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PROJECTIVE IDEALS IN RINGS OF
CONTINUOUS FUNCTIONS

J. GLENN BROOKSHEAR

An ideal in a ring A is said to be projective provided it
is a projective Λ-module. This paper is concerned with the
problem of topologically characterizing projectivity within
the class of ideals of a ring of continuous functions. Since
there are projective and nonprojective ideals having the same
^-filter, the possibility of such a characterization appears
remote. However, such a characterization is shown to exist
for the projective z-ideals. Moreover, a relationship between
projective 2-ideals and arbitrary projective ideals is exhibited
and used to show that, in some cases, every projective ideal
is module isomorphic to a projective z-ideal.

l Preliminaries* Let X be a completely regular, Hausdorff
space and C(X) be the ring of real-valued continuous functions on
X. An ideal in C(X) is said to be projective provided it is a pro-
jective C(X)-module. In [1], Bkouche has shown that if X is locally
compact then CK(X), the ideal of functions with compact support,
is projective if and only if X is paracompact. Actually, he has
characterized projectivity within the class of pure submodules of
C(X) in terms of the topological properties of βX, the Stone-Cech
compactification of X. Using the concept of a projective basis,
Finney and Rotman [5] have presented a direct proof of Bkouche's
result for locally compact spaces. This paper is concerned with the
problem of topologically characterizing projectivity within the class
of all ideals in C(X).

The remaining paragraphs in this section introduce the termi-
nology and notation which is used in the sequel. The reader is
referred to [6] for additional background. In § 2 a characterization
of projectivity in the class of ideals in C(X) is given which is used
to show the existence of projective and nonprojective ideals having
the same 3-filter. Such examples indicate that the topology of a
space is not rich enough to distinguish between the projective and
nonprojective ideals in the general setting. In § 3 projectivity
within the class of z-ideals is topologically characterized and these
results are shown to be a generalization of the work of Bkouche.
In § 4 the general problem is again addressed. Here it is shown
that any projective ideal I is closely associated with a projective
3-ideal Iz. The relationship between I and Iz is studied and it is
shown that often I is module isomorphic to Iz. Hence, in some
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cases, the projective ideals in C(X) can be found, up to an isomor-
phism, by restricting attention to the class of z-ideals.

Let Λ be a commutative ring with identity and M be a Λ-module.
A collection {ma}aeA Q M combined with a set {φa}a&A of Λ-module
homomorphisms from M into Λ is called a projective basis of M
provided meM implies φa(m) — 0 for almost all aeA and m =
Σαe^^α(w)mα. For the sake of conciseness, denote the projective
basis above by {ma, φa}azA-

The characterization of projective Λ-modules in terms of a pro-
jective basis stated in part (a) of the following theorem is used
extensively in the succeeding sections. Part (b) is a consequence of
the proof of part (a) as given in [2, page 132]. It follows from
part (b) that a finitely generated projective module has a finite
projective basis.

THEOREM 1.1. Let M be a Λ-module.
(a) M is projective if and only if M has a projective basis.
(b) // M is projective and {rfta}a£A Q M generates M, then M

has a projective basis of the form {ma, φa}aeA

The following notation relating to a function feC{X) is adopted.
(/) = the ideal generated by / .

pos/ = {xeX:f(x) > 0}.

negf={xeX:f(x)<0}.
Z(f) = ( x e l : f(x) = 0} = the zero-set of / .
coz/ = {x e X: f(x) Φ 0} = the cozero-set of /.

supp/ = cl(coz/) = coz/ = the support of / .
/ + = the function mapping each ^ e l t o max{/(#), 0}.

i/i = r + r.
If / is an ideal in C(X), let coz/= U/e/COz/. Also let Z[I] =

{Z(f):f£ 1} and Z~[Z[I]] = {feC(X): Z{f) eZ[I]}. The ideal I is
called a z-ideal if Z^[Z[I]] = /. It is said to be fixed if Γ\Z[I]Φ
0 ; otherwise it is free. This definition of a free ideal differs from
the concept of a free C(JQ-module (one that is isomorphic to a direct
sum of copies of the ring) which is usually associated with the study
of projective modules. In Example 2.6 (a) it is shown that the only
proper ideals in C(X) that are free C(X)-modules are fixed.

A collection of continuous functions {fa}aeA is said to be locally
finite or star finite provided {coz/α}αe^ is locally finite or star finite
respectively. A collection of continuous functions {ha}άeA is said to
be a partition of unity on Y £ X provided the collection {cozha}aeA

is locally finite on Y, each ha is nonnegative, and ^a&Aha{x) = 1 for
each xeY. The collection {ha}aeA will be considered subordinate to
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a collection {Sα}αeA of subsets of X provided suppfeαCSα for each
aeA.

2. The fundamental theorem* This section is devoted to the
development and immediate implications of Theorem 2.4.

LEMMA 2.1. If I is a projective ideal in C{X) with projective
basis {fa, Φa}aeAj then

(a) supp Φa(f) £ supp//o? each aeA and fel,
(b) {cozΦa(fa)}aeA is a star finite open cover of U/e/Supp/, and
(C) \JaeA COZ Φa(fa) = \JaeA SUPP Φa{f) = U/el SUPP/.

fel

Proof, (a) Let #eX\supp/. By the complete regularity of
X, there is a geC(X) such that g(x) — 1 and s u p p / £ Z(g). Thus,
gf = 0 so 0 = Φa(gf) = gΦa(f). Therefore, x <£ coz Φa(f). Hence,
supp Φa(f) Q supp/.

(b) Given fel there is a finite set B ζ= A such that / ==

quently, {cozΦa(fa)}aeA covers U/e/Supp/.
If β e A, then Φa{fβ) = 0 for almost all aeA. Thus, Φβ(fβ)Φa(fa) =

Φβ(Φ«(fa, φa)fβ) = Φβ(Φa(fβ)fa) = 0 for almost all α e i . Hence, coz.Φ,(/,)
meets only a finite subset of {coz Φ«(/«)}αe^. Consequently, {coz Φα(/α)}α6^
is star finite.

(c) This is a consequence of (a) and (b).

LEMMA 2.2. If I is a projective ideal in C(X) with projective
basis {fa}aeA ®nd fi,f2, • • • , / » € / then, for each βeA, the function
gβ defined by

n

Π Φβ(ft)
JΓ' , j . XN9 on LJsuppΛ

aeA

0 otherwise

is continuous.

