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STABLE ISOMORPHISM AND STRONG MORITA
EQUIVALENCE OF C* -ALGEBRAS

LAWRENCE G. BROWN, PHILIP GREEN
AND MARC A. RIEFFEL

We show that if A and B are C*-algebras which possess
countable approximate identities, then A and B are stably
isomorphic if and only if they are strongly Morita equivalent.
By considering* Breuer ideals, we show that this may fail in
the absence of countable approximate identities. Finally we
discuss the Picard groups of C*-algebras, especially for
stable algebras.

()• Introduction* Theorem 2.8 of [4] states that if B is a full
hereditary subalgebra of a C*-algebra A, and if each of A and B have
strictly positive elements (or, equivalently, countable approximate
identities, by [1]), then B is stably isomorphic to A, that is, B®K
is isomorphic to A (g) K where K is the algebra of compact operators
on a separable infinite dimensional Hubert space. The purpose of
the present paper is to show how the above theorem implies that two
C*-algebras which are strongly Morita equivalent in the sense of
having an imprimitivity bimodule [8, 9, 10], will be stably isomorphic
if they possess strictly positive elements, and in particular if they
are separable. (The converse is readily apparent.) On the other
hand, in the second section, by considering Breuer ideals, we give
examples of pairs of C*-algebras which are strongly Morita equivalent
but are not stably isomorphic, even if we allow tensor products
with K{H) for nonseparable H. (Of course, one of them will fail
to have a strictly positive element.) Finally, in the last section we
discuss the Picard groups of C*-algebras. We show in particular
that the Picard group of any C*-algebra, J5, which is stable (that
is, B = JS (x) K) and has a strictly positive element, is isomorphic to
the quotient of the automorphism group of B by the subgroup of
generalized inner automorphisms of B.

1* The main theorem* Let A be a C*-algebra, and let M(A)
denote the double centralizer algebra of A. By a corner of A we
mean [4] a subalgebra of the form pAp where p is a projection
in M(A). A corner is said to be full if it is not contained in any
proper two-sided ideal of A, that is, if ApA is dense in A. Two
corners, pAp and qAq, are called complementary if p + q = 1. The
device by which we relate strong Morita equivalence to the setting
of [4] is:
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THEOREM 1.1. Let B and E be C*-algebras. Then B and E are
strongly Morita equivalent if and only if there is a C*-algebra A
with complementary full corners isomorphic to B and E respec-
tively.

Proof. Let A be a C*-algebra and let B be a full corner, pAp,
in A. Then, as in Example 6.7 of [8], Ap will be an A — 5-impri-
mitivity bimodule (Definition 6.10 of [8]), so that A and B are strongly
Morita equivalent. In particular, if B and E are full corners of A,
then both are strongly Morita equivalent to A, and so to each other.
(In fact, if E = qAq, B = pAp, then qAp will be an E — IMmprimi-
tivity bimodule.) Note that essentially the same argument shows
that a full hereditary subalgebra B of a C*-algebra C will be strongly
Morita equivalent to C. This should be compared to Theorem 2.8
of [4] which states that a full hereditary subalgebra £ of a C*-
algebra C is stably isomorphic to C if they both possess strictly
positive elements.

Conversely, suppose that X is an i£-.B-imprimitivity bimodule.
Without loss of generality we can assume that the E- and i?-valued
inner-products are definite. We use X to construct in a canonical
way a C*-algebra A containing E and B as complementary full
corners. We will call this algebra the linking algebra for X. Let
X denote the dual B — ϋMmprimitivity bimodule as defined in 6.17
of [8], so that if xeX, then x denotes x viewed as an element of
X. Let Ao denote the collection of 2 x 2 matrices

