
PACIFIC JOURNAL OF MATHEMATICS
Vol. 71, No. 2, 1977

ON THE RIEMANN-ROCH EQUATION FOR SINGULAR
COMPLEX SURFACES

LAWRENCE BRENTON

An explicit constructive algorithm is developed for calcu-
lating the Hirzebruch-Riemann-Roch index χ(L) = Σ*=o (—1)*
dim H^X, έ?(L)) of a holomorphic line bundle L on a normal
compact two-dimensional complex analytic space (X, έ?) with
singularities, in terms of the standard global topological
invariants of X and a "correction term" involving only the
local analytic and topological structure of the singular points
themselves. The technique is by resolutious of singularities.

In recent years considerable attention has been given to the
problem of extending classical results on nonsingular protective
algebraic varieties to the more general case of possibly singular
complete abstract algebraic varieties, or to that of compact complex
analytic spaces. In particular, Paul Baum, William Fulton, and
Robert MacPherson have achieved Riemann-Roch theorems for singular
varieties by constructing objects in appropriate homology theories
and iΓ-theories which play the role of (the duals of) the Chern char-
acter of a holomorphic vector bundle E and the Todd class of a
complex manifold X in Hirzebruch's formula χ(X, E) — [ch(E) U
Td(X)][(X)] ([2], [3], [7]; see also Fulton [8], to appear).

In a rather different spirit one can study the local properties of
isolated singular points and inquire how these properties are reflected
in the global geometry of compact spaces which contain them. In
some sense a "nice" singularity ought to be one whose presence
passes unnoticed from a global point of view, while for a compact
space with "bad" singularities the classical theorems (like Riemann-
Roch) ought to require considerable adjusting. In [4] this tack was
taken with respect to Hirzebruch's formula in dimension 2 in an
attempt to understand the contribution of normal isolated singular
points to global properties of compact surfaces. At that time only
the hypersurface case was treated and the proofs depended on rather
tedious calculations involving explicit techniques for resolving sin-
gularities. The purpose of this paper is to extend the result to
arbitrary normal surfaces and to present a more concise and satis-
factory proof. Thus we show:

THEOREM 1 (Proposition 2 below). Let (X, έ?) be a normal com-
pact two-dimensional complex analytic space. Then there is a ra-
tional cohomology class cx e H\X, Q) such that for every holomorphic
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line bundle L on X we have the Riemann-Roch equation

\{c{Lf + c(L)rcX[X])

where c(L) is the Chern class of L and [X] is the natural generator
of H,{X, Z).

THEOREM 2 (Proposition 4 below). For (X, έ?) and cxsH\X, Q)
as above, we may compute the integer χ(^) as follows. Denote by
P = {xlf , xr} the set of singular points of X and let π: X —• X
be any normal resolution of singularities. Let C = U*=i Q be the
decomposition of the exceptional curve C = π~\P) into its irreducible
branches. Denote by gt the genus of Cif by g{C) = dim H\C, R) —
Σ*=i dim Hl{d, R) the number of independent cycles in the dual
graph of C, and by e(C%), C\ respectively, the Euler number and
self-inter section. Let 7* e H\C, Q) = Q8 be the generator correspond-
ing to the component C? (i.e., dual to a point of Ct — (\J3'ΦiCj)) and
denote by \\ \\π the norm on this rational vector space represented in
the basis {Ύlf

 # ,78} by the positive definite matrix { — C^C^Y1, and
by e(C) + C2 the vector Σ?=i (β(C<) + Cΐ)Ύt. Finally, denote by R>
the first right derived sheaf on X via π of the ideal subsheaf
d7lc of the divisor C c X, and define the topological Euler class c2

by c2 = c2(X) = e(X)ζ for e{X) the Euler number of X and ξ the
natural generator of H\X, Z). Then:

(cl + c2)([X]) + s + 10±gi + llg(C) - \\e(C) + C2\\l

We note that except for the term (c\ + c2){[X\) the terms on
the righthand side of the equation depend only on the germs (x, έ?x)
of the singular points and that by the theorem their sum is inde-
pendent of the resolution π. Because of the terms dim {Rιπ^^c)x.,
however, the index χ(^) is not determined solely by the topology
of X as is the case when X is nonsingular (see [14], Example, page
7). It should also be emphasized that it is the numerical calcula-
tions of Theorem 2 that are of primary interest here. That is, our
aim is to prescribe a concrete finite algorithm useful for determining,
say, the number of sections admitted by particular line bundles on
a particular singular surface, rather than to develop a general
theory of characteristic classes of vector bundles on analytic spaces.
For this the reader may consult, e.g., MacPherson [16], or the re-
ferences [2], [3] and [7] cited above.
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Theorems 1 and 2 then combine to give the main "Composite
Riemann-Roch Theorem," Theorem 5 below.