Proof. By Lemma 2.1 (b), Σ«e^(Φα(Λ))2 is continuous on
U«e^supp/β and, by Lemma 2.1 (a) and (c), supp ΠΓ=i Φβ(ft) £

PROPOSITION 2.3. If I is a projective ideal in C(X), then I has
a projective basis {fa, Φa}a&A such that

(a) supp/α = suppΦa(fa) for each aeA and
(b) gel implies gfa = 0 for almost all aeA.



316 J. GLENN BROOKSHEAR

Proof. Let [ka, ψa}a6A be a projective basis for I. For each
β6A and each gel define the function gβ by

on U supp ka

ψaKKaJΓ aeA

aeA

0 otherwise .

Note gβ is continuous by Lemma 2.2. Moreover, if g is fixed then
ga = 0 for almost all aeA. Hence, for each aeA, the module
homomorphism Φa: I-+C(X) defined by Φa(g) = ga has the property
that Φa(g) = 0 for almost all aeA.

For each aeA, define fa - ψa(ka)kael. Then {fa}aeA generates
I. Indeed, if gel, one can write g — ΣaeAffaψaVcJka = ΣaeAQafa —
yLaeAΦa{g)fa- Thus, {fa, Φa}aeA is a projective basis for I.

By Lemma 2.1, supp/α = supp ψjjc^ka = supp ψa(ka) = suppί>α(/α)
so {/α, Φa}aeA satisfies condition (a) of the proposition. To obtain
condition (b) recall that for each aeA, coz/α C coz ψa(ka) so, by
Lemma 2.1 (b), {fa}aeA is star finite. Thus, {/α}«6A is both a gener-
ating set for I and star finite. This implies condition (b).

THEOREM 2.4. An ideal in C(X) is projective if and only if
(a) it is generated by a star finite set {fa}aeA such that
(b) there is a star finite partition of unity {ha}aeA on \JaeA supp/α

subordinate to {supp/α}α64 and
(c) fβ e {fa}aeA implies fβha e (fa) for all aeA.

Moreover, given a projective ideal, either the functions can be chosen
such that suppΛα = supp/α for each aeA, or if a star finite gener-
ating set is unknown then a corresponding partition of unity exists.

Proof. Suppose an ideal in C(X) is projective. Then, by Theo-
rem 2.3 (b), condition (a) is satisfied.

Given a star finite generating set {fa}aeA> Theorem 1.1 (b) pro-
vides a projective basis of the form {fa, Φa}aeA (If the choice of
the generating set is not restricted, then, by Theorem 2.3, one could
pick a projective basis {/«, Φa}aeΛ such that suppΛ = suppΦα(/α) for
each a e A.) For each β e A define

on LJsuppΛ
V<xUa)Γ aeA

aeA

0 otherwise .

The continuity of each hβ, the star finiteness of {ha}aeA, and the fact
that {ha}a€A is subordinate to {supp/α}α6^ all follow from Lemmas
2.1 and 2.2. Note also that {ha}aeA is a partition of unity on
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U«e^supp/α. Moreover, if fβe{fa}aeA, then gβha = gafa for each
aeA where gaeC(X) is defined by

Qa = Σ (ΦAfr
on U-PPΛ

γeA

0 otherwise .

Note that if {fa, Φa}aeA is chosen to satisfy the conditions of Proposi-
tion 2.3 then suppfcα = suppΦα(/α) = supp/α for each aeA.

Conversely, suppose there are sets {fa}aeA and {ha}aeA satisfying
conditions (a), (b), and (c). Then the following argument shows that
there are homomorphisms which, combined with the set of functions
{fa}aeA> yield a protective basis for I.

Since {ha}aeA is star finite, the function Σ « e 4 ^ is continuous and
strictly positive on \JaeAcozha. But, by (b), sn^phβ Q\Ja6Acozha

for each β e A, so the function tiβ defined by

I 0 otherwise

is in C{X) for each βeA.
For each βeA, define Φβ:I-+C(X) by Φβ(g) = h'βk where ke

C(X) is such that ghβ = kfβ. Such a k exists by condition (c).
Moreover, if kf is another function such that ghβ = k'fβ, then k' = k
on coz/^ and thus on supp/^. Now since supp/^ S supp/^, it fol-
lows that /̂ ft == h'βk', i.e., Φ̂ (flr) is independent of the choice of k.

To see that Φβ is a module homomorphism, suppose that g, hel
with fci/p = #/&/? and k2fβ = fefc^. Then

In addition, if feC(X), then

Finally, it must be shown that if gel then Φa(g) = 0 for almost
all aeA and g = Σ«e,i$«(#)/«. To this end pick α e A and let ka

be chosen such that gha = &«/«. If fl/β = 0 then r̂Λα = 0, since
supp ha Q supp/α, and thus kafa = 0. But if kafa = 0 then &αftα = 0
since supp ha Q supp/α. Consequently, if gfa = 0 then kaha — 0. But,
by condition (a), gfa = 0 for almost all aeA. Thus, ΦJjg) = kah'a = 0
for almost all aeA. Furthermore, if B is the finite set {a e A: gh'aφQ),
then Σi8es^i8^ = 1 on supper and thus

g = g Σ / ^ = Σ Λ M - Σ Λί^Λ = Σ Φa(g)fa.
3eβ /3fi 9£ A
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Therefore, {fa, Φa}a^A is a projective basis for J.

COROLLARY 2.5. The principal ideal (/) is projective if and
only if supp/ is open.

Proof. If (/) is projective, the collection {fa}aeA in Theorem 2.4
must be finite. Thus, the partition of unity {ha}aeA of Theorem 2.4
is finite. Consequently, Σ α 6 i ^ e C ( J ) and is the characteristic
function of \JaeA supp fa == supp/.

If supp/ is open then (/) is module isomorphic to a direct
summand of C(X), namely, the ideal generated by the characteristic
function of supp/. Consequently, (/) is projective.

The following examples are provided for future reference and
to clarify the technicalities of Theorem 2.4.

EXAMPLES 2.6.

(a) Let feC(X) be such that supp/ is open in X and coz/ Φ
supp/. Then the principal ideal (/) is projective. The characteristic
function of supp/ serves as the partition of unity in Theorem 2.4.

In particular, if X = R, the real numbers, and / is defined by
f(x) = x, then both (/) and (|/|) are projective. The second case
shows that a projective ideal may not be convex because the func-
tion g defined by g(x) = |a? sin I/a?| is bounded above by | / | but is
not in (I/J).

Also, if the ideal / is module isomorphic to C(X), then it must
be principal with annihilator ideal equal to {0}. It follows that an
ideal I in C(X) is a free C(X)-module if and only if / = (/) where
supp/ = X.