_ 1 eeE, x,yeX, beB,
y b)

with addition and scalar multiplication defined in the evident way.
The product of two such matrices is defined by

le x\ M xλ _ fee, + (x, y1}E ex, + xb,

\y b) 1& bj [ye, + by, (y, x,)B + bb,

and the adjoint of such a matrix is defined by

y b
e* y

It is readily verified that with these definitions Ao is a *-algebra.
Let M — X 0 B9 viewed as a j?-rigged space with the evident

right action of B, and with 2?-valued inner-product defined by

.
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Then Ao acts on M by

e x\{ z\ I ez + xe
y δ/U/ \(y, z)B + be

It is easily seen that this gives a *-representation of Ao with respect
to the B-valued inner-product defined just above. Furthermore it
is a routine matter to show that this representation is by bounded
operators as defined in 2.3 of [8]. (This is most easily done by
checking separately the four cases in which all but one entry of the
matrix is zero.) Thus we can equip Ao with the corresponding
operator norm so that it becomes a pre- C*-algebra. We define A,
the linking algebra for X, to be the completion of Ao. From the
fact that M contains B as a summand, it quickly follows that the
evident map of B into A is injective and so isometric. Similarly
the evident map of E into A is injective and so isometric, since the
map of E into operators on X is injective (for if eX — 0, then 0 =
(eX, X)E = e(X, X)E, so that eE = 0, since <X, X)E is assumed to
span a dense subspace of E).

Let

idx 0\ /0 0

o ) ' ί = ( θ id.

where idx and id* denote the identity maps of X and B into them-
selves. It is clear that p and q may be viewed as self-adjoint projections
in the algebra, L(M), of all bounded operators on M, and that left
and right multiplication by them map Ao, and so A, into itself. Thus
p and q may be viewed as projections in the multiplier algebra,
M(A), of A, so that pAp and qAq are corners of A. But it is clear
that pAop = E and qAoq = B, so that pAp = E and qAq = B since
E and B are complete. It is also clear that p + q is the identity
element of M(A), so that E and B are complementary corners of A.

Finally, we must check that B and E are full corners of A. But
this follows from routine matrix calculations together with the fact
that EX is dense in X for the norm \\(x, x)B\\1/2 (see 6.14 of [8]), and
a similar fact for XB.

THEOREM 1.2. Let B and E be C*-algebras. If B and E are
stably isomorphie, then they are strongly Morita equivalent. Con-
versely, if B and E are strongly Morita equivalent and if they both
possess strictly positive elements, then they are stably isomorphie.

Proof. Let K denote the algebra of compact operators on some
Hubert space, and let p be a rank-one projection in K. Then B is
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isomorphic to B®p, which is a full corner of B® K, and so B is
strongly Morita equivalent to B (g) K as mentioned earlier. Similarly
E is strongly Morita equivalent to E(x) K. Thus if B® K is iso-
morphic to E (g) K, then B and E are strongly Morita equivalent.

Conversely, if B and E are strongly Morita equivalent, view
them as complementary corners of the linking algebra, A, for some
E — U-imprimitivity bimodule, as in the previous theorem. A routine
argument shows that the sum of a strictly positive element for B
with one for E will be a strictly positive element for A. Thus we
can conclude from Theorem 2.8 of [4] that B and E are both stably
isomorphic to A, and so to each other.

We mention now an intriguing example. Let G be a locally
compact group and H a closed subgroup. Let C*(H) be the group
C*-algebra of H, and let C*(G, G/H) be the transformation group
C*-algebra of G acting on G/H. Then Mackey's imprimitivity theorem
as formulated in [8] says that C*(G, G/H) and C*(iJ) are strongly
Morita equivalent (and specifies a canonical imprimitivity bimodule).
We conclude from Theorem 2 above that these algebras are stably
isomorphic, at least if they are separable. Now if we let H act
by left translation on itself, then it is well known that the trans-
formation group C*-algebra C*(H, H) is isomorphic to the algebra
of compact operators on L\H) (see e.g., [7]), which is separable
and infinite if H is. Similarly, for C*(G, G). Thus, if G and H
are separable and infinite, we conclude from the above theorem
that

C*(G, G/H) <g) C*(H, H) = C*(H) (x) C*(G, G) .