The paper concludes with some remarks and examples, among
which we mention here the following result of Laufer which con-
nects these ideas to the notion of the Milnor number μ of an isolated
hypersurface singularity.

THEOREM 3 (Laufer [15]). Let X be a two-dimensional compact
complex analytic space each of whose singular points is an isolated
hypersurface singularity. Then for K the "canonical" line bundle
on X (the standard bundle of holomorphic 2-forms on the regular
points, extended to all of X) we have for every holomorphic line
bundle L on X the equation

χ(L) = \L-(L-K) + hκ2 + e(X) + μ)

for μ the sum of the Milnor numbers of the singular points.
Furthermore, μ can be calculated by the formula of Theorem 2 above.

And lastly we give an application to the topic of singular sur-
faces which are homotopy protective planes:

THEOREM 4 (Proposition 6 below). Let X be a normal compact
two-dimensional complex analytic space with vanishing geometric
genus pg = dim H\X, έ?x) and with integral cohomology ring iso-
morphic to that of the complex protective plane P2 and generated
by the Chern class of the line bundle of a holomorphic divisor.
Then X is a rational protective algebraic surface homotopy equiva-
lent to P2, each singular point of X is a rational double point,
and, indeed, X is biholomorphic either to

(a) P2 itself (in case X is nonsingular) or to
(b) a singular rational surface obtained from P2 by the suc-

cessive application of precisely 8 monoidal transformations fol-
lowed by the blowing down of precisely 8 nonsingular rational
curves, each with self-inter section 2.

Examples of these last-mentioned spaces are given in [6].

I* A Riemann-Roch theorem for singular surfaces* Let (X, έ?Σ)
be a normal compact cpmplex analytic space (always reduced in this
paper). One way to study the properties of X is to produce a reso-
lution π: X—>X of the singularities of X, apply the powerful theory
of compact complex manifolds to the nonsingular model X, and
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then try to push this information down to X via the map it. This
approach is especially fruitful in (complex) dimension 2 where we
have at our disposal not only the rich abundance of detail concerning
isolated singularities of surfaces and their resolutions (as exposed
in [13], e.g.) but also the all but exhaustive classification theory
for two-dimensional compact manifolds due principally to Kodaira
[12]. In particular the following result relates the topology of a
singular surface with that of its nonsingular model. A complete
proof is given in [5] (Lemma 1 of that paper).

LEMMA 1. Let X be a compact two-dimensional complex analytic
space with only isolated singular points xlf *",xr. Let π:X—>X
be any resolution of the singularities of X. Put C = iΐ~~\{x, , xr})
the exceptional curve in X. Then there is an exact sequence

(*Z) > H%X, Z) — H%Xf Z)

— H\C, Z) — Hi+\X, Z) > ,

i ^ 1, with %i naturally induced by π and εt by the inclusion C c
X. Furthermore,

(a) π1 is injective, ττ3 surjective, and π4 an isomorphism;
(b) if (*Z) is tensored with Q, in the resulting sequence

(*Q) _ Hi(χ9 Q) Ju H\X, Q)

- ί U H\C, Q) — Hi+ί(X, Q) — >

ε'2 is surjective and π'% an isomorphism.

This result alone gives us the first version of the theorem.

PROPOSITION 2 (Theorem 1 of the introduction). Let (X, &z) be
a normal compact two-dimensional complex analytic space. Then
there is a rational cohomology class c1 e H\X, Q) such that for any
holomorphic line bundle L on X we have the Hirzebruch-Riemann-
Roch formula

Xi^ΛL)) = \{c{Lf + c(L) βl)([X]) + X(^r)

for c(L) the Chern class of L and [X] the canonical generator of
H4(X,Q). (In particular, the expression l/2(c(L)2 + c(L) ej lies in
the image of the natural mapping H*(X, Z)~->iϊ*(X, Q) for every
L, even though the rational class cλ may not.)