(b) Let A1 and A2 be copies of N, the discrete space of positive
integers, and a$A1U A2. Make the set Ax U {a} U A2 a topological
space by defining the subspaces A1 U {a} and {a} {J A2to be homeomor-
phic to N*, the one point compactification of N. Now to each ieAλ

attach a copy of N, designated Ni9 such that iV* U {i} is homeomor-
phic to iSΓ*. Let X be the topological space so defined on (\Jie

A, U {a} U A2. For each i e A, define ft eC(X) by

/*(*) =
— if x e Ntx

0 otherwise

and define ht e C(X) to be the characteristic function of Nt U {i}.
By identifying the collections {fi}ieΛι and {h^ieAι with those of Theo-
rem 2.4 (a) and (b) respectively it is seen that the ideal / generated
by {fi}ieAl is projective.
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Note that cozl= U^AΓ, is not closed, U^supp/, == ( U e^WU
Aλ is not closed, coz I = X\A2 is not open and all three sets are
different and properly contained in X. Moreover, ΣneAίhi is not
continuous at a.

(c) Let X = {% e R: x ^ 0} and for each positive integer i define
fte.C(X) by

X

i

Define h( — ft for i > 1

1

0

- ( i -

+ 1 -
0

and

- i )

- x

1

if
if

if

if

if

if

X

i

i

i

0

1

VII

—

<

+
VII

<

i
1

X

1

X

X

—

<
VII

<

<

1

i + 1

a? .

1

The identification of the collections {/JΓ=1 and {hz)7=ι with those of
Theorem 2.4 (a) and (b) respectively shows that {/?}Γ=i generates a
protective ideal. Note that the members of {coz/J°°=i are not mutu-
ally disjoint and that {AJϊLi is not a set of characteristic functions.

The following proposition yields a useful example of a non-
projective ideal in C(X).

PROPOSITION 2.7. If feC(X) and (/, |/|) is protective, then
pos/ and negf are completely separated and (/, |/|) = (/).

Proof. Note that (/, |/ | ) = (/+, / " ) . If A - / + and /, - /-,
then by Theorem 1.1 (b) there is a projective basis for (/, |/ | ) of
the form {fif Φ<}i=1>2. Following the proof of Theorem 2.4, one can
construct a partition of unity {hlf h2} on supp/l U supp/2 such that
conditions (a), (b), and (c) of Theorem 2.4 are satisfied. But, since
coz/i Π coz/2 = 0 , each ht must be the characteristic function of
the corresponding supp/*. Consequently, feL — h2 is a continuous
function that is 1 on pos/ and —1 on negf. Thus, the two sets
are completely separated and (/, |/|) = (/).

If one now defines feC(R) by f(x) = xy then, by [6, 2H] and
Proposition 2.7, (/, |/|) is not projective, whereas, in Example 2.6
(a), it was shown that (/) is projective. Hence, there are projective
and nonprojective ideals that have the same ^-filter. Consequently,
the chances seem remote that, in the general setting, the topological
properties of X alone are rich enough to distinguish between the
projective and nonprojective ideals in C(X). Indeed, any such char-
acterization must include a topological counterpart to the divisibility
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statement of Theorem 2.4 (c).

The following application of Theorem 2.4 illustrates the abun-
dance of protective ideals in the ring C(X).

PROPOSITION 2.8. If p and q are distinct elements of βX, then
0p (see [6, 7.12]) contains a projective ideal that is not contained in
0*.

Proof. It may be assumed that there is no open and closed
neighborhood of p that does not contain q for otherwise the char-
acteristic function of its complement would generate the desired
projective ideal. Under this assumption define a sequence of open
neighborhoods of p as follows. Let U1 be an open neighborhood of
p that does not contain q. By the complete regularity of βX there
is a sequence {Ut}T=i of open neighborhoods of p such that U^Z)
Ui Z) Ut for each i > 1 and, by the assumption, each containment is
proper.

Now, by the normality of βX, there is a sequence {/JίLi of non-
negative functions in C(βX) such that /L is 1 on βX\U2 and 0 on
Uz and, for i > 1, /4 is 1 on U\Uί+1 and 0 on Ui+2 U (/3X\?7,_1).

For each i ^ 1 define ht by

^ — on supp/i

K = i ΣΛ
0 otherwise .

By identifying the restrictions to X of the functions {/JΓ=i and
{hi}T=1 with the functions in Theorem 2.4, it is seen that the restric-
tions of {/JΓ=i generate a projective ideal in 0p, but since fγ(q) — 1,
this ideal is not contained in 0*.

3* Projective 2-ideals* The following proposition is one of the
many indications of the importance of the class of 2-ideals in the
study of the projective ideals in C(X).

PROPOSITION 3.1. A projective free ideal is a z-ideal.

Proof. If / is a projective free ideal and {fa}aeA is as in Theo-
rem 2.4, then, for each βeA, the function f'β = Λ/Σ^e^/α is in
C(X). (Since I is free, the denominator is strictly positive on X.)
Moreover, {/«/«}«€A is a star finite partition of unity on X contained
in I.

If geC(X) is such that Z(g) = Z(f) for some / e l , then B =
{a e A: gfa Φθ} = {aeA: ffa Φ 0} is finite. Hence, g = g Σ«eB /« fa e /.
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Since the z-ideals are closely related to the topology of the
space, it is not too surprising that the protective z-ideals can be
characterized in topological terms. This is the goal of the following
lemma.

LEMMA 3.2. If the ideal I in C(X) has a protective basis
{fa, Φa}aεA such that fa ^ 0 and / ϊ 2 e / for each aeA, then supp/S
coz / for each fel.

Proof. It suffices to show that supp/ α £cozJ for each aeA.
Therefore, suppose there is an aQeA with x e supp Λ0\coz I. Let m
be the number of elements aeA for which Φa(faQ) Φ 0. (Since
{fay Φa}aeA is a protective basis, m must be finite.) The following
induction shows that there are at least m + 1 elements aeA for
which Φa(fa0) Φ 0. This contradiction proves that supp/αo £ coz I.