If we view C*(H) as the transformation group algebra for H acting
on the one-point space {p}9 then it is easily seen that this implies that

C*(G x H, G/H x H) = C*(G x H,Gx {p}) .

It is not presently clear to us how one might reach this conclusion
from other considerations. Note that if G = R, H = Z, so G/H =
T, then

C*(Λ x Z, Tx Z) = (7*(iί x Z,Rx {p}) .

2* Counterexamples with Breuer ideals* We now describe
some examples of C*-algebras which are strongly Morita equivalent
but are not stably isomorphic. Let I be a type EL factor [5].
Then the Breuer ideal, B(M), of M is the sub-C*-algebra of M gen-
erated by all the finite projections in ikf. Recall [5] that if N is a
type Hi factor, and if L(H) denotes the algebra of bounded operators
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on an infinite dimensional Hubert space H, then N<ξ$L(H) (the von
Neumann algebra tensor product) is a type 11^ factor.

PROPOSITION 2.1. Let N be a type IIX factor, and let M = N(g)
L{H). Then B{M) is strongly Morita equivalent to N.

Proof. Let p be a rank-one projection in L(H). Then N =
N(g)p, which is a corner of B(M). Furthermore, this corner is full,
since the Breuer ideal of a type lloo factor is simple. But we have
seen that a full corner of an algebra is strongly Morita equivalent
to the original algebra.

LEMMA 2.2. Let M be a type 11^ factor. Then B(M) does not
contain a strictly positive element.

Proof. Suppose that B(M) contains a strictly positive element.
Then, using its spectral resolution, we can obtain a strictly positive
element m of the form m = Σ2~kek where the ek are orthogonal finite
projections. This sum can not be finite, for otherwise we could find a
finite projection which is strictly positive, which is clearly impossible.
For each k let fk be a projection smaller than ek whose trace is
smaller than 2"fc, so that n = Σfk is a finite projection in M, and
so in B(M). Let A be the commutative C*-algebra generated by
the ek, fkf and n, and let C be the sub-C*-algebra generated by the
ek and fk. Then it is clear that C is a proper ideal in A. Thus
there is a state on A which vanishes on C, and so on m. This state
extends to a state on B(M) which vanishes on m, contradicting the
assumption that m is strictly positive.

After we had written up these results Chuck Akemann pointed
out to us that the above lemma also appears as Proposition 4.5 of
[2] with a quite similar proof.

PROPOSITION 2.3. If C is a C*-algebra which has a strictly
positive element and if D is a corner of C, then D has a strictly
positive element.

Proof. If m is a strictly positive element of C, and if D — eCe
for e a projection in M(C), then erne is a strictly positive element
in D, for if φ is a state of D which vanishes on erne, then c \-> φ{ece)
is a state of C which vanishes on m.

We remark that the above result is false if D is only assumed
to be a hereditary subalgebra of C, as can be seen by taking D to
be any C*-algebra without strictly positive element and letting C be
the algebra obtained by adjoining a unit element to D.
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PROPOSITION 2.4. Let C be any C*-algebra, and let H be a se-
parable Hilbert space. Then C®K(H) has a strictly positive element
if and only if C does.

Proof. Let e be a finite projection in K(H). Then C is isomorphic
to C®β, which is a corner of C®K(H). Thus if C®K(H) has a
strictly positive element so does C by the previous proposition. Con-
versely, K(H) has a strictly positive element, say k, since K(H) is
separable. Then if m is a strictly positive element in C, it is easily
seen that m (g) k is a strictly positive element in C (x) K(H).

COROLLARY 2.5. If B and C are C*-algebras which are stably
isomorphic, then B has a strictly positive element if and only if C
does.

COROLLARY 2.6. // N is any type II2 factor and M is any type
Πoo factor, then N is not stably isomorphic to B(M).

One can suspect that the difficulty comes from using separable
Hilbert spaces in defining stable isomorphism, but we now show that
this is not the case.

