta}(t^{3-d}u^{2d}).$$

Since every element of $GF(q^m)$ is a sum of square, M contains

$$(3) x_{\alpha+2\beta}(t^{d-1}u)x_{2\alpha+3\beta}(t^{3-d}u^d).$$

Replacing u by ut^{d-1} and t by 1 in (3), and multiplying the resulting

element by the inverse of (3), we get

$$(4)$$
 $x_{2\alpha+3\beta}((t^{3-d}-t^{d^2-d})u^d)\in M$.

Also, M contains

$$[x^{h^*(t)}, x] = x_{\alpha+\beta}(t^{3-d} - t^{d-1})x_{\alpha+3\beta}(t^{3d-3} - t^{3-d}) \cdots.$$

Suppose $t_0^{d^2} \neq t_0^3$ for some $t_0 \in GF(q^m)$. From (4), $x_{2\alpha+3\beta}(t) \in M$ for all $t \in GF(q^m)$, and then from (3), $x_{\alpha+2\beta}(t) \in M$ for all t. By (1),

$$x_{\alpha+\beta}(u)x_{\alpha+3\beta}(u^d)\in M$$
,

and by (5), $x_{\alpha+\beta}(t^{3-d}-t^{d-1})x_{\alpha+3\beta}(t^{3d-3}-t^{3-d}) \in M$. Substituting $t^{3-d}-t^{d-1}$ for u and multiplying by the inverse of this last element,

$$x_{lpha+3eta}(t^{3d-d^2}-t^{d^2-d}-t^{3d-3}+t^{3-d})\in M$$

for all $t \in GF(q^m)$. Since $\bar{C}^s_M \cap \bar{L}_z = 1$, the expression in parentheses vanishes identically. This yields

$$(6) (t3 - td2)(t-d2-3+3d + t-d) = 0$$

for all $t \in GF(q^m)^x$. On the other hand, since M contains $(X_{\alpha+2\beta})_{l^2m}$, $(X_{2\alpha+3\beta})_{l^2m}$, and an elment of $N_G(H)$ taking all roots to their negatives, M contains $\hat{h}(t,u)=h_{\alpha+2\beta}(t)h_{2\alpha+\beta}(u)$ for all $t,u\in GF(q^m)^x$, so contains $y^{\hat{h}(t,u)}=x_{\alpha+\beta}(t^3u)x_{\alpha+3\beta}(tu^3)\cdots$, hence contains $x_{\alpha+\beta}(t^3u)x_{\alpha+3\beta}(tu^3)$. Since $\bar{C}_M^s\cap\bar{L}_i=1,\ i=1,\ 2$, it follows that $tu^3=(t^3u)^d$ for all $t,u\in GF(q^m)$. Hence $u^d=u^3$ (take t=1) and $t^{3d}=t$ (take u=1). Therefore $t^d=t^3$ and $t^9=t$ for all $t\in GF(q^m)$, so q=3 and m=2. For any $t\in GF(9)-GF(3)$, we get $t^{d^2}\neq t^3$, and so by (6), $t^{d^2-4d+3}=-1$. But the left side is $t^{9-12+3}=1$, contradiction.

Hence $t^{d^2}=t^3$ for all $t\in GF(q^m)$. This implies that m is odd, and $C_M^s=C_{\lambda^{2m}}$. Hence $M\cap G_{\lambda^{2m}}\supseteq \langle C_{\lambda^{2m}},G_{\lambda}\rangle\supset C_{\lambda^{2m}}$. It follows from Walter's theorem [28] (applied to $M\cap G_{\lambda^{2m}}$) that $|M\cap G_{\lambda^{2m}}|=|G_{\lambda^{2m}}|$, i.e., $M\supseteq G_{\lambda^{2m}}$, as required. Hence we may assume $\pi_1(\bar{C}_M)$ is solvable, and similarly that $\pi_2(\bar{C}_M)$ is solvable. In particular, q=3.

It follows from Dickson's results [6] that $\pi_i(\bar{C}_M) \subseteq N_{\bar{L}_i}(\bar{L}) \cong S_4$, the symmetric group for i=1,2. If $9 \mid |\bar{C}_M|$, it follows easily that $\pi_1(\bar{L}) \times \pi_2(\bar{L}) \subseteq \bar{C}_M$, contrary to what was shown above. Thus \bar{C}_M has Sylow 3-subgroups of order 3. Since $\bar{C}_M \not\subseteq N_{\bar{C}}(\bar{C}_{G_{\bar{c}}})$, C_M must be an extension of the central product Q_8*Q_8 by either a group of order 3 or the symmetric group S_3 . Let by a Sylow 2-subgroup of C_M . It is easily verified that $Z(T) = \langle j \rangle$. Hence T is a Sylow 2-subgroup of M. Since $\langle j^M \rangle \supseteq (G_{\lambda})'$, which is perfect, $O_2(M) = 1$. Now T_{λ} is elementary of order 8, and all its nonidentity elements are conjugate in M (indeed in G_{λ}). Since $j \in T_{\lambda}$ and $O_{2'}(C_M(j)) = 1$, it follows that $O_{2'}(M) \subseteq \langle O_{2'}(C_M(i)) | i \in T_{\lambda}^{\sharp} \rangle = 1$. Let M_0 be a minimal normal subgroup

of M. Thus M_0 is the direct product of isomorphic nonabelian simple groups. By [8], [12] and and a theorem of Burnside, each simple factor has 2-rank at least 2. However, one sees easily that T has 2-rank 3. Hence, M_0 is simple. From the structure of T, we see that $T_2 = C_T(T_2)$, and $|N_T(T_2)/T_2| \ge 4$. On the other hand, since $\langle j \rangle = Z(T)$, $j \in M_0$, and so $(G_2)' = \langle j^M \rangle \subseteq M_0$, so $|N_{M_0}(T_2)/T_2|$ is divisible by 7. Since $N_{M_0}(T_2)/T_2 \triangleleft N_M(T_2)/T_2$, a subgroup of $GL_3(2)$, it follows that $N_{M_0}(T_2)/T_2 = N_M(T_2)/T_2 \cong GL_3(2)$. In particular, $|T| \ge 2^6$, so $|T| = 2^6$, and also $T \subseteq M_0$. Hence $M_0 \supseteq T[T, C_M] = C_M$. By the the Frattini argument, $M = M_0 N_M(T) \subseteq M_0 C_M = M_0$, so $M = M_0$ is simple.

Quoting the classification of finite simple groups in which the centralizer of an involution (in the centre of Sylow 2-subgroups) is isomorphic to C_M , we find that the only such group which in addition has a subgroup isomorphic to G_{λ} is the alternating group A_{0} (see, for example [14]). Hence $M \cong A_{0}$.

Let S be a Sylow 3-subgroup of M containg U_{λ} . Then $|S|=3^4$, so $U_{\lambda} \triangleleft S$, i.e., $S \subseteq N_G(U_{\lambda})$. By Lemma 1.1, $S \subseteq B$, so $S \subseteq U$. Let $U'=X_{\alpha+\beta}X_{\alpha+3\beta}X_{\alpha+2\beta}X_{2\alpha+3\beta}$. Now S is the wreath product $Z_3 \wr Z_3$. It follows easily that $S'=U_{\lambda}\cap U'=\langle x_{\alpha+\beta}(1)x_{\alpha+3\beta}(1),x_{\alpha+2\beta}(1)x_{2\alpha+3\beta}(1)\rangle$, and also that S is generated by U_{λ} and an element $z\in C_U(S')$ of order 3. The only such z lie in U', so $S=U_{\lambda}(S\cap U')$. Hence $|S:S\cap U'|=3$. Let $U^2=Z(U)=X_{\alpha+2\beta}X_{2\alpha+3\beta}$. Then $U'/U^2=Z(U/U^2)$, so $S\cap U'/S\cap U^2\subseteq Z(S/S\cap U^2)$, so $S/S\cap U^2$ is abelian. Hence $S'\subseteq S\cap U^2\subseteq Z(S)$, contradiction. This completes the proof.

3. Theorem 2.

(3.1) Statement of results. As in previous sections G denotes a simple algebraic group over an algebraically closed field k of characteristic $p \neq 0$.

We wish to examine certain $\eta \in \operatorname{Aut}(G_{\mu})$ and determine the subgroups of G_{μ} lying above $C_{G_{\mu}}(\eta)$. We cannot restrict ourselves to η induced on G_{μ} by an element of the form $g \cdot \lambda$, where $\lambda^{n} = \mu$, $0 < n \in \mathbb{Z}$, $g \in G_{\mu}$. For example, let $G = A_{l}(k)$, $l \geq 2$, $\mu = {}^{2}\sigma_{q}$. The "field" (or "graph") automorphism η of $O^{p'}(G_{\mu}) = {}^{2}A_{l}(q) \cong PSU(l+1,q)$ does not have the above shape. Indeed, it is induced on G_{μ} by $\lambda \in \operatorname{Aut}(G)$, $\lambda = \sigma_{q}$. Thus, to examine questions of this type, we must consider pairs of commuting endomorphisms λ , μ of G with G_{λ} and G_{μ} finite. Then some power of λ centralizes G_{μ} . We may suppose that μ , λ are in standard form (see 1.2) and put $G_{\mu,\lambda} = G_{\mu} \cap G_{\lambda}$.

THEOREM 2. Let G be as described above. Let r > 1 be an integer and $\lambda = \sigma_q$, $\mu = {}^s\sigma_{q^{r/s}}$ where G possesses a graph automorphism of order $s \in \{2, 3\}$ and s divides r.