Prom the fact that #esupp/αo\coz/αo it follows that
(a) fal is not a multiple of fttQ on the intersection of any neigh-

borhood of x with {x} U coz fao.
However, since f%* e I, there is a finite subset B £ A such that
fa'^ΣatBΦaifa'^f*. HβnCβ, {COZ Φβ(/#)/«}«e B IS 2, finitβ COVβΓ Of

coz/i'0
2 so there is a β e B such that

(b) x e supp Φβ(fiί;)fβ - supp Φβ(fβ)fli; = supp Φ^/^/^SsuppΛ/^.
Furthermore, of all the /9 6 5 satisfying (b) there must be at least
one such that

(c) fβ is not a multiple of faQ on any neighborhood of x in-
tersected with {x} U cozfaQ.
(Otherwise, (c) would fail for every β e B satisfying (b), so there
would be a neighborhood U of x such that, on U Π ({x} U coz/αo),

.ft? = Σ ΦΛΛΌ1)/. = Σ Φaifa^fa^a = [ Σ ΦJif^ΰΛfa.
aeB aeB aeB

where each ga is in C(Z7n({a;} U coz/αo)); this contradicts (a).)
Let aγ be a member of B for which (b) and (c) are satisfied.

Then, by (b), αesupp/α o/α i and φai(fai)faQΦ 0. Moreover, by (c),
at Φ a0 and fai is not a multiple of fao on the intersection of any
neighborhood of x with {x} U coz/αo.

Suppose the subset {/βl, •• ,ΛJ S {/β}«4 has been selected such
that x e supp/αo/αi fan, Φai{fa%)fao Φ 0 for 1 ̂  i ^ w, and /βw is not
a linear combination of {/αo,/βl, •• ,/«9l_1} on the intersection of any
neighborhood of x with {#} U coz/αo/αi Λ^^ Then,

(a') /J£ is not a linear combination of {/αo, fai, , /«n} on the
intersection of any neighborhood of x with {x} U coz/αo/αi /β n.
(Otherwise, there would exist a neighborhood V of a? and functions
^6C(Ffl({a;}Ucoz/ao/ai.../aJ) such that, on Fn({a?}Ucoz/β0/βl.../βn),
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ft = Σ?=o gJat and thus fan(l - gj%) = Σ & 1 (*/£)/«,. Now, since
gn is continuous on V Π (M U coz/αo/αi ••• ΛJ, it can not equal f~^!2

arbitrarily close to x. Hence, there is a neighborhood V £ V of x
for which (1 - gJTX1 e C(F' n ({*} U coz/αo/βl faj). This implies
that fan = (1 - Λ Λ Ϊ ) " 1 Σ S Gfc/2£)Λ, on F' Π ({*} U coz/αo/αi fj
which contradicts one of the induction hypotheses.)

Since fTn e /, there is a finite subset C £ A such that fTn =
Σ«βc Φa(fan)fa- Hence, {coz Φα(/̂

2)Λ}«e(7 is a finite cover of co^ /^2 =
cozfan and thus a finite cover of coz/αo/αi •••/«„• Therefore, since
α;Gsupp/αo/αi Λn, there must be at least one /3eC such that

(b') 0 e supp /σ o/β l . . fauΦβ(f%)fβ - supp Λ0/βl ΛWΦ^(Λ) S
SUPpΛ0/βl -- fajβ.

Let JD be the subset of C containing those indices that satisfy
(b'). There is a neighborhood U of x such that fTn = Σ^z>Φ/A2)Λ
on Z7Π({»}UcozΛ0/βl . - . / β J . Therefore, if for each βeD there
was a neighborhood tfg of x such that /s is a linear combination of
{/«0, /β l, , Λ J on C7̂  Π ({a;} U coz/αo/αi / α J, then /^2 would be a
linear combination of {/β0,/βl, , / α J on ί / n t Π ^ ^ n W U
coz faQfaι faj which contradicts (a') Consequently, there is a
βeDQC such that

(c') /j is not a linear combination of {/Λo, /αi, , /βw} on any
neighborhood of x intersected with {x} U coz/αo/αi fa%.

Let αw+1 be a member of C for which both (b') and (c') are
satisfied. Then, {/«,, , / α ^ J £ {/α}αe4. Moreover, by (b'), xe
supp/αo/αi fa%+} and Φai(fai)fao ^ 0 for 1 £ i ^ n + 1, and (c'),
αw+1 ̂  α̂  for 1 ̂  i ̂  ^ and /β f ι + i is not a linear combination of {/αo, /αi,
. , faj on any neighborhood of x intersected with {x} Ucoz/β0/βl ΛΛ.

Thus, by induction, one can find m + 1 elements α e i with
Φ*(fa)faQ Φ 0. But Φa(fa)fao = Φβ(/β0)/β, so there must be m + 1
elements α e i such that Φα(fαo) ^ 0.

DEFINITION 3.3. If {/α}αê  £ C(X) is a star finite family such
that suppΛ £ U«e^coz/β = cozΣαe^Λ2 for each βeA, let fβ be the
function defined by

fβ = -
-φ^r o n

αe A

0 otherwise

for each βeA. Note that fβ e C(X).

PROPOSITION 3.4. If I is a projective ideal, then I is a z-ideal
if and only if supp/ £ coz I for each fel (or equivalently supp/£
coz / for each / in a generating set of /) .



PROJECΊΊVE IDEALS IN RINGS OF CONTINUOUS FUNCTIONS 323

Proof. Suppose / is a protective 2-ideal with protective basis
{gβ, ψβ}βeB' Since I is a z-ideal, both g^ and gj are in / for each
βeB. Let A = B x {1, 2} and define fβΛ) = g^y fβ,2) — gj, and
φ ( M ) = - φ(/3)2) = ^ for each βeB. Then {/«, Φα}«ê  is a projective
basis with the properties of Lemma 3.2. Therefore, supp/£cozi
for each fel.

Conversely, suppose I is a projective ideal for which supp/£
coz I for each fel. Let {/α}α€A be a star finite generating set for
I as in Theorem 2.4 (a). Suppose geC(X) is such that Z(g)eZ[I].
Then #/α/α = 0 for almost all aeA, and if B = {aeA: gfafa Φ 0}
then g = ̂ Σαeβ/«/«βZ. Therefore, I is a z-ideal.

(The equivalence of the statements " supp/£coz/ for each
fel" and "supp/£ coz I for each / in a generating set of 7" fol-
lows from the fact that the support of any member of I is contained
in a finite union of supports of members of a generating set.)

Proposition 3.4 has several significant consequences. One is the
existence of projective ideals that are not ̂ -ideals. Indeed, using
Proposition 3.4, it is easy to see that Examples 2.6 (a), (b), and (c)
are not 2-ideals. Also, it follows from Proposition 3.4 that a finitely
generated z-ideal is projective if and only if it is generated by an
idempotent. This is a result obtained by DeMarco in [3]. The
following corollary is related to the problem addressed in § 4.

COROLLARY 3.5. If I is a projective z-ideal> then it is the only
projective ideal whose z-filter is Z[I].