THEOREM 2.7. Let N be a type II,. factor and M be a type 11^
factor, but now let H be a possibly nonseparable Hilbert space. Then
N®K(H) is not isomorphic to B{M)®K(H).

Proof. Suppose the two algebras are isomorphic. As before,
B{M) is a corner of B(M)(g)K(H), so that B{M) is a corner of
N®K(H). Let e be an infinite projection in M which is the supre-
mum of a countable number of finite projections in M. Then eMe
is a σ-finite lloo factor and so has a faithful state. Also, B(eMe) =
eB(M)e which is a corner of B(M), and so of N®K(H). Thus we
need only show that the Breuer ideal of a σ-finite 11^ factor can not
be a corner of N(g)K(H). Consequently, we assume from now on
that M is ^-finite, so that B(M) has a faithful state, say ψ.

Let / be the projection in the double centralizer algebra of
N®K(H) such that B(M) = f{N®K{H))f. Let {ea\ be the family
of rank-one projections in K(H) corresponding to some orthonormal
basis for H. Then the f(10ea)f are in B(M), and for any finite
set, F, of indices we have

It follows that
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> ea)f) ^ 1 .

This implies that /(I (g) ea) = 0 except for a countable number of α's.
Let e be the supremum in L(H) of the eα for which /(I (g) eα) Φ 0.
Then / ^ l ( g ) β . It follows that B(M) is a corner of N®K(eH),
which contradicts Corollary 2.6.

We remark that with some more effort one can show that the
Breuer ideal of IL, factor can not even be a hereditary subalgebra
of N ® K(H) where N is a type 1^ factor.

We would like to thank Bruce Blackadar for having shown us
the fact that, with notation as in Proposition 2.1, B(M) Φ N 0 K{H).
It was this remark which led us to find the counterexamples described
in this section.

3* Picard groups* We now discuss the relationship between
automorphisms of C*-algebras and strong Morita equivalence, especially
for stable C*-algebras. Let X be an E — 2?-imprimitivity bimodule.
By its Hausdorff completion we mean the E—5-imprimitivity bimodule
obtained by completing X with respect to the norm \\(x9 %}B\\U2> as
discussed in Proposition 2.10 of [8] and Proposition 3.1 of [11].
If X and Y are E — J5-imprimitivity bimodules, we say that X and
Y are equivalent if their Hausdorff completions are isomorphic as
E — JS-imprimitivity bimodules. In this case X and Y determine
equivalent equivalences between the category of Hermitian ^-modules
and the category of Hermitian 5-modules, as can be seen from Prop-
osition 5.8 of [8]. We can then form the category whose objects are
C*-algebras and whose morphisms are equivalence classes of imprimi-
tivity bimodules. The composition of an E — JS-imprimitivity bimodule
X with a B — C-imprimitivity bimodule Y is taken to be J ® 7 a s
defined in Theorem 5.9 and Proposition 6.21 of [8] (and then extended
to equivalence classes). This category is a category with inverses,
as is seen from Lemma 6.22 of [8]. In particular, if B is a fixed
C*-algebra, then the equivalence classes of B — U-imprimitivity bimo-
dules will form a group, which we will call the Picard group of B
and denote by Pic (B), in analogy with the definitions in Chapter 2,
§5 of [3J.

If E and B are C*-algebras and if θ is an isomorphism from
E to B, then it is clear that θ should determine an E — β-imprimi-
tivity bimodule, Xθ. As in [3] there are several ways to do this.
We choose the following conventions. Let Xθ be the vector space
E with the obvious left action of E on Xθ and the obvious E-valued
inner-product, but define the right action of B on Xθ by e-b = eθ~\b)



356 LAWRENCE G. BROWN, PHILIP GREEN AND MARC A. RIEFFEL

and the B-valued inner-product by (eίf e2)B = 0(e*e2). It is then
easily seen that if φ is an isomorphism from B to a C*-algebra C,
then Xθ (x)β Xψ is equivalent to Xφoθ, so that we obtain in this way
a contravariant functor from the category of C*-algebras with iso-
morphisms as morphisms, into the category of C*-algebras with
equivalence classes of imprimitivity bimodules as morphisms, and
this functor is injective on objects. In particular, we obtain an
anti-homomorphism from the group of automorphisms, Aut (B), of a
C*-algebra B, into Pic (B).