Proof. Denote by P = {x19 , xr) the set of singular points of
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X, let π: X ~* X be a resolution of singularities, and let C = U*=i C<
be the decomposition of the exceptional curve C = π~\P) into its
irreducible branches. Now the exact sequence

H\X, Q) — iϊ2(Z, Q) — H2(C, Q) > 0

of Lemma 1 admits the natural splitting ε*"1 given (in the obvious
bases) by the inverse to the nonsingular intersection matrix (C^Cj).
Thus we have the internal direct sum

H\X, Q) = im (π*) 0 &

for ^ the rational subspace spanned by the Poincare duals C? of
the curves C<. In particular for cx e H2(X, Q) the first Ghern class
of the compact complex manifold X we have

( i) a; = π*(cj + Σ Wΐ
i = l

for some cohomology class cι e H2(X., Q) and some rational numbers
tt. Note then that for any a e £Γ2(X, Q),

(2) δ'1.π*(α) = π*(c1).π*(α).

Next, the Leray spectral sequence for the sheaf &χ(π*L) and
the map π gives

( 3 ) X(d?AL)) - χ(^ϊ(π*L)) = dim H\X, &π^x{π*L)) .

(Here π^χ{τc*L) = έ?x(L) by normality.) But since TΓ is a biholo-
morphism oίf C the sheaf i217rϊic^(7r*L) (the first derived sheaf of
^x(π*L) via π) is supported on P, and since ^V(L) is free in a
neighborhood of P we have in fact

Thus (3) becomes

(4) χ(^r(L)) - χ(^x(τr*L)) = dim

or

(5)

Finally we note that for [X], [X] the natural generators of
iϊ4(X, Q), ΐίtί-X', Q)> respectively, the fact that π is orientation pre-
serving and a homeomorphism off a proper subvariety means that

(6) £
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Putting (2), (5), and (6) together with Riemann-Roeh on X for
the line bundle π*L and naturality of Chern classes and cup prod-
ucts now completes the proof. Namely, if c, c denote the Chern
class maps respectively on X and X, then for ct e H\X, Q) as in
(1), if L —* X is any holomorphic line bundle we have

h + c(L). Cl)([X]) = hc(π*Ly + c(π*L). *:*(*
Δ

= hc(π*Lγ + c(π*L) c
Δ

REMARK. The class cx e H2(X, Q) thus selected is unique only
up to an element in the kernal of the mapping π'2: H\X, Q) —*
H\X,Q). Of course the class c1 aeH\X9Q) is nevertheless well-
defined Vα e H\Xj Q), for ker π'2 is precisely the null eigen space of
the cup product pairing (not necessarily nonsingular for singular
surfaces) on X. cx is obviously independent of the particular re-
solution π.

II* Calculation of the term χ(Λ-) For singular surfaces X
the analytic index χ(^z) is evidently not determined by a nice set
of global topological invariants. In this section we calculate this
index by an algorithm which exhibits explicitly its dependence on
the nature of the singular points.

For any irreducible compact analytic space Y of dimension n
denote by e(Y) = Σ!"i (-1)' dim H\Y, R) the topological Euler num-
ber. By both abuse and confusion of notation, then, we may define
the "rath Chern class" cJJΓ) of Y by simply putting

cn(Y) = e(Y)ξ(Y)

for ξ(Y) either the natural generator of H2%(Yy Z) or its natural
image in H2n(Y, Q), or in H2n(Y, R), etc., as convenience dictates.

Now if Σ is the singular set of Y, Y as above, a resolution
π: Ϋ—•> Y of the singularities of Y is called normal if the hyper-
surface Z = π'\Σ) consists of a collection of manifolds Zt meeting
(if at all) transversally, with Zt Π Zs connected Vi, j and with
dim (Zt Π Zj ΓfZk) ^ n — 3, i, j , Λ distinct. In particular, if Y is a
surface and Z a curve, then Zt meets Zj in at most one point and
Zif] Zj f] Zk = 0 . Normal resolutions always exist by Hironaka
[10].