Proof. Suppose J is a projective ideal with Z[J] = Z\I\. Then
J SL I, so Proposition 3.4 implies that, for each/e/, supp/£coz/.
But, coz I = coz J. Thus, J is a 2-ideal by Proposition 3.4, and con-
sequently must be equal to I.

THEOREM 3.6. // I is an ideal in C(X)f then the following are
equivalent.

(a) I is a projective z-ideal.
(b) There is a generating set {/α}αe4 £ / such that {coz/α}αe4

is a star finite cover of coz I and supp/α £ coz I for all aeA.
(c) There is a set {fa}a^A £ I such that {coz/α}αe^ covers coz I,

I — {g e C(X): gfa = 0 for almost all aeA and coz g Q coz I}, and
supp/α Q coz / for all aeA.

(d) There is a set {fa}aeA £ I such that {coz/α}αe^ covers coz I,
gel implies gfa = 0 for almost all aeA, and supp/α £ coz I for
all aeA.

(e) I is generated by a star finite partition of unity {ha}aeA

on coz /.
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Proof, (a) implies (b). This follows from Theorem 2.4 and
Proposition 3.4.

(b) implies (c). Since {fa}aeA generates I and {coz/α}αê ι is star
finite, it follows that if geI, then gfa = 0 for almost all aeA and
coz g £ coz /. On the other hand, if g e C{X)_ has these properties,
let B = {aeA: gfa Φ 0}. Then, g = g ΣβeBfβfβ eI.

(c) implies (d). Clear.
(d) implies (e). The functions {ha}aeA defined by ha = fafa for

each aeA are in I and have desired properties.
(e) implies (a). Let {ha}aeA be a star finite partition of unity on

coz I generating I. If β e A and B is the finite set {a e A: hahβ Φ 0},
then Σαes^α is continuous on X and equal to 1 on cozhβ. Hence,
X α e 5 ha must equal 1 on supp hβ so supp hβ £ coz Σ«es ha Q coz J. Now,
I is seen to be projective by identifying {ha}aeA with the functions
in both (a) and (b) of Theorem 2.4 and it must be a 2-ideal by
Proposition 3.4.

The following theorem, which is essentially a restatement of
Theorem 3.6, characterizes the protective 2-ideals in topological terms.

THEOREM 3.7. The ideal I is a projective z-ideal if and only if
(a) Π Z[I] £ int Z for each ZeZ[I] and
(b) there is a collection S £ Z[I] such that Π S = Π Z[I] and

if Zo e Z[I], then Z0U Z = X for almost all ZeS.

Proof. If 7 is a projective z-ideal, let {/α}αê  be a generating
set as described in Theorem 3.6 (d). As noted in Proposition 3.4,
the fact that supp/ α £coz7 for each aeA implies supp/ Q coz I
for all fel. This implies condition (a) above. The collection S of
condition (b) above can be taken as {Z(fa)}aeA.

If, on the other hand, an ideal I satisfies conditions (a) and (b)
above, then for each ZeS pick fzel with Z(fz) = Z. By condition
(b), the collection {o>ozfz}zeS covers coz I, and if gel, then gfz = 0
for almost all ZeS. Furthermore, supp/^ £ coz I for each ZeS
by condition (a). Therefore, {fz}zes satisfies the conditions of Theo-
rem 3.6 (d), so I is a projective z-ideal.

Due to condition (e) of Theorem 3.6, one might conjecture that
only condition (b) of Theorem 3.7 is required to characterize the
projective z-ideals. This, however, is not the case. Indeed, every
fixed maximal ideal in C{R) satisfies condition (b) of Theorem 3.7
but not condition (a). It is true that condition (b) of Theorem 3.7
alone characterizes projectivity within the class of free ideals since,
in this case, condition (a) is obviously superfluous.

As stated, Theorems 3.6 and 3.7 characterize the projective
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2-ideals within the class of ideals in C(X). It should be noted that
both theorems can be restated as a characterization of projectivity
within the class of z-ideals with only superficial changes in their
proofs. Thus, conditions (a) and (b) of Theorem 3.7 characterize
projectivity within the class of z-ideals. Although weaker, the
theorems in this form are quite useful.

In [1], Bkouche has shown that if X is locally compact then
CK(X), the ideal of functions with compact support, is protective if
and only if X is paracompact. Although this is the only statement
he makes in terms of C(X), his results actually characterize pro-
jectivity within the class of pure ideals in C(X) in terms of the
topological properties of the Stone-Cech compactification of X. The
next two theorems point out the relationship between the work of
Bkouche and this paper.

THEOREM 3.8. A pure ideal in C(X) is a z-ideal.

Proof. Let I be a pure ideal in C(X). There is an open U £
βX such that I = {feC(X): supp/* Q U) where /* is the continuous
extension of / to a function from βX into the two point compactifi-
cation of the reals (see [1] and [7]). Suppose geC(X) with Z(g) =
Z(f) for some fel. By the normality of βX, there is a non-nega-
tive function k that is 2 on supp/* and 0 on βX\U. Let h be the
restriction to X of (k — 1) V 0. Then, supp h* £ U so h e I. More-
over, h is 1 on supp / = supp g. Thus, g = ghel. Hence, / is a
2-ideal.

THEOREM 3.9. A projective z-ideal in C(X) is a pure ideal of
C(X).

Proof. Let / be a projective £-ideal generated by the star finite
partition of unity {ha}aeA on cozl as in Theorem 3.6 (e). Suppose
/ and g are in C(X) with fg e I. Let B be the finite set defined
by {aeAihafg ΦO}. Then ΣiaesK^I is 1 on coz fg, so fg =
fg Σ«eB K = f(g ΣjaeB K) where g Σαes ̂ a € I. Therefore, I is a pure
ideal of C(X).

Since there are projective ideals that are not ^-ideals, it follows
from Theorem 3.8 that there are projective ideals that are not pure.
Conversely, there are pure ideals that are not projective. For ex-
ample, let X be a locally compact, nonparacompact space. Then,
by the results of Bkouche, CK(X) is not projective. However, if
the product gh is in CK(X), the normality of βX provides a k e C*(X)
such that kβ is 1 on supp gh and 0 on a closed neighborhood of
βX\X. Therefore, k e CK(X) and gh = (gh)k = g(hk) where hk e CK(X).
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Thus, CK(X) is pure.
Although the class of 2-ideals properly contains the class studied

by Bkouche, the preceding theorem (which depends on Theorem 3.6)
shows that no additional protective ideals can be found by consider-
ing the larger class. Thus, the value of Theorems 3.6 and 3.7 when
considered as characterizing projectivity within the class of 2-ideals
lies in the fact that they rule out the existence of protective z-
ideals that are not pure and that they provide a test for projectivity
within the space X as opposed to βX.