Let u be a unitary element of M(B), and let Adu denote the
automorphism of B defined by Adu(b) = ubu~\ We will call Adu a
generalized inner automorphism of B, and we will denote the group
of all generalized inner automorphisms of B by Gin (JS). It is easily
seen that Gin (B) is a normal subgroup of Aut (B).

PROPOSITION 3.1. The kernel of the anti-homomorphism of Aut (B)
into Pic (2?) is exactly Gin (B). That is, we have an exact sequence

1 > Gin (B) > Aut (B) > Pic (B) .

Proof. The identity element of Pic (2?) is (represented by) B
viewed in the usual way as a B — 2?-imprimitivity bimodule. If u is
a unitary element of M(B), then it is easily seen that the map b—»bw
is an imprimitivity bimodule isomorphism of B with XAdu. Then
XAdu also represents the identity element of Pic (2?), so that Adu is
in the kernel of the homomorphism from Aut (B) to Pic (2?). Con-
versely, let θ e Aut (2?) and suppose that Xθ represents the identity
element of Pic (2?). Since B and Xθ are both complete, this means
that there is an isomorphism, /, from B to Xθ. In particular, / is
a linear map from B to B having the properties that

f{bc) = bf(e) , f(cb) = f{c)θ~\b) , /(6)/(c)* = δc*

for all by c e B. But it is easily seen from this that the pair u =
(f°θ,f) is an element of M(B). The third equation above can then
be rewritten as

buu*c* = be* , or δ(l — uu*)c* = 0 ,

for all b, ceB, so that uu* = 1. Now the fact that / preserves the
rightsided inner-product says that

β(f(b)*f(c)) - δ*c , or θ(u*b*cu) = &*c

for b, ceB. Then for any d e B we have
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which, if we let δ*c run through an approximate identity for B, gives

d = θ(u*uθ-\d)) , or θ~\d) = u*uθ~\d) .

It follows that u*u = 1, so that u is unitary. Thus we can rewrite
the equation several lines above as

θ(Ad?(b*c)) = δ*c ,

from which it is clear that θ — Adu.

COROLLARY 3.2. Let E and B be C*-algebras, and let θ and φ
be isomorphisms from E to B. If Xθ and Xφ are equivalent, then
there is a unitary element, u, of M{B) such that φ = Aduoθ.

Proof. From our earlier comments it is clear that the "inverse"
of Xθ is Xθ-i, which will also represent the inverse of Xψ since Xψ

and Xθ are equivalent. Thus Xθ-i (x) Xψ — Xφoθ-i represents the identity
element of Pic (JB), so that by the above proposition there is a unitary
element, u, of M(B) such that φoθ~ι = Adu.

To give an indication of the kind of information which the Picard
group gives about a C*-algebra, we mention that if B is a finite
dimensional C*-algebra, then Pic (B) will be isomorphic to the group
of permutations of the spectrum of B, while Aut (i?)/Gin (B) will be
smaller than this if there are minimal two-sided ideals in B which have
different dimensions. In another direction, if T is a compact Hausdorff
space and B — C(T), then Pic (B) will include the multiplicative group
of line bundles over T, and in fact will be the semidirect product
of this group with the group of homeomorphisms of T.

We now wish to show that for stable algebras with strictly
positive elements, every imprimitivity bimodule comes from an iso-
morphism. Our main tool for doing this is:

LEMMA 3.3. Let E and B be C*-algebras and let Xbe an E — B-
imprimitivity bimodule. Let A be the linking algebra of X. Then
X is equivalent to Xθ for some isomorphism θ from E to B if and
only if there is a partial isometry, v, in M(A) such that

o or \o
In this case θ is defined by θ{e) = vev*.