PROPOSITION 3. Let X be a normal compact two-dimensional
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complex analytic space with singular set P — {xlf * xr} and let π:
X—*X be any normal resolution of the singularities of X with
exceptional curve C— \jUiCif Ct irreducible. Denote by 7te
H\C, Q) = Q8 the generator corresponding to the curve Ci9 by e(C) + C2

the vector Σ*=i (e(C*) + Cϊ)Ύif and by \\ \\π the norm on this rational
vector space given in the basis {719 , 7β} by the inverse (Eij) to
the positive definite matrix — ((V C,-). Let ^eHXX, Q) be as in
Proposition 2 and let c2 = c2(X) 6 H4(X, Q) be as immediately above
the topological Euler class. Then

x) = -^((cϊ + c2)([X]) + e(C) -r

C2 | | |) + Σ dim (Rhcm<?i). .

Proof. The proof is a straightforward calculation. By equation
(4) of the proof of Proposition 2

+ dim H\X, Ή

Σ dim (R
P

Σ
xeP

By Riemann-Roch on X,

l^ί) - h?\ + c2)([X]) .

From the exact sequence

> H\X, Q) > H\X, Q) > H\C, Q) > ,

i Ξ> 1, of Lemma 1 we obtain

e(X) - dim H\X, R) = (e(X) - dim H%X, R)) + (e(C) - dimίίo(C, B)) .

But X and X are connected, while C has as many topological com-
ponents as X has singular points, namely r. Thus

And finally, putting cx = π*(cj + Σ*=i tfiΐ as per the definition
of cu we have

(π*(Cim[X\) + Σi
ί,k=ί

Σ (Σ ι ι i ) ( ^ ( ) ( Σ et ek)tk
i,j=l 1 = 1 k=l

- Σ (
i,3=l
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- \\e(C) + C>\\1 .

Putting this list of facts together proves the theorem.
We want to restate this result slightly, the better to exhibit

its "algorithmic" character. The advantage below in substituting
the sheaf Rιπ^^"c for Rγπ*έ?x is simply that it more often vanishes.
(A simple sufficiency test for {Rιπ^^c)x = 0 is given, following Laufer
[13], in [4], page 49.)

PROPOSITION 4 (Theorem 2 of the introduction). For X, π:X-+
X as in Proposition 3, the index χ(έ?x) satisfies

= (d + c2)([X]) + 8 + 10 gflr, + llflr(C) - \\e(C) + C2\\l

+ Σ dim (Rι:

where s is the number of components of the exceptional curve C =
π~\P), gt is the genus of Cif g(C) the unumber of cycles in the dual
graph of C" = dim H\C, R) - Σ U dim H\Cif R); where the vector
e(C) + C2 and the norm \\ \\π are as in Proposition 3, and where
K^C is the locally principle ideal subsheaf of έ?^ consisting of those
germs which vanish on C.

Proof. We continue calculating where we left off in Proposi-
tion 3:

(*) e{C) - r = dim H°(C, R) - dim H\C, R) + dim H\C, R) - r

s-r

- g(C) .

To relate Rιπ*έ?χ to R^*^ we consider a connected component
C of C and a (small) strongly pseudoconvex neighborhood U of C
such that τr( ϋ) is Stein. Without loss of generality we may suppose
that C = U t i with C, Π (\Js<i Cβ) Φ 0 for i > 1. For each i =
1, 2, •••, s' put

^ = Σ Cj' Ct = number of curves Cy that meet Cέ for i < i.

Following Laufer [13] denote by ^ the ideal sheaf of Ct and suc-
cessively for i = 1, 2, ••-,§' consider the exact sequences

o —> ® j?ά—> ®• ^ — > ̂  ® ̂ ( ® [c3r
ι) —> o,
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for [C3]~ι the dual of the line bundle of the divisor Co on X. On
U we have the induced sequences

Since U is pseudoconvex, this last group vanishes ([1], Proposition
27, page 256, or [9], Satz 1, page 355, supplies the proof), so ψt is
always surjective. Also, φi is injective. for if i = 1 we have simply
the sequence ^ x —»^x —• tf^ and C19 being compact, admits only
constant holomorphic functions, while if i > 1, then the bundle
®5<i [CjV1 \Ci is strictly negative and admits only the zero section.
Thus since all these groups are finite dimensional we may simply
count dimensions:

and by Riemann-Roch on Ct this last group has dimension

-α~!") 'or ί > ;
g, for ι = l .