The following application of Theorem 3.6 generalizes the result
of Bkouche for locally compact spaces.

THEOREM 3.10. Let I be a z-ideal contained in CK(X). Then I
is projective if and only if coz I is paracompact and contains
supp/ for each fel.

Proof. If / is a projective z-ideal, then, by Proposition 3.4,
supp / £ coz/ for all fel. By Theorem 3.6 (b), there is a set
{ΛlαeA £-f such that {cozfa}aBA is a star finite cover of coz/ and
suppΛ £ coz I for each aeA. Hence, {supp/α}αe^ is a locally finite
cover of coz I consisting of compact sets. If U is an open cover
of coz I, let {Ua,τ)Uι be a finite subset of U covering supp/α for
each aeA. The cover {Ua>i n coz/α: aeA, 1 ^ i ^ na) is a locally
finite refinement of U. Hence, coz I is paracompact.

Conversely, if coz / satisfies the stated condition, then the cover
{coz/}/e/has a partition of unity {h'a}a&AQC(cozI) subordinate to it.
Now, cozfci £ supp/ for some felQCκ(X), so supp/^i is compact
and inside coz I for all aeA. Hence, each h'a can be extended to
ha e C(X) by setting it equal to 0 on X\coz I. Since each coz ha £ coz/
for some fel, the zero-set Z(ha) is in Z[I] and thus {ha}aeA £ I.

The proof is completed by showing that {ha}aeA £ / satisfies the
conditions of Theorem 3.6 (e). It is already known that {ha}aeA is a
partition of unity on coz I, and each supp ha £ coz I. Thus, for
βeA and xesupphβ there is ίa neighborhood Ux such that Ux Π
coz/ια = 0 for almost all ae A. Now, the cover {Ux}9eByxvvhβ of the
compact set supphβ has a finite subcover and, for aeA, cozha meets
cozhβ only if cozha meets one of the sets in this subcover. Hence,
{ha}aεA is star finite. If gel, a similar argument shows that B —
{aeA\Q,ozha Π cozg Φ 0} is finite, so g = g^aeB^a = Σ«esflrΛ«. Con-
sequently, {ha}aeA generates /.

EXAMPLE 3.11. Let X be the subspace of the real line consisting
of {reR'.O^r^l or r is rational}. Then CK(X) = {feC(X):
supp/£ [0,1]}. If feCκ(X) is such that coz/ = (0, 1), then supp/ =
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[0, 1] £ (0,1) = coz CK(X). Consequently, CK(X) is not protective by
Theorem 3.10. Since CK(X) is not pure, the results of Bkouche are
not applicable.

In [7], Vasconcelos discusses the pure and protective ideals in
C(J) where / is the closed unit interval. In particular, he shows
that every pure and every protective ideal in C(I) is countably gen-
erated. Theorem 3.6 shows that this is not true in general. For
example, if X is the space of ordinals less than or equal to the first
uncountable ordinal, then the characteristic functions of the non-
limit ordinals generate a protective z-ideal [Theorem 3.6 (a) and (e)]
(and hence a pure ideal by Theorem 3.9) that is not countably
generated.

4* The role of 2-ideals* The characterizations of projective
2-ideals given in Proposition 3.4 and Theorem 3.6 suggest two ways
in which these ideals can be considered abundant. First, Proposition
3.4 shows that the projective ideal generated in the proof of Propo-
sition 2.8 is a £-ideal. Hence, if X has cardinality greater than 1,
then C(X) contains a proper projective 2-ideal. Next, Theorem 3.6
(e) shows that the collection of functions {ha}aeA in Theorem 2.4
generates a (possibly nonproper) projective 2-ideal. Consequently,
each projective ideal is closely related to a projective 2-ideal. The
present section deals with this relationship. First on the agenda is
to show that the projective 2-ideal obtained above using Theorem
2.4 is independent of the choice of functions. The following lemma
will be used for this and other purposes.

LEMMA 4.1. / / {fa)aeA and {ha}aeA are families of functions as
in Theorem 2.4 and U is an open subset of X that is covered by
finitely many members of {cozfa}aeA9 then

(a) B = {a e A: ZJ f] coz ha Φ 0 } is finite,
(b) {coz/fcα}α6JJ covers U,
(c) ΣiaesK == 1 on U, and
(d) U and X\\JaeA^ozha are completely separated.

Proof, (a) If an open set U is covered by finitely many mem-
bers of {coz fa}«eA9 then the star finiteness of {coz/α}α6̂ ι dictates that
ί7Πcoz/ α = 0 for almost all aeA. Now, if UΓ)cozha^ 0 , then
U Π coz ha Φ 0 ; and since coz ha Q supp/α, U f] coz ha Φ 0 implies
Ϊ 7 n s u p p / α ^ 0 which in turn implies Uf)cozfaΦ 0 . But, this
was shown to hold for only finitely many aeA so B = {aeA: UΠ
coz ha Φ 0} is finite.

(b) Since U is covered by finitely many members of {coz/α}αe4,
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Therefore, those members of {coz ha}aeA

that meet U must form a cover of U.
(c) This is a consequence of (a), (b), the fact that {ha}aeA is a

partition of unity on [JaeA supp/α, and the fact that £?£ U«6^supp/α.
(d) For each βeA, supp hβ £ suppΛ £ U * ^ supp/α = \JaeA coz feα.

Therefore, since £ is finite, supp ΣaeB ha £ Σ« e * supp feα £ Σ α 6 ^ coz ha.
Combining this with (c) completes the proof.

PROPOSITION 4.2. The protective z-ideal obtained from a given
protective ideal using Theorem 2.4 as above is independent of the
choice of functions.

Proof. Let {/α}αeA and {ha}aeA be families of functions satisfying
conditions (a), (b), and (c) of Theorem 2.4. Suppose {fβ}βeA' and
{K)βεA> are another such pair. If βeA'f then f'β is a linear com-
bination of finitely many members of {/α}αê  so cozfβ is covered by
finitely many members of {coz/α}αe^. Thus, by Lemma 4.1, there is
a finite subset BQ A such that Xα eB^α = 1 on supp/^. Therefore,
since supp/^ £ supp/£, hβ = hβ^]aeBha. Consequently, hβ is in the
ideal generated by {ha}aeA. It follows by symmetry that the ideals
generated by {ha}aeA and {h'β}βeB must be the same.