Proof. If X is equivalent to Xθf then we can identify A with
the linking algebra of Xθ. We can then set
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/0 0\ /O θ'1

v
 \Θ or ' \o o

If these symbolic expressions are viewed as operators on Xθ φ B in
the obvious way, then it is easily seen that they are bounded operators
which normalize A, so that they can be viewed as elements of M(A),
which will clearly have the desired properties.

Conversely, suppose we are given v e M(A) with the given pro-
perties, and define θ by θ(e) = vev*. Then it is clear that θ is an
isomorphism from E to B. We must show that X is equivalent to
Xθ. If we identify E with its image in A, then we can define a
map, /, from X to E by

Then if we put on E in A the operations under which it becomes
Xθ, routine calculations show that / is a bimodule homomorphism
from X to XΘ which preserves both inner-products and has dense
range.

THEOREM 3.4. Let E and B be stable C*-algebras with strictly
positive elements. Then every E-B-imprimitivity bimodule is equi-
valent to one of the form Xθ for some isomorphism θ from E to
B. Furthermore, θ is uniquely determined up to left multiplication
by an element of Gin (B).

Proof. The uniqueness statement follows immediately from
Corollary 3.2. (One could instead use right multiplication by elements
of Gin (E).) Now let X be an E — β-imprimitivity bimodule, and
let A be the linking algebra of X. Since E and B are full corners
of A, they are stably isomorphic to A, and in fact, by Corollary 2.6
of [4], there are partial isometries in M(A (R) K) which give isomor-
phisms of E (x) K and B<g)K with A (x) K. When these partial iso-
metries are composed, we obtain w e M{A (x) K) such that

® 1 0\ /0 0

o o ) ' ww* =

We show that because E and B are stable, we can drop this situation
to A. Let p be a rank-one projection in K, so that E®p is a corner
of E (x) K which is isomorphic to E. In this situation it is obvious
by looking just at p (g> K in K®K that there is a partial isometry,
vEf in M(E®K®K) such that v%vE = 1 (x) 1 <g) 1 while vEv% = 1 (g)
p(g) 1. Since E is stable, we can identify E with E®l®K, so
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that vE e M(E (x) K), v%vE — 1 (x) 1 and vEvE = 1 (x) p. Similarly, since
B is stable, there exists vB e M(B (g) if) such that vSvs = 1.® 1 and
v ^ l = 1 ® P- Define v e M(A (g) JSΓ) by

/0 0 \ /vί 0
v = lo J " ί o o

Then simple calculations show that

0 p 0\ /0
, w —

0 0/

In particular, v commutes with ( v ^ ., /C?N ), and so can be viewed

as an element of M(A) such that

I1* °\ /0 0 \
lo o/ lo iB)

From Lemma 3.3 it follows that X is equivalent to Xθ for some
isomorphism θ from E to J3.

COROLLARY 3.5. Let B be a stable C*-algebra having a strictly
positive element. Then every B — B-imprimitivity bimodule is equi-
valent to one determined by an automorphism of B. Thus we have
an exact sequence

1 > Gin (J5) > Aut (B) > Pic (B) > 1 .

We remark that stability is not necessary for the above conclusion.
For example, it holds for any finite dimensional commutative C*-
algebra. We also remark that in Theorem 3.4 the condition that E
and B have strictly positive elements can not be dropped, as follows
a fortiori from §2.

We will now show that every C*-algebra is strongly Morita
equivalent to a C*-algebra, B, whose Picard group is Aut (jB)/Gin(J3).
From Corollary 3.5 it is clear that this is true for a C*-algebra which
is strongly Morita equivalent to a stable C*-algebra having a strictly
positive element, and so, by Proposition 2.4, also for a C*-algebra
which is strongly Morita equivalent to any C*-algebra having a
strictly positive element (e.g., Breuer ideals of lloo factors). We begin
by characterizing such C*-algebras.