Let M be a group, $O^{p'}(G_{\lambda,\mu}) \leq M \leq G_{\mu}$. Then precisely one of the following holds if r is a prime (i.e., r = s)

- (1) $G_{\lambda,\mu}\cong C_n(2^m)$, $G_{\mu}\cong {}^2A_{2n}(2^m)$, $O^{2'}(M)\cong {}^2A_{2n-1}(2^m)$, $M/O^{2'}(M)$ is cyclic of order dividing 2^m+1 , $n\geq 2$.
 - $(2) \quad M \leq G_{\lambda,\mu}$
 - $(3) \quad O^{p'}(G_{\mu}) \leq M$
- (4) p=2, $G_{\lambda,\mu}\cong {}^2C_2(2)$, $G_{\mu}\cong {}^2C_2(2^r)$; M lies in a a unique maximal subgroup M_0 which is a Frobenius group of order $4(2^r\pm 2^{(r+1)/2}+1)$ and $G_{\mu}\cong {}^2C_2(2^r)$ for odd $r\geq 5$.
- (5) $p=3,~G_{\lambda,\mu}\cong PGL(2,~3),~G_{\mu}\cong {}^2A_{2}(3)\cong U_{3}(3),~G_{\lambda,\mu}< M< G_{\mu},~M\cong PSL(2,~7),$
- (6) p = 5, $G_{\lambda,\mu} \cong PGL(2, 5)$, $O^{5'}(G_{\nu}) \cong {}^{2}A_{2}(5) \cong U_{3}(5)$, $G_{\lambda,\mu} < M_{i} < O^{5'}(G_{\mu})$, $i = 1, 2, M_{1} \cong A_{7}, M_{2} \cong M_{10}$.

Furthermore, if r is not assumed to be prime, but $|M|_p = |G_{\lambda,\mu}|_p$, then (x) holds, for some $2 \le x \le 6$.

We wish to emphasize the point that we have not fully examined the question: if G_{μ} is a finite group of Lie type and η is a noninner automorphism, what are the subgroups of G_{μ} lying above $C_{G_{\nu}}(\eta)$? We have examined only the case where η is induced on G_{μ} by λ , an endomorphism of G with $\lambda^r = \mu$ or $\lambda = \sigma_q r$ and $\mu = {}^s \sigma_{qr/s}$. For instance, letting λ^* be the image of one of the above λ in Aut (G_{μ}) , there may be an η in the coset $\text{Inn}(G_{\mu}) \cdot \lambda^*$ such that $|\eta| = |\lambda^*|$, yet η and λ^* are not conjugate in Aut (G_{μ}) or even $(G_{\mu})_{\eta} \ncong (G_{\mu})_{\lambda^*}$.

In proving the above result we may apply Theorem 1 wherever $\langle \lambda, \mu \rangle$ is a cyclic group; for then λ may be replaced by a generator of $\langle \lambda, \mu \rangle$.

(3.2) An example. As an illustration of where our results do not apply we give the following example, for which we thank J. E. McLaughlin.

Take G to have type A_3 , $\mu={}^2\sigma_3$, $\lambda=\sigma_3$. Then $L=O^3'(G_\mu)\cong {}^2A_3(3)\cong U_4(3)$ satisfies $L_1\cong B_3(3)$. However, L has an automorphism η of order 2, $\eta\equiv\lambda$ (mod Inn (L)), such that $L_\eta\cong{}^2D_2(3)\cong A_8$. There is a subgroup M< L containing L_η , $M\cong PSL(3,4)$. The existence of this M is not easily predicted by a study of the Lie structure. Indeed, its existence led J. E. McLaughlin to construct a sporadic simple group [21]. Looking at this example in more detail, we see that ${}^2A_3(3)={}^2D_3(3)$, so that L may be regarded as K/Z(K), where $K=\mathcal{Q}^-(6,3)$, the commutator subgroup of the orthogonal group $O^-(6,3)$. In terms of matrices, let B be any symmetric 4×4 nonsingular matrix of determinant -1 with entries from F_3 and let -1 be the result of applying the field automorphism $x\mapsto x^3$ to a 4×4

matrix with entries from F_9 . Then SU(4,3) may be identified with $\{A \mid {}^t \bar{A}BA = B, \det A = 1\}$ and it has a "natural" field automorphism $\varphi \colon A \to \bar{A}$. However, φ is not the "standard field automorphism" of SU(4,3), as we have defined the term above. In fact, the fixed points of φ is the special orthogonal group associated with B. See Artin [1], p. 210.

A variation of our situation is the following: M is a group lying between $O^{p'}(G_{\lambda,\mu})'$ and $O^{p'}(G_{\mu})$. The problem (still not fully solved) is to show that $O^{p'}(G_{\lambda,\mu})' \leq M$ or identify M.

Of course, any "interesting" exceptions will be ones not already described by our main theorem. That is, we will be dealing with a Chevalley or twisted group $O^{p'}(G_{\lambda,\mu})$ which is not perfect (i.e., is not equal to its commutator subgroup). The possibilities for $O^{p'}(G_{\lambda,\mu})$ are then the solvable groups $A_1(2)'$, $A_1(3)'$, $A_2(2)$, and $C_2(2)$, plus the nonsolvable groups $C_2(2) \cong C_2(2) \cong C_2(2)$ and $C_2(2) \cong C_2(2)$ and $C_2(2)$ and $C_2(2)$ and $C_2(2)$ and $C_2(2)$ and C

$$G_{\scriptscriptstyle 2}(2)' < M < G_{\scriptscriptstyle 2}(4)$$
 , $M \cong J_{\scriptscriptstyle 2}$, Janko simple group

group of order 604,800; there are two conjugacy classes of such M, see Wales [27].

We mention that [27] does not determine all maximal subgroups of $G_2(4)$ containing $G_2(2)'$.

Another example we mention is the containment

$${}^{\scriptscriptstyle 2}F_{\scriptscriptstyle 4}(2)' < M < {}^{\scriptscriptstyle 2}E_{\scriptscriptstyle 6}(2)$$
 ,

where $M \cong M(22)$, the Fischer group of order $2^{17}3^{9}5^{2} \cdot 7 \cdot 11 \cdot 13$ [9], [10]. This does not quite fit in the above situation, because ${}^{2}F_{4}(2)$ cannot be realized as $G_{\lambda,\mu}$, where $G = E_{6}(k)$, char k = 2. However, the questions to be asked here are obvious: find finite groups M (if any) for which ${}^{2}F_{4}(2)' < M < X$, where $X \cong {}^{2}F_{4}(q)$, $F_{4}(q)$, ${}^{2}E_{6}(q)$ and $E_{6}(q)$, for q even, and where ${}^{2}F_{4}(2)' < {}^{2}F_{4}(2)$ is embedded in the natural fashion in X. We point out that in the above case where $M \cong M(22)$, it is not known for certain that the ${}^{2}F_{4}(2)'$ subgroup of M is conjugate to the one embedded in the "natural" way in ${}^{2}E_{6}(2)$.

(3.3) *Proof of Theorem* 2. We proceed by a series of lemmas. Some important intermediate results are given in Propositions 3.1 and 3.2.

LEMMA 3.1. Suppose G has a root system Σ having one root length. Let $\mu = {}^s\sigma_q$, $s \in \{2, 3\}$, and let $\lambda = \sigma_q$. Suppose M is a subgroup of G such that $G_{2,\mu}^s \subseteq M \subset G_{\mu}^s$. Then one of the following holds:

 $p \nmid |M:G^s_{\lambda,\mu}|$

(b) $p=2, \Sigma=A_{2n}, \ and \ either \ O^{2'}(M)\cong {}^{2}A_{2n-1}(q), \ or \ G_{\mu}={}^{2}A_{2}(2).$

Proof. Let $\bar{\Sigma}$ be the twisted "root system" of G_{μ} and \bar{W} the corresponding Weyl group. Thus $N_{\mu}/H_{\mu}\cong N_{\lambda,\mu}/H_{\lambda,\mu}\cong \bar{W}$. Also, $U_{\mu}=\prod_{\rho\in\bar{\Sigma}}x_{\rho}$. If $\Sigma\neq A_{2n}$, then $\bar{\Sigma}$ is a bona fide root system, and X_{ρ} is parametrized by GF(q) for long p, by $GF(q^s)$ for short ρ . If $\Sigma=A_{2n}$, then s=2, and $\bar{\Sigma}=\{\pm(a_i,2a_i),\pm a_i\pm a_j|1\leq i< j\leq n\}$ is of type " BC_n ", with $X_{\pm a_i\pm a_j}$ parametrized by $GF(q^s)$ and $X_{\pm(a_i,2a_i)}$ of type 2A_2 . The parametrizations by $GF(q^s)$ are not quite canonical: if τ is the Frobenius automorphism of $GF(q^s)/GF(q)$ there are s canonical parametrizations of X_{ρ} , in which the same element is represented as $x_{\rho}(t)$, or $x_{\rho}(t^r)$ (or $X_{\rho}(t^{r^2})$ if s=3). We shall ignore this ambiguity since it does not affect the validity of our arguments. Note that if X_{ρ} is parametrized by GF(q), then $(X_{\rho})_{\mu}=\{x_{\rho}(t)\mid t\in GF(q)\}$.

We show first that $N_{G_{\mu}}(U_{\lambda,\mu}) \subseteq B_{\mu}$. Let $g \in N_{G_{\mu}}(U_{\lambda,\mu})$, and write $g = bn_w u$ in canonical form $(w \in \overline{W})$. For every fundamental $\rho \in \overline{\Sigma}$, let $U^{\rho} = \prod_{\substack{\sigma \neq \rho \\ \sigma > 0}} X_{\sigma}$, so that $U_{\rho} \triangleleft U$, $U = U^{\rho} X_{\rho}$, and $X_{\rho} \cap U_{\rho} = 1$. (In case $\Sigma = BC_n$ we take $\{(a_1, 2a_1), a_2 - a_1, \cdots, a_n - a_{n-1}\}$ as the fundamental system.) Now $U_{\lambda,\mu} \cap X_{\rho} \neq 1$ for each such ρ , so $(U_{\lambda,\mu})^b$ contains an element of the form $x_{\rho}u_{\rho}$ with $1 \neq x_{\rho} \in X_{\rho}$, $u_{\rho} \in U^{\rho}$. Since $(x_{\rho}u_{\rho})^{n_w} \in (U_{\lambda,\mu})^{u-1} \subseteq U$, $w(\rho) \in \overline{\Sigma}^+$. Hence w = 1, so $g \in B_{\mu}$.

Now suppose (a) fails. Let $U^* = N_{M \cap U_{\mu}}(U_{\lambda,\mu})$. Since $U_{\lambda,\mu}$ is not one of $N_M(U_{\lambda,\mu})$ which equals $N_{M \cap B_{\lambda}}(U_{\lambda,\mu})$ by the above. Since U_{μ} is the Sylow p-subgroup of B_{μ} , $U^* \supseteq U_{\lambda,\mu}$.