It will be convenient to have a notation that distinguishes be-
tween ideals that are z-ideals and ideals that may or may not be
2-ideals. For this purpose a subscript z will be used to designate
those ideals that are known to be z-ideals, e.g., Iz. Moreover, if I
is a protective ideal, the unique protective £-ideal associated with it
will be denoted by Iz. One should be cautioned not to assume that
Z[I] = Z[IZ). In fact, by Corollary 3.5, this is true only if I = Iz.
The following theorem states the relationship that holds between
Z[I] and Z[IZ] in general.

THEOREM 4.3. If I is a protective ideal in C(X), then Iz =
{g e C(X): coz g £ supp / for some fel} and Z[IZ] = {Z 6 Z(X):
int Z{f) S Z for some fel}.

Proof. Let J be a protective ideal with {/α}αe4 and {ha}aeA

satisfying conditions (a), (b), and (c) of Theorem 2.4. Recall that
{hoc}aeA generates Iz so if gelz then there is a finite subset BQA
such that coz g £ [JCCBB COZ ha £ UU* supp/α = supp Σ«e5/« where

On the other hand, if geC(X) is such that coz gQ supp/ for
some fel, then g — g^aeB^a elz where B={aeA: supp /Π coz haφ(d}
is finite by Lemma 4.1 (a).
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Thus, Iz = {geC(X):eozg £ supp/ for some fel} which, when
translated to terms of zero-sets, yields Z[IZ] = {Z e Z{X): int Z{f) £ Z
for some fel}.

THEOREM 4.4. If I is a projective ideal in C(X) then Iz is the
smallest projective z-ideal containing I.

Proof. Let Jz be a projective z-ideal containing the projective
ideal I and suppose ZeZ[Iz]. Then, by Theorem 4.3, there is an
fel such that int Z(f)QZ. But, I Q Jz so feJz. Therefore, if
{ha}aeA is a star finite partition of unity generating Jz as in Theorem
3.6 (e), then coz/ is covered by a finite subset of {cozha}aeA. Thus,
by identifying both families of functions in Lemma 4.1 with {ha}aeA,
Lemma 4.1 implies there is a finite subset B £ A such that Σ α 6 s ha — l
on supp/, i.e., Z(^aeBha) £ int Z(f). Thus, there is a zero-set in
Z[IZ], namely Z(^aeBha)9 contained in Z. Consequently Iz Q Jz.

Since the projective z-ideals can be characterized in topological
terms, a topological method of finding the projective ideals associated
with a given projective z-ideal is desirable. However, this remains
an unsolved problem. Its solution is complicated by two facts. The
first is that many projective ideals may be associated with a single
projective z-ideal. For example, all the principal ideals generated
by functions whose cozero-sets are dense in X are associated with
the (nonproper) z-ideal C(X). The second, and more devastating, is
the fact that any such process must provide a counterpart to the
divisibility requirement of Theorem 2.4 (c).

Given the similarities between the generating sets of / and Iz,
one is tempted to try to circumvent this problem with the conjec-
ture that I and Iz are module isomorphic. This, however, is false
as seen in the following example.

EXAMPLE 4.5. Let X be the space obtained by identifying the
points —4 and 4 in the interval [—4,4]. Define f and /2 in C(X)
as follows. Both ft and /2 are linear in each interval [ΐ, i + 1], i =
0, 1, 2, 3; A(x) = - / Λ - α ) , Λ(a?) = / , ( - * ) , Λ(0) = 0, f(l) = 1, f(2) =
1, Λ(3) = 0, Λ(4) = 0, /2(0) = 0, /2(1) = 0, /2(2) = 0, /2(3) = 1, and
/2(4) — l. Then the ideal I generated by f and /2 is seen to be
projective by identifying {flff2} with the functions in Theorem 2.4
(a) and defining {hlf h2} in Theorem 2.4 (b) by hλ = f2 and ht — 1 — h2.

Since ht + h2 = 1, the ideal Iz is equal to C{X). Therefore, if
I and Iz were module isomorphic, / would be principal. Suppose
feC(X) with (/)=•/. Since X is a closed loop, / cannot change
sign, for otherwise Z(f) would contain more than a single point
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which would contradict the fact that coz/ = coz (/) = coz I = X\{0}.
Since / i€ ( / ) , there is a geC(X) such that /i = #/; and since fe
(fiffi) and f2 is 0 on a neighborhood U of 0, there is an heC(U)
such that / = hf on U. Thus, f± = gf= ghf on 17 which implies
gf=l on [/. However, since /x changes sign at 0 and / does not,
0(0) = 0. Thus, gf cannot be the identity on any neighborhood of
0. Consequently, I cannot be principal, so I and Iz are not iso-
morphic.

In Example 4.5 coz/x + f2 Φ coz I, so the ratio fj{f + f2) is not
defined on all of coz/. The next theorem shows that the existence
of such ratios is fundamental to the existence of a module isomor-
phism between I and Iz.

THEOREM 4.6. A projectίve ideal I is module isomorphic to Iz

if and only if it is generated by a star finite family {fa}aeA such
that for each βeA the function /^/Σα 6 i i/α is in C(cozJ) and can
be extended to a function gβeC(X) where gβ is 0 on X \ f

Proof. Let φ:Iz —>I be a module isomorphism and {ha}aBA be a
star finite partition of unity on coz Iz generating Iz. Let φ{ha) — fa

for each aeA. Then, {fa)aeA is a generating set for I. Moreover,
since φ is a module isomorphism, the annihilator ideals of ha and fa

must be equal. Thus, suppha — suppfa for each aeA. Further-
more, if a, βeA then fafβ = φ{ha)φ{hβ) = φ(haφ(hβ)) = φ{φ(hahβ)) so
the star finiteness of {ha}aeA implies that of {fa}aeA-

By [4, 2.5], φ must be multiplication by an element geC(coz Iz).
For x e coz Iz let B be the finite set {a e A: ha{x) Φ 0}. Then,
ΣαeB K(X) = 1 SO g(x) = g(χ) Σ«es K(X) = φiΣasB K)(x) = Σl^βfa(x)>
Thus, g = Σαe^/α|co272. Now the inverse of φ must be multiplica-
tion by 1/g so, for each βeA, hβ = Λ/Σββ^Λ on cozl2. But this
is extendible to a function in C(X), namely hβ, satisfying the con-
ditions in the theorem.

Conversely, suppose {fa}aeA has the properties stated in the
theorem and let {ha}aeA be chosen as in Theorem 2.4. If Be A, then
by Lemma 4.1 the set B = {aeA: supp/^ Π coz ha Φ 0} is finite and
Σαes^α is 1 on supp fβ = supp gβ. Thus, gβ = gβ ΣU**BK elz since
each haelz. Consequently, {ga}a^A S /z.