Adding these equations (and noting that the sheaf 0^*-! KJ^ = έ
for i = 1 and ® ^ ^ = ^ , for i = s') then gives the conclusion

Kϋ, <?z) = dim iΓ(#, ̂ 0 + Σ g* + Σ (% - D .

But it is easy to check that this last number is just the number
g{C) of cycles in the dual graph of C". Thus shrinking U to the
singular point x = π(C') and summming over the connected com-
ponents of C yields the relation

(**) Σ dim Rιπ^x = Σ dim Rι

xeP xeP ϊ = i

(cf. [5], Lemma 2, where we take a closer look at this relation for
negatively embedded curves C on surfaces).

Putting equations (*) and (**) together with the conclusion to
Proposition 3 now completes the proof.

COMPOSITE RIEMANN-ROCH THEOREM 5. Let (X, &z) be a normal
two-dimensional compact complex analytic space. Then there is a
rational cohomology class cγ e H2(X, Q), and an integer R(X) de-
pending only on the germs of the singular points, such that for



308 LAWRENCE BRENTON

any holomorphic line bundle L on X we have the "Hirzebruch-
Riemann-Roch" equation

χ(L) = (\(c(Lf + c(L) cj + ^(cϊ + c2)) ([X]) + ±

for χ(L) the analytic index of L> c2 e H\X, Q) the Euler class, and
[X] e H^X, Q) the natural positive generator. Furthermore, R(X)
be computed from any normal resolution π:X~+X of the singu-
larities of X according to the formula

R{X) = 8 + 10Σ Λ + llg(C) - \\e{C) + C2\\l + Σ dim {R>π*J?G\ ,
i = l xeP

with notation as in the previous propositions.

Ill* Remarks and applications* (1) At first glance it might
appear that this "Riemann-Roch correction term" R(X) is faily com-
plicated. In any particular example, however, its calculation is
completely straightforward. Given a singular point xeX there are
at least two standard methods for explicitly constructing a resolu-
tion π of singularities. (One is by successive monoidal transforma-
tions and the other is Hirzebruch's method [11] of piecing together
branched coverings of C2.) Given the resolution, the numbers s, gi9

and g(C) can be read off immediately, as can the intersection
matrix (C< •(?,-) whose inverse gives the norm || ||π. The last term
dim {Rιπ^^c)x may be trickier but it can always be computed by
the technique of the last part of the proof of Proposition 4, as is
shown in [13], Chapter 6. Furthermore, for some special kinds of
singularities we may get a simplification of the formula for R due
to vanishing of some of the terms. If X has only rational double
points, for instance, everything in sight vanishes and we have simply

R{X) - s ,

the number of curves in the minimal resolution.
(2) In some cases the cohomology class cγ is actually the Chern

class of a holomorphic line bundle K. For instance if the singu-
larities of X are Gorenstein (i.e., if the canonical bundle Ko on the
set of regular points Xo of X is trivial in a neighborhood of each
singular point), then, as is clear from the definition of c19 c1 is just
the Chern class of the bundle K — Ko extended (uniquely up to an
analytic isomorphism) to X. In this case we may call the bundle
K so defined the "canonical line bundle of X" and obtain the
formula
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= \L-{L-K) + hκ> + e(X) + R(X)) .
Δ 1.Δ

To specialize further to the case where X is locally a hyper-
surface, Laufer shows in [15] that the term R{X) is equal to the
sum μ of the Milnor numbers μ(Xi) of the singular points. This
gives the pretty result

(t) X(L) = \L {L-K) + hκ> + e(X) + μ)
Δ LΔ

mentioned in the introduction. Since in general Milnor's μ is to be
regarded as the natural analogue in higher dimensions of the notion
of "multiplicity" in the classical theory of plane curves, the result
(f) and its variants can be interpreted as a generalization to dimen-
sion two of a part of the theory surrounding the various formulas
involving the "number of nodes and cusps" of an algebraic curve.
Our "first Chern class" c19 for instance, corresponds to the "virtual
genus" g = Ks D + D2 of a singular curve D contained in a non-
singular surface S in the formula

g = g + ^Σμlμ, - 1)
Δ

for g the genus of D (i.e., of the nonsingular model) and the μt the
multiplicities of the singular points.