Suppose $\Sigma \neq A_{2n}$. Put a partial order \leq on $\bar{\Sigma}$ refining the order given by heights. Write each $u \in U_{\mu}$ as $u = \prod_{\bar{\Sigma}^+} x_{\rho}(t_{\rho})$ in order, and set supp $(u) = \{\rho \mid t_{\rho} \neq 0\}$. Among all elements of $U^* - U_{\lambda,\mu}$, choose x to have the greatest support, in the lexicographic ordering. Write $x = x_{\rho_0}(t_{\rho_0}) \prod_{\rho > \rho_p} x_{\rho}(t_{\rho})$ with $t_{\rho_0} \neq 0$. Then in fact $x_{\rho_0}(t_{\rho_0}) \notin U_{\lambda,\mu}$, otherwise $x' = x_{\rho_0}(-t_{\rho_0})x \in U^* - U_{\lambda,\mu}$, and supp $(x') > \sup (x)$, contrary to choice of x. In particular, $t_{\rho_0} \notin GF(q)$, so ρ_0 is short. Suppose there is $\sigma \in \bar{\Sigma}^+$ such that ρ_0 and σ are fundamentally independent. Let $x^* = [x_{\sigma}(1), x] = x_{\rho_0 + \sigma}(\pm t_{\rho_0}) \cdots$, (for a complete description of the commutator formula in Steinberg variations, see [15]). Then $x_{\sigma}(1) \in U_{\lambda,\mu}$ and $x \in U^*$ imply $x^* \in U_{\lambda,\mu}$, so $t_{\rho_0} \in GF(q)$, contradiction. Hence no such σ is available. Suppose $\bar{\Sigma} = G_2$, with fundamental system $\{\alpha, \beta\}$, β short, and $\rho_0 = \alpha + \beta$. Then $x_{\rho}(1)$, $x_{\alpha+2\beta}(1) \in U_{\lambda,\mu}$, so $U_{\lambda,\mu}$ contains both $[x_{\alpha}(1), x] = x_{\alpha+2\beta}(\pm (t_{\rho_0}^+ + t_{\rho_0}^+))$ and

$$[x_{\alpha+2\beta}(1), x] = x_{2\alpha+3\beta}(\pm(t_{\rho_0} + t_{\rho_0}^{r} + t_{\rho_0}^{r^2}))$$
.

Hence GF(q) contains both coefficients, so contains t_{ρ_0} , contradiction.

We conclude from (*) (see Lemma 2.1) that $\rho_0 = \theta_s$. In the factorization of x, all terms $x_{\rho}(t_{\rho})$ after the first are for long ρ , hence lie in $U_{\lambda,\mu}$. Hence $x_{\rho_0}(t_{\rho_0})^{-1}x \in U_{\lambda,\mu}$, so $x_{\rho_0}(t_{\rho_0}) \in U^*$. Hence $X_{\rho_0} \cap M \supset (X_{\rho_0})_{\lambda}$. Now $\langle X_{\rho_0}, X_{-\rho_0} \rangle \cong A_1(q^s)$, and λ induces a field automorphism σ_q on this group, so by Theorem 1 (more precisely Lemma 2.5, which holds even for q=2), $\langle X_{\rho_0}, X_{-\rho_0} \rangle \subseteq M$, as s is prime. Conjugating by $N_{\lambda,\mu}$, we get $X_{\rho} \subseteq M$ for all short ρ ; since $X_{\rho} = (X_{\rho})_{\lambda} \subseteq M$ for long ρ , $M = G_{\mu}^s$, contrary to hypothesis. Therefore, $\Sigma = A_{2n}$.

If n=1, then (b) is immediate from work of Mitchell [22] and Hartley [16]. Suppose then n>1. For a root $\rho=\pm a_i\pm a_j,\, X_\rho=\{x_\rho(t)\,|\,t\in GF(q^2)\}$ and $(X_\rho)_{\lambda}=\{x_\rho(t)\,|\,t\in GF(q)\}$. For each $i=1,\,\cdots,\,n$, there is a root subgroup $X_i=\{x_i(t,\,u)\,|\,t^{1+q}+u+u^q=0,\,t,\,u\in GF(q^2)\}$ corresponding to the "root" $(a_i,\,2a_i)$. The opposite root subgroup is denoted by X_{-i} . We separate X_i into parts X_{a_i} and X_{2a_i} as follows: let $X_{2a_i}=Z(X_i)=\{x_i(0,\,u)\,|\,u\in GF(q^2),\,u+u^q=0\}$, and write $x_{2a_i}(u)$ for $x_i(0,\,u)$. Let X_{a_i} be a transversal to X_{2a_i} in X_i . If q is odd, we may choose X_{a_i} to be μ -invariant, so that if a coset C of X_{2a_i} in X_i is fixed by λ , then the representative of C in X_{a_i} is fixed by λ . The element of X_{a_i} representing the coset $x_i(t,\,u)X_{2a_i}$ will be written $x_i(t)$ ($t\in GF(q^2)$). Thus X_i is parametrized by $GF(q^2)$. We choose $x_i(0)=1$, without loss.

Let $\widetilde{\Sigma}=\{\pm a_i,\,\pm 2a_i,\,\pm a_i\pm a_j\,|\,1\leq i<\leq n\}$. Define a height function on $\widetilde{\Sigma}$ by setting $ht(a_i)=i$ and extending linearly. Then for $\rho,\,\sigma\in\widetilde{\Sigma}^+,\,[X_\rho,\,X_\sigma]\subseteq\langle X_\alpha\,|\,\alpha\in\widetilde{\Sigma},\,ht\,(\alpha)\geq ht(\rho)+ht\,(\sigma)\rangle$. Let \leq be a partial order on $\widetilde{\Sigma}$ refining the height order. Since $X_{\pm a_i\pm a_j},\,X_{2a_i}$, and $X_i=X_{a_i}X_{2a_i}$ are subgroups of G_μ , and since $a_i<2a_i$, every $u\in U_\mu$ is uniquely expressable as $\Pi x_\rho(t_\rho)$, the product over $\rho\in\widetilde{\Sigma}^+$ in increasing order, with t_ρ in the appropriate field. Set supp $(u)=\{\rho\,|\,t_\rho\neq 0\}$. Again, among all $x\in U^*-U_{\lambda,\mu}$ choose x maximal in the lexicographic ordering. Say $x=x_{\rho_0}(t_{\rho_0})\prod_{\rho>\rho_0}x_\rho(t_\rho)$, with $t_{\rho_0}\neq 0$. Then as before, $x_{\rho_0}(t_{\rho_0})\notin U_{\lambda,\mu}$.

Suppose q is odd. Then $(X_i)_{\lambda} = (X_{a_i})_{\lambda} = \{x_{a_i}(t) | t \in GF(q)\}$ for each i. So $x_{a_i}(1) \in U_{\lambda,\mu}$ for all i. Suppose $\rho_0 = a_j - a_i$ for some j > i. Then $[x, x_{a_i}(1)] = x_{a_j}(\pm t_{\rho_0}) \cdots$ lies in $U_{\lambda,\mu}$ so $t_{\rho_0} \in GF(q)$, whence $x_{\rho_0}(t_{\rho_0}) \in U_{\lambda,\mu}$, contradiction. If $\rho_0 = a_i$, then for j = 1 or 2, $U_{\lambda,\mu}$ contains $[x, x_{a_j}(1)] = x_{a_i+a_j}(\pm t_{\rho_0}) \cdots$, so $t_{\rho_0} \in GF(q)$ and $x_{\rho_0}(t_{\rho_0}) \in U_{\lambda,\mu}$, contradiction. If $\rho_0 = a_i + a_j$, j > i, then $U_{\lambda,\mu}$ contains $[x, x_{a_j-a_i}(1)] = x_{2a_j}(\pm (t_{\rho_0} - t_{\rho_0}^q)) \cdots$. Since $(X_{2a_j})_{\mu} = 1$, $t_{\rho_0} - t_{\rho_0}^q = 0$, so $t_{\rho_0} \in GF(q)$, again giving a contradiction. Suppose $\rho_0 = 2a_i$, $1 \leq i < l$. Write $x = x_{2a_i}(t_{\rho_0}) \cdots x_{a_i+a_{i+1}}(t) \cdots$. Then

$$[x, x_{a_{i+1}-a_i}(1)] = x_{a_i+a_{i+1}}(\pm t_{\rho_0}) \cdots x_{2a_{i+1}}(\pm (t-t^q) \pm t_{\rho_0}) \cdots$$

lies in $U_{\lambda,\mu}$, so $t_{\rho_0} \in GF(q)$ and $t - t^q \pm t_{\rho_0} = 0$. Hence $t - t^q \in GF(q)$. Since q is odd, this implies $t - t^q = 0$. Hence $t_{\rho_0} = 0$, contradiction.

We conclude that $\rho_0=2a_n$. Hence $M\cap X_n\supset (X_n)_\lambda(=1)$. Applying the case n=1 to $\langle X_n,X_{-n}\rangle$, we get $\langle X_n,X_{-n}\rangle\subseteq M$. Conjugating by $N_{\lambda,\mu}$, we get $X_i\subseteq M$ for all i. Hence M contains $[x_{a_1}(t),x_{a_2}(t')]=x_{a_1+a_2}(\pm tt')$ for all $t,t'\in GF(q^2)$, so $X_{a_1+a_2}\subseteq M$. This easily yields $G^s_\mu=M$, contradiction. Therefore, q is even, i.e., p=2.