For βeA, the set 1?= {aeA:fafβ Φ 0} is finite since {cozfa}a£A

is star finite; and since coz/α = coz/Π cozga for each cte^l, Σ«eB^α

is 1 on cozfβ. But, cozfβ is dense in cozfê  so Σαe^^α is 1 on a
dense subset of coz hβ and therefore on coz hβ itself. Consequently,
hβ = hβΣasΈga. It follows that {ga}aeA generates Iz since {ha}a*A

does.
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The desired isomorphism φ: Iz~+I is now obtained by defining

Φ(ga) = fa for each aeA.

COROLLARY 4.7. If a projective ideal I can be generated by a
star finite family {fa}a&A such that pos/α Π neg/^ s= 0 for all a, β e
A9 then it is module isomorphic to Iz,

Proof. Due to Theorem 4.6, one needs to show only that the
function //j/Σ«e^/« is in C(coz/) for each βeA and can be extended
to a function in C(X) which is 0 on X\supp fβ. But since pos/α Π
neg/,9 = 0 for all a, βeA, c o z Σ ^ / α = coz J. So, Λ/Σ«β^/« is in
C(coz/) for each βeA.

The required extension is now done in two stages; first to
U«e^supp/α, then to X. Corresponding to {/α}αê , Theorem 2.4
provides a star finite partition of unity {ha}aeΛ on U«e^supp/α.
Therefore, xoe(]JaeA supp/α)\cozI implies that hao(x0) > 0 for some
a0 6 A; and by Theorem 2.4 (c), haja = gafao for some ga e C(X).
Hence, on the neighborhood U of x0 defined by U = {xeX: haQ(x) >
(1/2) haQ(x0)}, one can write fa = kafao where ka = (ga/hao)eC(U).
Moreover, since pos/αo Π neg/α = 0 and neg/«0 n pos/α = 0 for all
aeA, each ka is nonnegative on U. Therefore, on U Π coz I,

Λ kβfao kβ

ΣΛ (i + Σ^)/«0 i + Σ*« '
αe^l a^«o aψccQ

But the right hand side is continuous at x0 since the denominator is
bounded away from 0 on U. Hence, Λ/Σββ^/β can be extended
continuously to {x0} U coz /. Thus, by [6, 6H], there exists a func-
tion fβ e C(\JaeA supp/α) which is a continuous extension of Λ/Σ α e ^/ α

To obtain an extension of fβ to X, note that f'β is 0 on
(Uββ^supp/α^supp/Is since it must be 0 on coz i^supp/^. Also,
Uαe^supp/α = U«eAeozha is open and contains supp/^. Therefore,
fβ can be extended continuously to X by defining it to be 0 on

If an ideal is absolutely convex, then any generating set
can be replaced by {/ί, /ά}αe^. Hence, the class of ideals covered
by Corollary 4.7 includes the absolutely convex ones, Recall that
if X is an F-space [6, 14.25], then every ideal in C(X) is absolutely
convex [6, 14.26]. Hence, there are cases for which every projec-
tive ideal is module isomorphic to its associated projective £-ideal.

Also of interest is the fact that if a projective ideal is gener-
ated by the star finite family {/α}α6̂ , then the ideal generated by
{fa}aeA ̂  projective. (If {ha}aeA is a partition of unity on U«e^supp/α

associated with {fa}aeA as in Theorem 2 4, then {haha}aeA (recall De-
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finition 3.3) is a star finite partition of unity on Uαe^supp/j. More-
over, by Theorem 2.4 if a,βeA, there is a geC(X) such that
fβha = gfa', but by Lemma 4.1 (d), supp/α and X\\JΐeAcozhr are
completely separated so g can be chosen such that supp#£ Ure^coz/^.
Consequently, f}(hjia) = ΛV/Σrβ^h2

r] where gJ/ΣreAh
2

r is extended
continuously to X. Therefore, {/«}α64 and {haha}aeA satisfy the con-
ditions of Theorem 2.4.) By Corollary 4.7, this ideal is module iso-
morphic to its associated protective z-ideal. Furthermore, as will
be seen in Proposition 4.8, the ideals generated by {fa}aeA and {fl}aGA

are associated with the same protective 2-ideal. Thus, a projective
ideal I always contains a module isomorphic copy of Iz.

The following proposition characterizes the relationship between
projective ideals which are associated with the same projective z-
ideal.

PROPOSITION 4.8. If I and J are projective ideals, then Iz = Jz

if and only if there are star finite generating sets {f,a}aeA and
{/2,α}ffe4 of I and J respectively such that supp/ l f β = supp/2,α for
each a e A.

Proof. Suppose Iz — Jz. Theorem 2.4 provides star finite gen-
erating sets {fβ}βeB and {/"}rβί7 for I and J respectively with cor-
responding partitions of unity {hβ}βeB and {h"}reC such that supp// =
supptiβ for each βeB and suppf" = supph" for each ΎeC. Let
A = Bx C and, for each (/S, Ύ) = aeA, define f'a = f'βh'r' and /« =
f"hβ. From the star finiteness of the collections involved, it follows
that both {fά}cceA and {/«}αe4 are star finite. Moreover, since Iz = Jz,
each h'β must be a linear combination of a finite subset {h"}rBCβ of
{K'hecl a n ( i since {h"}rec is star finite, {7 6 C: h"h" Φ 0 for some
δeCβ} = C'β is finite. Thus, Σreσj Λ" = 1 on (tozh'β and consequently
on supp h'β = supp/; so /; = /; Σ r e ^ K = Σrecέ / W Therefore,
{/«}α6̂  generates /.

By symmetry, {/«}ββil generates J. The observation that
supp/ά = suppλjfe" = supp/« for each (ft7) = a e 4 completes this
part of the proof.

Conversely, suppose {/1)β}β6i and {/2)α}αê  satisfy the conditions
of the proposition. Then, by Theorem 2.4, there are star finite
partitions of unity {hua}aeA and {h2,a}aeA generating Iz and Jz respec-
tively such that supp hua £ supp fua = supp f2ttt and supp^2,αS
supp/2,α = supp/lf« for each aeA. It follows by Lemma 4.1 (c) that
if a e A then there is a finite BQ A such that hua = felfβ(Σ^βB ̂ 2̂ ) 6 Jz.
(Recall that {fe2,α}α64 generates Jβ.) Thus, /, £ Jz. The rest follows
by symmetry.
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