The formula (t) also shows that in this case the correction term
R{X) is always positive—a fact that is not immediately obvious from
the definition of R(X) as given in Theorem 5.

(3) The conclusion that the expression (l/2)(c(L)2 + c(L) - ^([X])
must always be an integer is sometimes a useful one. We close
with an illustration of this fact.

PROPOSITION 6 (Theorem 4 of the introduction). Let X be a
normal compact two-dimensional complex analytic space with vanish-
ing geometric genus pg — dim H\X, ^x) and with H*(X, Z) =
H*(P2, Z) and generated by the Chern class of the line bundle of a
holomorphic divisor Γ. Then X is a rational protective algebraic
surface homotopy equivalent to P2 and each singular point of X is
a rational double point. Indeed, either

(a) X is biholomorphic to P2 or
(b) X is biholomorphic to a singular surface obtained from

P2 by the successive application of precisely 8 monoidal transfor-
mations followed by the collapsing to one or more points of precisely
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8 nonsingular rational curves, each with self-inter section — 2. In
this case Γ may be taken to be a nonsingular elliptic curve con-
tained in the regular points of X.

Proof. The desired conclusion is proved in [6], Theorem 6,
under the assumption that the singularities are already known to
be rational double points (in this case pg = 0 is redundant). Thus
it suffices to show that the hypotheses of the present proposition
force this condition upon the singularities.

Let π: X —>X be a resolution of singularities. From the exact
sequence

( * ) > H\X, Z) > H\X, Z) > H\C, Z) >

of Lemma 1, vanishing of H\X, Z) implies the same for H\X, Z),
whence Poincare duality on X gives b^X) = 0, b1 the first Betti
number. Thus also q(X) = (1/2)6^) = 0 for q(X) = dim H\X, 0>x)
the irregularity ([12], I, Theorem 3). But in any case q(X) <; q{X)
and pg(X) ^ pg(X) ([5], Corollary 3), so in our case all four of these
numbers vanish. In particular, then,

Σ dim {Rιπ^)x - χ ( ^ ) - χ ( ^ ) = 0 ,

so each singular point is rational.
As in the proof of Proposition 1 above put

(**) δi = π*(Cl) + Σ tβΐ ,

tteQf Cj.eHXX, Q). I claim that in fact cx is integral. To see this
write Cj. = tc{[Γ]), teQ, and apply proposition 1 to the line bundle
[Γ] of the divisor Γ:

(Here we have used the fact that H*(X, Z) = ίί*(P 2, Z) (as rings)
and that H\X, Z) = Z is generated by c([Γ]).) Since 1/2(1 + t)
must thus be an integer, so must t.

Now the map ε2: H\X, Z)-*H\C, Z) is surjective {H\X, Z) = 0
in (*)), so for each i 3 an integral cohomology class at^H\X9 Z)
such that

0 otherwise.



RIEMANN-ROCH FOR SINGULAR SURFACES 311

Hence the rational numbers tt in (**) satisfy

s

U = ( Σ hC*) α< = c^a,- ττ*(c1) a, .

Since both cx and ττ*(c1) = tc(π*[Γ]) are integral, £< e ZVi. But then
#(•̂ 0 = q(X) — 0 together with (**) gives the bundle isomorphism

K-i = π*[Γ]-< ® «g» [CJ-") .

Restricting this equation to J - C shows that the canonical bundle
KXo on the regular points Xo of X is isomorphic to the bundle
IΓΓΊJΓO * n Particular, KXQ is trivial in a neighborhood of each
singular point—i.e., the singularities of X are Gorenstein. (The
support of Γ may of course pass through singular points of X, but
since by assumption Γ is a (Gartier) divisor this does not compromise
local triviality of [Γ].)

But Laufer show in [14], Theorem 4.3 and its proof that a
rational singularity is Gorenstein if and only if it is a double point,
and thus the proof is complete.
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