In this case, we have $(X_i)_{\lambda} = X_{2a_i}$, and X_{a_i} is not λ -invariant. Let x, ρ_0 , and t_{ρ_0} be as before. If $\rho_0 = a_j - a_i$ for some j > i, then $U_{\lambda,\mu}$ contains $[x, x_{2a_i}(1)] = x_{a_i+a_i}(t_{\rho_0}) \cdots$, so $t_{\rho_0} \in GF(q)$, contradiction. If $\rho_0=2a_i$, then $x_{\rho_0}(t_{\rho_0})\in X_{2a_i}\subseteq U_{\lambda,\mu}$, contradiction. $\rho_0 = a_i + a_j \neq a_{n-1} + a_n$, then there exists $\sigma = a_{j'} - a_{i'}$, j' > i', such that $\rho_0 + \sigma$ is of the form $a_k + a_l$, and so $U_{\lambda,\mu}$ contains $[x, x_o(1)] =$ $x_{
ho_0} + \sigma(t_{
ho_0}) \cdots$, contradiction. If $\rho_0 = a_i$, $1 \leq i < n$, then $U_{\lambda,\mu}$ contains $[x, x_{a_{i+1}-a_i}(1)] = x_{a_{i+1}}(t_{\rho_0}) \cdots$, contradiction. Suppose $\rho_0 = a_n$, and write $x=x_{a_n}(t_{\rho_0})\cdots x_{2a_n}(t'), x_{a_n}(t_{\rho_0})=x_n(t_{\rho_0},u).$ Then $u+u^q=t_{\rho_0}^{1+q}\neq 0$, so $u \in GF(q^2) - GF(q)$. Let $n_0 = n_{a_n - a_{n-1}}(1)$, and set $x' = x^{n_0} = x_{a_{n-1}}(t_{\rho_0}) \cdots$ $x_{2a_{n-1}}(t')$ (with other nontrivial terms coming only from roots of the form $a_i + a_j$ or $2a_i$). Let $x^{(2)} = [x', x_{a_n - a_{n-1}}(1)]$. Then $x^{(2)} \in M$, and $x^{\scriptscriptstyle(2)}=x_{a_n}(t_{
ho_0})\cdots x_{a_n+a_{n-1}}(t'^q+u^q)x_{2a_n}($), with inside nontrivial terms coming only from roots of the form $a_n + a_j$ Let $u' = t'^q + u^q$. Since $t' \in GF(q)$ and $u \notin GF(q)$, $u' \notin GF(q)$. Now set $n_1 = n_{a_{n-1}}(1)$, and $x^{(3)} = 1$ $[x', (x^{(2)})^{n_1}].$ Then $x^{(3)} \in M$, and $x^{(3)} = x_{a_n}(t_{\rho_0}u') \cdots$. Since $u' \notin GF(q)$, we may assume that $t_{\rho_0} \notin GF(q)$, by replacing x by $x^{(3)}$ at the outset if necessary. But then $[x, x^{n_0}] = x_{a_n + a_{n-1}}(t^2_{\rho_0})$ and $t^2_{\rho_0} \in GF(q)$, so the maximality of x is violated. Thus $\rho_0 \neq a_n$, so $\rho_0 = a_n + a_{n-1}$. Hence $x_{\rho_0}(t_{\rho_0}) = x \cdot x_{2a_n}(\cdot) \in U^* - U_{\lambda,\mu}$. Applying Theorem 1 (Lemma 2.5) to $\langle X_{a_n+a_{n-1}}, X_{-a_n-a_{n-1}} \rangle$, we see that $X_{a_n+a_{n-1}} \subseteq M$. Thus $X_{\rho} \subseteq M$ if $ho=\pm a_i\pm a_j$. Let $\widetilde{G}=\langle X_
ho|
ho=\pm a_i\pm a_j$ or $2a_i
angle$, so that $\widetilde{G}\subseteq M$, and \widetilde{G} is (canonically generated) ${}^{2}A_{2n-1}(q)$. It is easily verified that $N_{G_{\mu}}(\widetilde{G})$ is the unique maximal subgroup of G_{μ} containing G. One considers the permutation group induced by SU(2n+1, q) on anisotropic vectors of a given length in the natural 2n + 1-dimensional module over $GF(q^2)$, and shows that the only sets of imprimitivity have the property that every block is a subset of one-dimensional subspace. Hence $\widetilde{G} \subseteq M \subseteq N_{G_{\mu}}(\widetilde{G})$. Since $N_{G_{\mu}}(\widetilde{G})/\widetilde{G} \cong Z_{q+1}$ is of odd order, $\widetilde{G} = O^{2\prime}(M)$, completing the proof.

We are now entitled to work under the following conditions:

- (A) r > 1 is an integer
- (B) λ , μ are commuting endomorphisms of G with G_{λ} and G_{μ} finite and λ induces an automorphism of order r on G_{μ}
- (C) Either (i) $\lambda^r = \mu$ and $\lambda = \sigma_q$ or $\lambda = {}^s\sigma_q$ where $r \nmid s$ and the Dynkin diagram for G has period $s \in \{2, 3\}$; or (ii) $\lambda = \sigma_q$ and $\mu = {}^s\sigma_{qr/s}$, where $r \mid s$ and the Dynkin diagram for G has period $s \in \{2, 3\}$.
 - (D) $O^{p'}(G_{\lambda,\mu}) \leq M \leq G_{\mu}$

(E) $|M|_p = |G_{\lambda,\mu}|_p$ i.e., $U_{\lambda,\mu} \in \operatorname{Syl}_p(M)$.

First a few observations. Namely, $G_{\lambda,\mu}$ and G_{μ} have the same rank and consequently, if P is a $\langle \lambda, \mu \rangle$ -invariant parabolic subgroup of G, λ leaves invariant every component of $P_{\mu}/O_{p}(P_{\mu})$ (see 2.4 for a discussion of components). We do not assume r is a prime. Here, the critical assumption is that $M_{\lambda,\mu} = M \cap G_{\lambda,\mu}$ contains a Sylow p-group of M. Also, even though Theorem 1 deals with the above case (C. i), none of the following arguments, except Lemma 3.9 and Proposition 3.2 are simplified by quoting Theorem 1.

LEMMA 3.2. Let P_{μ} be a proper parabolic subgroup of G_{μ} containing B_{μ} . Write $P_{\mu} = O_p(P_{\mu}) \cdot L_{\mu}$, where L_{μ} is generated by H_{μ} and standard root groups from G_{μ} . Let Σ_{μ} be a root system for G_{μ} . Let $\Sigma_0 = \{r \in \Sigma_{\mu} | X_r \leq O_p(P_{\mu})\}$, where X_r denotes a root group for G_{μ} (rather than for G). Set $P_{\mu}^- = \langle X_r, H_{\mu} | X_{-r} \leq P_{\mu} \rangle$. Then $G_{\mu} = \langle O_p(P_{\mu}), O_p(P_{\mu}^-) \rangle$.

Proof. Let $S = \langle O_p(P_\mu), O_p(P_\mu^-) \rangle$. Then L_μ normalizes S, whence SL_μ is a group containing B_μ , i.e., SL_μ is a standard parabolic subgroup. If SL_μ were proper, then $O_p(SL_\mu)$ would meet X_α nontrivially, for some $\alpha \in \Sigma_0$. But $X_{-\alpha} \leq S$ implies that $O_p(\langle X_\alpha, X_{-\alpha} \rangle) = 1$, contradiction. Thus $SL_\mu = G$. Since $S \triangleleft SL_\mu$, $S = G_\mu$, as required.

LEMMA 3.3. Let P be proper parabolic subgroup of G containg B. Then $C_{\sigma_{\mu}}(O_p(P_{\mu})) \leq O_p(P_{\mu})$, i.e., $O_{p'}(P_{\mu}) = 1$ and P_{μ} is p-constrained.

Proof. If necessary, we shall replace μ by $\nu = \mu^j$, where j > 1 is an integer such that (i) if μ involves a graph automorphism of period s > 1, (j, s) = 1 (ii) in G_{ν} , two opposite root groups generate a quasisimple group, i.e., we are avoiding small fields. Note that G_{ν} and G_{μ} have the same Weyl group and $G_{\mu} \leq G_{\nu}$. We claim that this change affects neither hypothesis nor conclusion. Namely, set $C_{\tau} = C_{G_{\tau}}(O_{p}(P_{\tau})) \triangleleft P_{\tau}$ for $\tau \in \{\mu, \nu\}$. By the fact that if X_{μ} is a root group for G_{ν} and $X_{\mu} = (X_{\nu})_{\mu}$, $C_{G_{\nu}}(X_{\mu}) = C_{G_{\nu}}(X_{\nu})$ (a straightforward exercise) and the fact that $O_{p}(P_{\tau})$ is a product of root groups in G_{τ} , $\tau \in \{\mu, \nu\}$, we get $C_{\mu} = C_{\nu} \cap G_{\mu}$. Thus, it suffices to prove $C_{\nu} \leq O_{p}(P_{\nu})$, because then C_{μ} is a normal p-group in P_{μ} , whence $C_{\mu} \leq O_{p}(P_{\mu})$. So, we make the replacement.

Let r be a root in the root system Σ_{μ} and X_r the corresponding root group in G_{μ} . An element of H_{μ} centralizes X_r , if and only if it centralizes X_{-r} . Therefore, by Lemma 3.2, $C \cap H_{\mu} \leq Z(G) = 1$. Letting \bar{C} denote the quotient $P_{\mu} \to \bar{P}_{\mu} = P_{\mu}/O_{p}(P_{\mu})$, we claim that $\bar{C} \cap \bar{H}_{\mu} = 1$. If not, let $H_0 \leq H_{\mu}$ satisfy $\bar{H}_0 = \bar{C} \cap \bar{H}_{\mu}$. Now, C is a normal subgroup of p-power index in $C \cdot O_{p}(P_{\mu})$, whence $H_0 \leq C_r$ and

so $C\cap H_{\mu}\neq 1$, absurd. Thus $\bar{C}\cap \bar{H}_{\mu}=1$. It follows that $\bar{C}\cap O^{p'}(\bar{P}_{\mu})=$ 1, because our replacement of μ guarantees that any normal subgroup of $O^{p'}(\bar{P}_{\mu})$ lies in \bar{H}_{μ} . Therefore, $[\bar{C}, \bar{U}_{\mu}] = 1$. This means $C \leq B_{\mu}$. Since B_{μ} has a normal Sylow p-subgroup and $O_p(\bar{C})=1$, it follows that \bar{C} is a normal p'-subgroup of \bar{B}_{μ} , whence $1 \neq \bar{C} \leq \bar{H}_{\mu}$, in conflict with above statements. The lemma follows.