PROPOSITION 3.6. A C*-algebra B is strongly Morita equivalent
to a C*-algebra having a strictly positive element if and only if
Prim (2?) is o--compact (i.e., a countable union of quasi-compact sets).
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Proof. If a C*-algebra, C, has a strictly positive element, then
it follows from 3.3.7 of [6] that Prim(C) is <7-compact. If B is
strongly Morita equivalent to C, then Prim (B) is a homeomorphic
to Prim (C) (3.8 of [11]), so that Prim (B) is <7-compact also. Con-
versely, if Prim (B) is σ-compact, then a simple compactness argument
shows that we can find b eB+ which is contained in no proper 2-sided
ideal of B. Then the hereditary subalgebra, C, of B generated by
& will have 6 as a strictly positive element and will be full in B, and
so Morita equivalent to B. (Take X — Bb as a B — C-imprimitivity
bimodule.)

For any C*-algebra B let RB denote the collection of equivalence
classes under "isometric" isomorphism of right jB-rigged spaces (2.8
of [8]) which are complete in the β-norm (2.10 of [8]), have no
nonzero elements of length zero, and the ranges of whose J5-valued
inner-products have dense span in JB. If Z is in RB and if X is a
B — IMmprimitivity bimodule, then the Hausdorff completion of
Z(g)BX, defined as in 5.9 of [8], is again a right J5-rigged space.
It is easily seen that its equivalence class in RB depends only on
the equivalence class of Z in RB and of X in Pic (B). In this way
we see that the group Pic (B) acts on the right on the collection RB.
Our method for obtaining, for any C*-algebra B, a C*-algebra C which
is strongly Morita equivalent to B and is such that Pic (C) =
Aut (C)/Gin (C), is based on the following observation.

LEMMA 3.7. Let Z belong to an equivalence class in RB and let
E denote the imprimitivity algebra of Z (6.4 of [8]). Then the
element of RB represented by Z is invariant under Pic (B) if and
only if

Pic (B) = Pic (E) = Aut (E)/Gin (E) .

Proof. First, Pic (JB) = Pic (E) because Z will be an E - B-
imprimitivity bimodule, and "conjugating" elements of Pic (B) by Z
will give an isomorphism. Suppose now that the element of RB

represented by Z is invariant under Pic (B), and let Y represent an
element of Pic (E). Let Z denote the dual of Z as in 6.17 of [8],
which represents the "inverse" of Z in the category whose morphisms
are equivalence classes of imprimitivity bimodules. Then Z®EY®EZ
will represent an element of Pic (JB), which by hypothesis will leave
Z invariant. This means, after cancellation, that Y®E Z is isomorphic
to Z as right U-rigged spaces. Applying Z on the right, we find
that Y is isomorphic to E as right E'-rigged spaces. Let φ denote
such an isomorphism, mapping Y to E. Then ψ establishes an iso-
morphism between the imprimitivity algebras of the right ^-rigged
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spaces Y and E, and so determines an automorphism, θ, of E, defined
by

θ~\e)y = φ-\eφ(y)) for yeY,eeE.

Let ψ = θ~ιoφ. Then it is easily checked that ψ is an isomorphism
of Y with Xfl as E — jE-imprimitivity bimodules. Thus all elements
of Pic (E) come from elements of Aut (E).

Conversely suppose that Pic (E) = Aut (£r)/Gin (E), and let W
represent an element of Pic (2?). Then Z (&BW(&BZ represents an
element of Pic (E), and so is isomorphic to Xθ for some automorphism,
θ, of E. Then Z ® 5 W ~ Xθ ®E Z, from which it follows that
Z ® 5 W = Z as elements of JR^. Thus Z is invariant under Pic (J5).