Lemma 3.4. (i) For any μ , U is the unique conjugate of U which contains U_{μ} . (ii) Also U is the unique conjugate of U which contains $U_{\lambda,\mu}$, unless q is even, $\lambda = \sigma_q$, $\mu = {}^2\sigma_{q^{r/s}}$ and G has type A_{2n} , in which case $\{g \in G | U_{\lambda,\mu} \leq U^g\} = B \cup Bn_{w_x}B \cup n_{w_s}B$, where $\{1, w_r, w_s\} = \{w \in \langle w_r, w_s \rangle | X_{r+s}^w \leqq \langle X_r, X_s \rangle \}$ where r, s are the nth and (n+1)st roots in the Dynkin diagram for G. (iii) However, in all cases, U_{μ} is the unique G_{μ} -conjugate of U_{μ} containing $U_{\lambda,\mu}$.

Let $P(\lambda, \mu)$ be a parabolic subgroup for $G_{\lambda,\mu}$. (iv) Then there is a unique parabolic subgroup $P(\mu)$ of G_{μ} which contains $P(\lambda, \mu)$, and satisfies $P(\mu)_{\lambda} = P(\lambda, \mu)$. (v) Also there is a unique $\langle \lambda, \mu \rangle$ -invariant parabolic subgroup P of G for which $P_{\lambda,\mu} = P(\lambda,\mu)$ and $P = \langle P(\lambda,\mu), B \rangle$, unless we have the above exceptional q, G, λ , μ (see (ii)) and the $P(\lambda, \mu)$ is the one containing $B_{\lambda,\mu}$ which is associated with the subset of the Dynkin diagram for G consisting of all short roots. In the exceptional case, there is a $\langle \lambda, \mu \rangle$ -invariant parabolic subgroup of G for which $P_{\lambda,\mu}=P(\lambda,\,\mu),\,e.g.,\,P=\langle P(\lambda,\,\mu),\,B^g
angle,\,$ where $g\in G_{\lambda,\mu}$ satisfies $B_{\lambda,\mu}^g \leq P$.

Proof. (ii) Let $U_{\mu} < V = U^{g}$, $g \in G$. Let Σ be a root system for G. Write $g = bn_w u$, where $b \in B$, $n_w \in N_G(H)$ represents the element w of the Weyl group, and $u \in U(w) = \langle X_{\alpha} | \alpha \in \Sigma^+, \alpha^{w^{-1}} \in \Sigma^- \rangle$. Let $U^{(w)} = \langle X_{\alpha} | \alpha \in \Sigma^+, \alpha^{w^{-1}} \Sigma^+ \rangle$. Then $U^g = U^{n_w u}$ and so $U_{\mu} \leq U^{(w) u}$. Suppose $g \notin B$. Then there is such a g for which w is a fundamental reflection, $w = w_{\alpha}$ (see the appendix of Steinberg's notes [24]) so that $U^{(w)} \triangleleft U$. Thus to get a contradiction, it suffices to show $U_{\lambda,\mu} \not \leq U^{(w)}$.

Write $X_r = U_{(w)}$. If $\langle \lambda, \mu \rangle$ leave X_r invariant, we are done, as $(X_r)_{\lambda} \neq 1$. Therefore $\mu = {}^s\sigma_{q'}$ where q' is some power of p and s = 2or 3. But now, we see that $R = \langle X_r^{\mu i} | 0 \le i \le -1 \rangle$ satisfies $R_{\lambda,\mu} \le$ $U^{(w)}$ by checking the possibilities, unless $G = A_{2n}(k)$, $n \ge 1$, $\mu = {}^2\sigma_q r/2$ and $\lambda = \sigma_q$ and r is the nth or (n+1)st node in the Dynkin diagram for A_{2n} . The verification of the rest of (i) and (ii) is an exercise.

The proof of (iii) is obtained by a similar argument, and (iv) and (v) are straightforward.

LEMMA 3.5. There does not exist a proper parabolic subgroup of G_{μ} containing G_{λ} .

Proof. Assume false, and take a parabolic subgroup R, $G_{\lambda} \leq R < G_{\mu}$. Embed U_{λ} in a Sylow p-subgroup of R. By Lemma 3.4, $U_{\lambda} < U_{\mu} < R$. Since R is a proper parabolic subgroup, it is p-constrained (by Lemma 3.3) whence $Z(U) \leq O_p(R)$. Thus $1 \neq Z(U)_{\lambda} \leq O_p(R) \cap G_{\lambda} \triangleleft G_{\lambda}$, whereas $O_p(G_{\lambda}) = 1$, contradiction.

LEMMA 3.6. Let P be a parabolic subgroup of G which is $\langle \lambda, \mu \rangle$ -invariant. Then $O_p(P_{\lambda}) = O_p(P)_{\lambda}$, $O_p(P_{\mu}) = O_p(P)_{\mu}$, $O_p(P_{\lambda,\mu}) = O_p(P)_{\lambda,\mu}$.

Proof. Clearly $O_p(P)_\lambda \leq O_p(P_\lambda)$. Suppose the containment is proper. Let $\bar{O}_p(P)_\lambda = O_p(P_\lambda)$. Then $\overline{O_p(P_\lambda)} \neq 1$ is a normal p-subgroup of \bar{P} . However, $\langle \lambda, \mu \rangle$ leaves invariant a complement L to $O_p(P)$ in P. The structure of L implies that $O_p(L_\lambda) = 1$, contradiction. So $O_p(P_\lambda) = O_p(P)_\lambda$. The other assertions are proven similarly.

LEMMA 3.7. Let $V \subseteq H_{\mu}$ be a group of order prime to p for which $[U_{\lambda,\mu}, V] = 1$. Then V = 1 unless p = 2, $\mu = {}^2\sigma_{q^{r/2}}$, $\lambda = \sigma_q$, $G = A_n(k)$, n even, and |V| |q + 1 and $O^{p'}(C_{G_{\mu}}(V))/Z(O^{p'}(C_{G_{\mu}}(V))) \cong {}^2A_{n-1}(q)$.

Proof. If G_{μ} has rank 1, i.e., $G_{\mu} \cong A_1(q)$, ${}^2A_2(q)$, ${}^2C_2(q)$ or ${}^2G_2(q)$, the lemma is well-known to be true.

Let G be a counterexample of minimal rank. Letting Π be the set of fundamental roots, we may apply induction to $\bar{P} = P/O_p(P)$, P any parabolic subgroup. Then $\bar{V} \leq Z(\bar{P})$ unless $\bar{P}/Z(\bar{P})$ has a component of type A_l , l even. If $\bar{V} \leq Z(\bar{P})$, the Frattini argument shows $C_G(V)$ covers $P/O_p(P)$. Since $V \neq 1$, $C_G(V)$ cannot cover all such $P/O_p(P)$, whence G has type A_n , n even. On the other hand, letting P be associated with various subsets of Π , we see that V centralizes all root groups, for short roots in Σ_μ , and on any root group for a long root in Σ_μ , V centralizes precisely the center. The remaining statements now follow.

LEMMA 3.8. Let P be a proper parabolic subgroup of G containing B. Assume P is $\langle \lambda, \mu \rangle$ -invariant. Then $C_{P_{\mu}}(O_{\nu}(P_{\lambda,\mu})) \leq O_{\nu}(P_{\mu}) \cdot K$ where K=1 unless $G_{\mu}={}^{2}A_{n}(q)$, n,q even and $K \leq H$ is a cyclic group of order dividing q+1 and centralizing $G_{\lambda,\mu}$. In particular, $C_{G_{\mu}}(G_{\lambda,\mu})=1$ unless $G_{\mu}={}^{2}A_{n}(q)$, n,q even, and $G_{\lambda,\mu}\cong C_{n/2}(q)$, in which case $C_{G_{\mu}}(G_{\lambda,\mu})\cong Z_{q+1}$.

Proof. The last sentence follows from the first statement of the lemma whose proof we now begin. We may assume r is a prime and that r = s if there is a graph automorphism involved in μ . Let

 $C=C_P(O_p(P_{\lambda,\mu}))$ and let - be the quotient map $P \mapsto \bar{P}=P/O_p(P)$. We may assume $\bar{C} \neq 1$. Since $\bar{C} \neq 1$, $P \neq B$, and so G_{μ} has rank at least 2. Let L be the standard $\langle \lambda, \mu \rangle$ -invariant complement to $O_{x}(P)$ in P (i.e., $L=\langle H, X_{\alpha} | \alpha \text{ runs over a subset of } \Sigma \rangle$). Then $\bar{P} \cong L$ as $\langle \lambda, \mu \rangle$ -groups. Since $L_{\lambda,\mu}$ normalizes $O_q(P_{\lambda,\mu})$, $L_{\lambda,\mu}$ normalizes D= $C \cap L \cong C$.

Assume that $D_0=C_{\scriptscriptstyle D}(O^{\scriptscriptstyle p'}(L_{\scriptscriptstyle \lambda,\mu}))=C_{\scriptscriptstyle D}(O^{\scriptscriptstyle p'}(P_{\scriptscriptstyle \lambda,\mu}))
eq 1.$ A Frattini argument then shows $D_{\scriptscriptstyle 0}$ centralizes $O_{\scriptscriptstyle p}(P_{\scriptscriptstyle \lambda,\mu})(U\cap L_{\scriptscriptstyle \lambda,\mu})=U_{\scriptscriptstyle \lambda,\mu}.$ Lemma 3.7 $G_{\mu} \cong {}^{2}A_{n}(q)$, n, q even, and $1 \neq D_{0} \subseteq K$ in the notation of Lemma 3.7. Then, as $D_0 \leq D$, $D \leq N_{G_u}(K)$ and the lemma is verified by inspection.

We may now assume $D_0 = 1$. This will eventually lead to a contradiction. Now $D_{\lambda} \leq C_{P_{\lambda}}(O_{p}(P_{\lambda})) \leq O_{p}(P_{\lambda})$, by Lemma 2. $D_{\lambda}=1$. We may assume $D_{\mu}\neq 1$. Since r is prime, D_{μ} is nilpotent by Thompson's theorem [13]. Let $1 \neq V \leq D_{\mu}$ be minimal normal in $D_{\mu}L_{\lambda,\mu}\langle\lambda\rangle$. Then V is an elementary abelian t-group, for some prime $t \neq r$.

Assume that t=p. Let L_1, \dots, L_n be the components of $O^{p'}(L_n)$ and let $\pi_i: O^{p'}(L_\mu) \to \bar{L}_i = L_i/Z(L_i)$ be the "projections." Our hypotheses on λ , μ imply that λ stabilizes each L_i . Since $V \neq 1$ is a pgroup, and $Z(L_i)$ is a p'-group for all $i, V^{\pi_i} \neq 1$ for some i. $V^{\pi_i}(\bar{L}_i)_{\lambda}$ lies in a proper parabolic subgroup of \bar{L}_i , which is impossible by Lemma 3.5. Thus $t \neq p$.

Take $S \leq O_p(P_\mu)$ such that $S > O_p(P_{\lambda,\mu}) = S_{\lambda,\mu}$, $S_\lambda \leq C_S(V) \triangleleft S$ and $S/C_s(V)$ is an irreducible $V\langle \lambda \rangle$ -module for which $C_v(S) < V$ (such a choice is possible because $O_p(P_\mu) > O_p(P_{\lambda,\mu}), t \neq p, V \leq P_\mu$ and $O_p(P_\mu) \geq C_{P_\mu}(O_p(P_\mu))$.

We claim that r=p. If $r\neq p$, then $(S/C_s(V))_{\lambda}=1$, which implies $SV/C_s(V)$ is nilpotent, whence $[S, V] \leq C_s(V)$, [S, V] = [S, V, V] = 1and so $S \leq C_s(V)$, which is false. Therefore r = p.

We next argue that p=2. In S, take a minimal $V(\lambda)$ -invariant subgroup T which covers $S/C_s(V)$. Then T is special or elementary abelian, $T=[T,\ V]$ and $C_T(V)=T'$. Since $V\langle\lambda\rangle/\langle\lambda^p\rangle$ is a Frobenius group, $S/C_s(V) \cong T/C_T(V)$ is a free $\Lambda = F_r(\langle \lambda \rangle / \langle \lambda^p \rangle)$ -module. Choose $T_1 \leq T$ so that $T_1 \geq C_T(V)$, $T_1/C_T(V)$ has order p^p and is a free Λ module. Observe that T_1 cannot be elementary, or else $t \neq p$ implies that $T_1 \cong C_T(V) \times T_1/C_T(V)$ as $\langle \lambda \rangle$ -groups, and freeness of the right factor over Λ contradicts $(T_1)_{\lambda} \leq C_T(V)$. Take any hyperplane Λ of $C_T(V)$ which is λ -invariant. Then $T_1(\langle \lambda \rangle / \langle \lambda^p \rangle)$ is a "maximal group of maximal class," so by one of [26], [7], [3] we get, for odd p, $Z(T_1(\langle \lambda \rangle/\langle \lambda^p \rangle))/A > C_T(V)/A$. So assume p odd. Since $T/C_T(V)$ is an irreducible $V(\lambda)$ -module, and since $Z(T/A) > C_T(V)/A$, it follows that T/A is abelian, hence $T = [T, V] \times C_T(A) = [T, V]$ is elementary, which is impossible as noted above. Therefore, p = 2 and we also

get $O_2(P_{\mu})$ nonabelian.

Next consider the action of involutions in $L_{\lambda,\mu}$ on V. Suppose there is an involution w in $L_{\lambda,\mu}$ with $C_v(w) \neq 1$. Then $C_{L_{\lambda,\mu}}(w) \leq Q$, a proper parabolic subgroup of $L_{\lambda,\mu}$. Let $Q_1 = O_2(Q)$, $Q_0 = C_{Q_1}(w)$. Then we get $[C_v(w), Q_0] \leq Q_0 \cap C_v(w) = 1$ (because $L_{\lambda,\mu}$ normalizes V). So, $[C_v(w), Q_1] = 1$, by the $P \times Q$ lemma. By induction and $t \neq 2$, we get that $V \cap L_i \leq Z(L_i)$ whenever L_i is a component of L_μ such that $w \notin C(L_i)$.

If $[L_i, w] = 1$, we claim that $V^{\pi_i} = 1$. Suppose i is an index for which $[L_i, w] = 1$ and $V^{\pi_i} \neq 1$. Set $Y = L_i$. Then V^{τ_i} is normalized by Y_{λ} . If, for some involution x in the center of a Sylow group of Y_{λ} , $C_{V^{\pi_i}}(x) \neq 1$, we apply induction to get a contradiction. Therefore, by easy calculation, one concludes that there is no four-group W in Y_{λ} . Therefore $Y_{\lambda} \cong A_1(2)$, ${}^2A_2(2)$, ${}^2B_2(2)$.

We eliminate these cases. First assume $Y_{\lambda}\cong A_1(2)$. Then $Y\cong A_1(4)$ or ${}^2A_2(2)$. But $Y\cong A_1(4)$ is out because the only possibility for V^{π_i} is $O_3(Y_{\lambda})$, whence $V^{\pi_i}\cong [V,Y_{\lambda}]\leq V$. The $P\times Q$ lemma applied to the action of $(\langle\lambda\rangle/\langle\lambda^2\rangle)\times [V,Y_{\lambda}]$ on $O_2(P_{\mu})$ tells us that $[V,Y_{\lambda}]$ centralizes $O_2(P_{\mu})$, against Lemma 3.3. Thus $Y\cong {}^2A_2(2)$ and $Y_{\lambda}\cong A_1(2)$. Also, $G_{\mu}\cong {}^2A_{2m}(2)$, and $m\geq 3$, since $w\in L$ centralizes Y_{λ} . The only possiblity is $|V^{\pi_i}|=3$. Since V is an irreducible $\langle\lambda\rangle$ -module, $V^{\pi_i}\cong [V,Y_{\lambda}]$. We have $V_{\lambda}^{\pi_i}=1$ because $D_{\lambda}=1$. Thus, as $[V,Y_{\lambda}]$ is cyclic and is normalized by Y_{λ} , the structure of PSU(3,2) implies Z(Y)=1. Now it is clear that the parabolic subgroup P we are considering is associated with a subset of the Dynkin diagram

for G_{μ} (type C_m , $m \geq 3$) which contains the rightmost (long) root, β_m , but not β_{m-1} . Let Q be the parabolic subgroup associated with $\{\beta_2, \beta_3, \dots, \beta_m\}$. Then $O^2(Q)/O_2(Q) \cong SU(2m-1, 2)$ and $O_2(Q)$ is the "standard module" for SU(2m-1, 2). In particular, as Y is the group generated by the root groups associated with $\pm \beta_m$, $Y \cong SU(3, 2)$. But this contradicts Z(Y) = 1. Thus, $Y_{\lambda} \cong A_1(2)$ is impossible.

Suppose $Y_{\lambda}\cong {}^2A_2(2)$. Since r=2 one sees that λ cannot induce a field automorphism on Y by inspecting the possibilities. Thus $\lambda={}^s\sigma_q,\,s\in\{2,\,3\}$. If $\mu=\lambda^2$ were not a field automorphism, s=3 and λ would induce a field automorphism on Y, which is impossible. Thus s=2 and $\mu=\lambda^2$ is a field automorphism; in fact $\lambda={}^2\sigma_2,\,\mu=\sigma_4,\,Y\cong A_2(4)$. Then, the structure of $A_2(4)$ and $[V,\,Y_{\lambda}]\neq 1$ implies that $[V,\,Y_{\lambda}]=Z(Y)\cong Z_3$. But then $V=[V,\,Y_{\lambda}]$ cannot satisfy $V^{\pi_{\lambda}}\neq 1$, contradiction.

Suppose $Y_{\lambda} \cong {}^{2}B_{2}(2)$. Then r=2 implies that Y is not of type

Thus, $Y \cong B_2(2)$. Clearly, $V^{\pi_i} \cong 1$ and $V_1 = 1$ are impossible in this case.

We conclude that each $V^{\pi_i} = 1$, i.e., that $V \cap O^{2'}(L_{\mu}) \leq Z(O^{2'}(L_{\mu})) \leq$ H_{μ} . Therefore, $[V,L\cap U_{\lambda,\mu}]\leqq H_{\mu}\cap V$. Since $t\neq p,[V,L\cap U_{\lambda,\mu}]=$ $[V,\ L\cap U_{\lambda,\mu},\ L\cap U_{\lambda,\mu}]\leqq [H_\mu,\ U_{\lambda,\mu}]\leqq U.$ Therefore $[V,\ L\cap U_{\lambda,\mu}]=1.$ Since $[O_{2}(P)_{\lambda,\mu}, V] = 1$, this gives $[V, U_{\lambda,\mu}] = 1$. We new quote Lemma 3.7 to see that our lemma holds.

It therefore remains to treat the case that $C_{\nu}(w) = 1$ for every involution w in $L_{\lambda,\mu}$. Assume this. If $W \leq L_{\lambda,\mu}$ is elementary of order 4, $V = \langle C_v(x) | x \in W^* \rangle$. So, no such W exist, i.e., $L_{\lambda,\mu}$ has cyclic or quaternion Sylow 2-groups. Thus r=2 implies that $L_{\mu}\cong A_{i}(4)$ or ${}^{2}A_{2}(2)$ if $L_{\mu} > L_{\lambda,\mu}$ and $L_{\mu} = A_{1}(2)$ or ${}^{2}A_{2}(2)$ if $L_{\mu} = L_{\lambda,\mu}$.

At this point we may enlarge P if necessary to assume that P_{μ} is a maximal parabolic subgroup of G_{μ} . Thus, G_{μ} has rank 2. If $L_{\mu} \cong A_{1}(4)$, then $G_{\mu} \cong A_{2}(4)$, $B_{2}(4)$, $^{2}A_{3}(2)$, $^{2}A_{3}(4)$ or $^{2}A_{4}(2)$. If $L_{\mu} \cong ^{2}A_{2}(2)$, then $G_{\mu} \cong {}^{2}A_{4}(2)$. If $L_{\mu} \cong A_{1}(2)$, then $G_{\mu} \cong {}^{2}A_{3}(2)$. By inspection, each of these groups satisfies the conclusion of the lemma, so that the proof is complete.

PROPOSITION 3.1. Let M be a group such that $O^{p'}(G_{\lambda,\mu}) \leq M < G_{\mu}$, $M \not \leq G_{\lambda,\mu} \text{ and } U_{\lambda,\mu} \in \operatorname{Syl}_p(M). \text{ Then } \widetilde{M}_{\lambda,\mu} = N_M(O^{p'}(G_{\lambda,\mu})) \text{ is strongly }$ p-embedded in M.