LEMMA 3.8. Let B be a C*-algebra such that Prim(J?) is σ-compact.
Then there is a unique element of RB having the property that if
Y is any representative of this element, then the imprimitivity
algebra of Y is stable and has strictly positive element. Furthermore,
this unique element of RB will be invariant under Pic (2?).

Proof. Let Y and Z represent elements of RB9 and assume that
their imprimitivity algebras, E and F respectively, are stable and
have strictly positive elements. (Such exist by Propositions 2.4 and
3.6.) Then according to Theorem 3.4 there is an isomorphism θ from
E to F such that Y®BZ=XΘ. This means that Y~ XΘ(&FZ as
imprimitivity bimodules, which is easily seen to imply that Y= Z
as right j?-rigged spaces, so that Y and Z represent the same element
of RB. The fact that this element is invariant under Pic (J5) follows
immediately from Lemma 3.7 and Corollary 3.5.

THEOREM 3.9. Let B be any C*-algebra. Then there is a C*-
algebra, E, strongly Morita equivalent to B such that

Pic (B) = Pic (E) = Aut (£r)/Gin (E) .

Proof. Let Q be the collection of cr-compact open subsets, U,
of Prim (5), and for each Ue Q let Iπ be the two-sided ideal of B whose
hull is the complement of U, so that Prim (IΠ) is naturally identified
with U. Let Yυ represent the unique element of RIjτ described in
Lemma 3.8, so that the imprimitivity algebra of YΌ is stable and
has strictly positive element. Then Yv can be viewed as a right
β-rigged space in the evident way (see 3.9 of [8]), though of course,
now the range of the U-valued inner product need not span B. Let

which will represent an element of RB. We claim that Y is invariant
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under Pic (JS). Let X represent an element of Pic (B). Then X
determines a homeomorphism, a, of Prim (B) as in 3.8 of [11] such
that for each U we have XIaW) — IVX and this space is an imprimi-
tivity bimodule between Iv and IaW) as in 3.4 of [11]. It follows that
YU($$)BX, which is equivalent to Yu(^Γu XIaiu)9 represents an element
of RiaiU)9 whose imprimitivity algebra is isomorphic to that of YUf

and so still is stable with strictly positive element. Then according
to Lemma 3.8 Yv ® 5 X is isomorphic to Ya{u) as /α(cn-rigged spaces,
and so as U-rigged spaces. From this it follows that Y(&BX is
isomorphic to Y as i?-rigged spaces, so that Pic (B) leaves Y invariant.
From Lemma 3.7 we conclude that the imprimitivity algebra of Y
fulfils the requirements of the theorem.

We remark that if one restricts attention to the category of
C*-algebras having a strictly positive element, then there is actually
a functor constructing algebras having the properties of Theorem
3.9, namely 2? i—»B (x) K. But in the general case there does not
seem to be any way to make this construction functorial.

Finally, we remark that the considerations of this section are
of interest in the theory of extensions of C*-algebras by K. Speci-
fically, it follows immediately from Corollary 2.7 of [4] and Theorem
1.1 that any E — U-imprimitivity bimodule determines an isomorphism
of Ext (E) with Ext (2?), at least if E and B are separable, and this
isomorphism depends only on the equivalence class of the bimodule.
Of course this isomorphism is actually determined by an isomorphism
of E (g) K to I? (x) K, but in practice the imprimitivity bimodule may
be a natural object whereas it may be hard to describe the isomor-
phism of E (x) K with B® K explicitly. Note in particular that if
B is separable, then we obtain a homomorphism from Pic (JS) into
the group of automorphisms of Ext (JS).

Consider, for instance, the examples at the end of § 1. We ob-
tain an isomorphism from Ext (C*(H)) to Ext (C*(G, G/H)). If G/H
is compact, there is a natural homomorphism from C*(G) to C*(G9 G/H)
which gives us a map from Ext (C*(G, G/H)) to Ext (C*(G)). Thus,
for G/H compact, we have an analogue for Ext of the inducing
process for representation theory, namely a map from Ext (C*(H))
to Ext (C*(G)).
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