(Note that $G_{\lambda,\mu}=N_{\scriptscriptstyle G}(G_{\lambda,\mu})$ unless $G=A_{\scriptscriptstyle R}(k),\; n,\; q$ even, $\mu=$ ${}^{2}\sigma_{q^{r/s}}, \lambda = \sigma_{q}.$

Proof. Let $R \neq 1$ be a p-group in $G_{\lambda,\mu}$ and, as in Lemma 3.4 embed $N_{G_{\lambda,\mu}}(R)$ in $P(\lambda,\mu)$, a parabolic subgroup of $G_{\lambda,\mu}$. We may assume that $P(\lambda, \mu) \ge U_{\lambda,\mu}$ by replacing R with a conjugate by an element of $O^{p'}(G_{\lambda,\mu})$ if necessary. Using Lemma 3.4(iv), we have that $P(\lambda, \mu)$ lies in a unique parabolic subgroup $P(\mu)$ of G_{μ} with $P(\mu)_{\lambda} =$ $P(\lambda, \mu)$. By Lemma 3.4(v), we may take P, a $\langle \lambda, \mu \rangle$ -invariant parabolic subgroup of G with $P_{\mu} = P(\mu)$ and we may assume $U \leq P$, by Lemma 3.4(i).

It suffices to prove $M \cap P = M \cap P_{\mu} \leq P_{\lambda,\mu} \cdot K$, where K is as in Lemma 3.8. Set $C = C_{P_{\mu}}(O_p(P_{\lambda,\mu}))$ and take $g \in M \cap P_{\mu}$. Then $U_{\lambda,\mu} \in$ $\operatorname{Syl}_p(M)$ implies that $M \cap P_\mu$ normalizes $O_p(P_{\lambda,\mu})$, whence $[g, O_p(P_{\lambda,\mu}), \lambda] =$ 1. Clearly $[O_p(P_{\lambda,\mu}), \lambda, g] = 1$, and so $[\lambda, g, O_p(P_{\lambda,\mu})] = 1$ by the three subgroups lemma, Thus $[\lambda, g] \in C$. By Lemma 3.8 $C \leq O_p(P_p) \cdot K$, where $K \leq H_{\mu}$, |K| |q+1. Letting be the quotient $P \mapsto \bar{P} =$ $P/O_p(P)$, we get $[\overline{P \cap M}, \lambda] \leq \overline{C} = \overline{K}$. Thus $\overline{P \cap M} \leq \overline{P}_{\lambda,\mu}$ or if $\overline{K} \neq 1$, $\overline{P \cap M} \leq N_{\overline{P}_n}([\overline{P \cap M}, \lambda]) \leq N_{\overline{P}_n}(\overline{K}) = C_{\overline{P}_n}(\overline{K})$ and \overline{P} has a component of type $A_n(k)$, n, q even. Also, we may enlarge P, if necessary, to assume that \bar{P}_{μ} has one component.

Suppose $\overline{P \cap M} \leq \overline{P}_{\lambda,\mu}$. Then $O^{2'}(P_{\lambda,\mu}) \leq P \cap M \leq O_2(P_{\mu}) \cdot L_{\lambda,\mu}$, where

L is a $\langle \lambda, \mu \rangle$ -invariant complement to $O_2(P)$ in P. Then $(|M:G_{\lambda,\mu}|, 2) = 1$ implies that $P \cap M = O^{2'}(P_{\lambda,\mu})$, as required. Thus, we may suppose $\overline{P \cap M} \not \leq \overline{P}_{\lambda,\mu}$. Let K, L be as above. We have $1 \neq [\overline{P \cap M}, \lambda] \leq \overline{K}$, q is even and $G = A_n(k)$, n even, $\mu = 2_{\sigma_q r/2}$, $\lambda = \sigma_q$. From Lemma 3.8, we know that $O^{2'}(C_{\overline{P}_\mu}(\overline{K}))/Z(O^{2'}C_{\overline{P}_\mu}(\overline{K}))) \cong {}^2A_{n-1}(q)$. Thus $\overline{Y} = O^{2'}(C_{\overline{P}_\mu}(\overline{K}))$ satisfies: $\overline{P \cap M} \cap \overline{Y}$ contains a Sylow 2-group of $\overline{P \cap M}$. Since $\overline{U}_{\mu,\lambda} \leq O^{2'}(\overline{Y}_\lambda) \leq O^{2'}(\overline{P \cap M})$, we may apply induction to \overline{P} to get $O^{2'}(\overline{Y}_\lambda) \cong C_{n/2}(q)$. The structure of \overline{P}_μ implies that $N_{\overline{P}_\mu}(\overline{Y}_\lambda) = \overline{K} \times \overline{Y}_\lambda$, whence $\overline{P \cap M} = (\overline{P \cap M} \cap \overline{K}) \times \overline{Y}_\lambda$.

As in the case $\overline{P \cap M} \leqq \overline{P}_{\lambda,\mu}$, we argue that $O^2(P_{\lambda,\mu}) = O^2(P \cap M)$. Write $(O_2(P_\mu) \cdot K) \cap M = O_2(P_{\lambda,\mu}) \cdot K_1$, where K_1 is a cyclic 2'-group. Now, K_1 is trivial on the Frattini factor group of $O_2(P_{\lambda,\mu})$, because K is, whence K_1 centralizes $O_2(P_{\lambda,\mu})$. But also, $[U_{\lambda,\mu}, K_1] \leqq O_2(P_{\lambda,\mu})$. Since K_1 then stabilizes the chain $U_{\lambda,\mu} \geqq O_2(P_{\lambda,\mu}) \geqq 1$, we get $K_1 \leqq C(U_{\lambda,\mu})$. The Frattini argument on $O_2(P_{\lambda,\mu})K_1 \triangleleft P \cap M$ implies that $C_{P \cap M}(K_1)$ covers $\overline{P \cap M}$, whence $K_1 \leqq Z(P \cap M)$. Since K contains a Hall 2'-subgroup of $Z(P \cap M)$, it follows that $K_1 \leqq K$, whence $K_1 = K \cap M$. Therefore, $M \leqq P_{\lambda,\mu} \cdot K$, as required.

COROLLARY. If p=2, $|M|_2=|U_{\lambda,\mu}|$, $M\geq O^{2'}(G_{\lambda,\mu})$ and $M\nleq G_{\lambda,\mu}$, then $\mu\in\langle\lambda\rangle$ and M lies in a unique maximal subgroup M_0 of G_μ , and we are in one of the following situations.

- (a) $G_{\lambda}\cong A_{1}(2), M_{0}\cong D_{2^{r}+1}, \ and \ r \ is \ odd, \ r\geq 3; \ G_{\mu}\cong A_{1}(2^{r})$
- (b) $G_{\lambda}\cong {}^2B_2(2)\cong Sz(2), \ r \ is \ odd, \ r\geqq 5, \ and \ M_{\circ} \ is \ a \ Frobenius group of order$

$$4(2^r \pm 2^{(r+1)/2} + 1); G_{\mu} \cong {}^{2}B_{\nu}(2^r)$$
.

Proof. Let $L=O^{2'}(G_{\lambda,\mu})$ then $\widetilde{M}_{\lambda,\mu}=N_M(O^{2'}(G_{\lambda,\mu}))$ is strongly embedded in M and $L=O_{2',2}(L)$, which implies $L\cong A_1(2)$, ${}^2B_2(2)$ or ${}^2A_2(2)$. We claim that $L\cong {}^2A_2(2)$ is impossible. So, assume $L\cong {}^2A_2(2)$. Then G_μ must be isomorphic to ${}^2A_2(2^r)$ for odd $r\ge 3$. Let t be an involution of L. Then t inverts O(M) because $C_{G_\mu}(t)=U_\mu$. Thus, $O(L)=[O(L),\,t]\le O(M)$. An easy calculation (which we omit) shows that $O(L)\cong Z_3\times Z_3$ is self centralizing in G_μ . This means O(L)=O(M) and so $M\le N_{G_\mu}(O(L))=G_{\lambda,\mu}\cong PGU(3,2)$, i.e., we have no exception in this case. Therefore, M has cyclic Sylow 2-groups, whence $M=O_{2',2}(M)$. A survey of the possibilities produces (a) and (b) as the precise list of exceptions to $M \le G_{\lambda,\mu}$.

REMARK. We henceforth assume that p is odd. Thus, $\widetilde{M}_{\lambda,\mu} = M_{\lambda,\mu} = M \cap G_{\lambda,\mu}$ (see Lemma 3.8 and use $G_{\lambda,\mu} = N_{G_{\mu}}(O^{p'}(G_{\lambda,\mu}))$ if $G_{\mu} \ncong {}^2A_{\pi}(q)$, n, q even).

LEMMA 3.9. If t is an involution of $M_{\lambda,\mu}$, then $C_{\mathrm{M}}(t) \leq M_{\lambda,\mu}$

unless either $\lambda^r = \mu$ (i.e., Theorem 1 applies to G) or one of (2), (3), (5), (6) holds.

Proof. Let t be an involution of $M_{\lambda,\mu}$. Set $C = C_G(t)$. Then $C = \widetilde{H}L$, where \widetilde{H} is a conjugate of H and $L = O^{p'}(C)$. We assume that $C \cap M \leq M_{\lambda,\mu}$.

Case 1. L=1. Then, letting t' be a conjugate of t in H, have that t' inverts every X_{α} , $\alpha \in \Sigma$. This implies that U is abelian, so that $G=A_1(k)$. Thus, $\mu=\lambda^r$ and Theorem 1 applies.

We observe that, if L contains some $\widetilde{L} \triangleleft C$ with $p \mid \mid \widetilde{L}_{\lambda,\mu} \mid$ and $\widetilde{L} \cap M = \widetilde{L}_{\lambda,\mu}$, we are done; for then, letting $R \in \operatorname{Syl}_p(\widetilde{L} \cap M)$ we have $M = (\widetilde{L} \cap M) \cdot N_M(R) \leq M_{\lambda,\mu}$, a contradiction.

- Case 2. $L \neq 1$ and quasisimple of rank at least 2. Then by induction, $C \cap M \leq M_{\lambda,\mu}$ unless $L_{\mu}/Z(L_{\mu}) \cong {}^{2}A_{2}(p)$, p=3 or 5. In the latter case, $L/Z(L) \cong A_{2}(k)$. Let t' be a conjugate of t in H and let X_{α} , X_{β} , $X_{\alpha+\beta}$ be the root groups centralized by t'. The shape of L_{μ} forces $G = A_{n}(k)$, $n \geq 4$ and $\mu = {}^{2}\sigma_{p}$. Since $n \geq 4$, we may choose roots γ and δ so that $\{\alpha, \beta, \gamma, \delta\}$ is a linearly independent set such that $\gamma + \delta$ is a root. Then, as t' inverts X_{γ} and X_{γ} , t' centralizes $X_{\gamma+\delta} = [X_{\gamma}, X_{\delta}]$. Since $\gamma + \delta$ is not in the span of α and β , this is a contradiction. Thus, Case 2 does not hold.
- Case 3. $L \neq 1$ and quasisimple of rank 1, i.e., $L/Z(L) \cong A_1(k)$. Let t' be a conjugate of t in H. Then t' inverts X_{β} for all $\beta \neq \alpha$, α a fixed root in Σ^+ (as in Case 1, we know U is nonabelian). It follows that $C_G(X_{\alpha})/X_{\alpha}$ has abelian Sylow p-subgroups. Also, if $O^{p'}(C_G(X_{\alpha})/X_{\alpha})$ were strictly larger then $O_p(C_G(X_{\alpha})/X_{\alpha})$, a Frattini argument would show that t' centralize some X_{β} , $\beta \neq \alpha$. Since this is false, $O^{p'}(C_G(X_{\alpha})/X_{\alpha}) = O_p(C_G(X_{\alpha})/X_{\alpha})$. Therefore, if α is long, $G = A_2(k)$ and if α is short, the fact that there are no long roots orthogonal to α implies $G = B_2(k)$.

Assume $G = B_{\imath}(k)$. Then $\langle \lambda, \mu \rangle$ is a cyclic group and Theorem 1 applies since $G_{\lambda,\mu}$ is not an exceptional case.

Thus $G = A_2(k)$. If $\langle \lambda, \mu \rangle$ is cyclic, then Theorem 1 applies since $G_{\lambda,\mu}$ cannot be an exceptional case. So we may assume $\langle \lambda, \mu \rangle$ is not cyclic. We then have $\mu = {}^2\sigma_q r/2$ and $\lambda = \sigma_q$. Then $G_{\lambda,\mu} \cong PGL(2,q)$ and we quote [22] to get that (2), (3), (5) or (6) holds.

Case 4. $L \neq 1$ is not quasisimple. Let $\tilde{L} \nleq Z(L)$ be any $\langle \lambda, \mu \rangle$ -invariant normal subgroup of L. By Lemma 3.2 we have that $|\tilde{L}_{\lambda,\mu}| \equiv 0 \pmod{p}$. Thus, if $\langle \lambda, \mu \rangle$ had more than one orbit on the set of components of L, Lemma 3.8 applied to an \tilde{L} as above, $\tilde{L} \neq L$ dan

to $C_L(\widetilde{L}) \neq 1$, shows that $L \cap M = M_{\lambda,\mu}$, a contradiction. Therefore, $\langle \lambda, \mu \rangle$ has one orbit on the set of components of L. So, L has $s \in \{2, 3\}$ components, $\langle \mu \rangle$ is transitive on them and λ normalizes each one.

Since $L\cap M>L_{\lambda,\mu}$, induction implies that $O^{p'}(L_{\lambda,\mu})/Z(L_{\lambda,\mu})\cong A_1(3)$, $A_1(5)$, or $A_1(5)$ and $L\cap M\cong A_5$, A_7 or M_{10} respectively. But then $L_{\mu}/Z(L_{\mu})$ must be isomorphic to, respectively, $A_1(9)$, ${}^2A_2(5)$ or ${}^2A_2(5)$. No μ of the form ${}^s\sigma_q r/s$ will give $L_{\mu}/Z(L_{\mu})$ isomorphic to any of these possibilities. This final contradiction proves the lemma.

PROPOSITION 3.2. Suppose $M_{\lambda,\mu} < M$. Then $M_{\lambda,\mu}$ is strongly embedded in M, or else (6) or an exceptional case listed in (2.2) holds.

Proof. By Lemma 3.9, it suffices to prove that $N_M(S) \leq M_{\lambda,\mu}$, for $S \in \operatorname{Syl}_2(M_{\lambda,\mu})$. Supposing this to be false, take an element $g \in N_M(S) - M_{\lambda,\mu}$ of odd order such that $\langle g \rangle$ causes fusion among elements of $Z \leq \Omega_1(Z(S))$ which are not fused in M. Let z_1, z_2 be two such elements. Assume that $|C_{M_{\lambda,\mu}}(z_1)| \equiv 0 \pmod p$, i=1, 2. Then, as $O^{p'}(C_{M_{\lambda,\mu}}(z_1))$ and $O^{p'}(C_{M_{\lambda,\mu}}(z_2))$ are fused under $g, |M_{\lambda,\mu} \cap M_{\lambda,\mu}^g| \equiv 0 \pmod p$. By Proposition 3.1, this forces $g \in M_{\lambda,\mu}$, contradiction. Hence we must show that $|C_{M_{\lambda,\mu}}(z_i)| \equiv 0 \pmod p$.

The arguments in the proof of Lemma 3.9 show that if $O^{p'}(C_G(z_i)) \neq 1$, then $O^{p'}(C_{G_{\lambda,\mu}}(z_i)) \neq 1$, so that we may assume $O^{p'}(C_G(z_i)) = 1$. Then, as in Case 1 in the proof of Lemma 3.9, we get that $G = A_1(k)$. But then $\langle \lambda, \mu \rangle$ is cyclic, and Theorem 1 tells us that p = 3, $G_{\mu} \cong A_1(9)$ and $M \cong \Sigma_5$ as in (2.2).

Lemma 3.10. G, μ , λ and M satisfy one of the conclusions of Theorem 2.

Proof. If false, Proposition 3.2 tells us that $M_{\lambda,\mu}$ is strongly embedded in M. By Bender's theorem [2] and Theorem 1, as $\langle \lambda, \mu \rangle$ is not cyclic, $M_{\lambda,\mu}$ is a solvable Steinberg variation. The only possibility is ${}^{2}A_{2}(2)$, where p=2 and and the Corollary to Proposition 3.1 tells us that no such M exists, contradiction.

This completes the proof of Theorem 2.

REFERENCES

- 1. E. Artin, Geometric Algebra, Interscience, N. Y. (1957).
- 2. H. Bender, Transitive Gruppen gerader Ordnung, in denen jede Involution genau einen Punkt festläβt, J. Algebra, 17 (1971), 527-554.
- 3. N. Blackburn, On a special class of p-groups, Acta Math., 100 (1958), 45-93.
- 4. A. Borel and J. Tits, Éléments unipotents et sous-groupes paraboliques de groupes

- réductifs. I, Inv. Math., 12 (1971), 95-105.
- 5. R. Carter, Simple Groups of Lie Type, J. Wiley & Sons, N. Y. (1972).
- 6. L. Dickson, Linear Groups, Dover, N. Y. (1958).
- 7. L. Evans, On a theorem of Thompson on fixed points of p-groups acting on p-groups, Math. Z., 93 (1966), 105-8.
- 8. W. Feit and J. Thompson, Solvability of groups of odd order, Pacific J. Math., 13 (1963), 775-1029.
- 9. B. Fischer, Finite groups generated by 3-transpositions. I, Inv. Math., 13 (1971), 232-246.
- 10. ——, Subgroups of ${}^{2}E_{6}(2)$ generated by 3-transpositions, (to appear).
- 11. D. E. Flesner, Maximal subgroups of PSp₄(2ⁿ) containing central elations or non-centered skew elations, Illinois J. Math., 19 (1975), 247-268.
- 12. G. Glauberman, Central elements in core free groups, J. Algebra, 4 (1966), 403-420.
- 13. D. Gorenstein, Finite Groups, Harper & Row, N. Y. (1968).
- 14. D. Gorenstein and K. Harada, Finite groups whose 2-subgroups are generated by at most 4 elements, Mem. Amer. Math. Soc., No. 147 (1974).
- 15. R. Griess, Schur multipliers of finite simple groups of Lie type, Trans. Amer. Math. Soc., 183 (1973), 355-421.
- 16. R. W. Hartley, Determination of the ternary collineation groups whose coefficients Lie in the $GF(2^n)$, Ann. Math., 27 (1925), 140-158.
- 17. J. Humphreys, Linear Algebraic Groups, Springer-Verlag, N. Y. (1975).
- 18. N. Iwahori, Centralizers of involutions in finite Chevalley group, Lecture Notes in Math. No. 131, Springer-Verlag (1970).
- 19. Z. Janko, A new finite simple group with abelian Sylow 2-subgroups and its characterization, J. Algebra, 4 (1966), 147-186.
- 20. S. Lang, Algebraic groups over finite fields, Amer. J. Math., 78 (1956), 555-563.
- 21. J. McLaughlin, A simple group of order 898,128,000, From R. Brauer & H. Sah, 'Theory of Finite Groups', Benjamin, N. Y. (1969).
- 22. H. N. Mitchell, Determination of the ordinary and modular ternary linear groups, Trans. Amer. Math. Soc., 12 (1911), 207-242.
- 23. R. Steinberg, Endomorphisms of linear algebraic groups, Mem. Amer. Math. Soc., no. 80 (1968).
- 24. ———, Lectures on Chevalley Groups, Yale Univ. (1967).
- 25. M. Suzuki, On a class of doubly transitive groups, Ann. Math., 75 (1962), 105-145.
- 26. J. Thompson, Fixed points of p-groups acting on p-groups, Math. Z., 86 (1964), 12-13.
- 27. D. Wales, Generators of the Hall-Janko group as a subgroup of $G_2(4)$, J. Algebra, 13 (1969), 513-516.
- 28. J. Walter, The characterization of finite groups with abelian Sylow 2-subgroups, Ann. Math., 89 (1969), 405-514.

Received April 14, 1976 and in revised form December 14, 1976. This research was supported by NSF Grants, MPS 74-07807, MPS 71-03070, and MPS 75-07512.

University of California Santa Cruz, CA 95064